Digital Circuits

Prof. Nizamettin AYDIN

<u>nizamettinaydin@gmail.com</u> <u>http://www</u>.....

Gate Circuits and Boolean Equations

- Binary Logic and Gates

- Boolean Algebra

- Standard Forms

1

Course Outline

- 1. Digital Computers, Number Systems, Arithmetic Operations, Decimal, Alphanumeric, and Gray Codes
- 2. Binary Logic, Gates, Boolean Algebra, Standard Forms
- 3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level Circuit Optimization
- 4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, High-Impedance Outputs
- 5. Implementation Technology and Logic Design, Design Concepts and Automation, The Design Space, Design Procedure, The major design steps
- 6. Programmable Implementation Technologies: Read-Only Memories, Programmable Logic Arrays, Programmable Array Logic, Technology mapping to programmable logic devices
- 7. Combinational Functions and Circuits
- 8. Arithmetic Functions and Circuits
- 9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
- 10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
- 11. Counters, register cells, buses, & serial operations
- 12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
- 13. Memory Basics

Binary Logic and Gates

- <u>Binary variables</u> take on one of two values.
- <u>Logical operators</u> operate on binary values and binary variables.
- Basic logical operators are the <u>logic functions</u> AND, OR and NOT.
- <u>Logic gates</u> implement logic functions.
- <u>Boolean Algebra</u>: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as foundation for designing and analyzing digital systems!

Binary Variables

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - 1/0
- We use 1 and 0 to denote the two values.
- Variable identifier examples:
 - $-A, B, y, z, or X_1$ for now
 - RESET, START_IT, or ADD1 later

Logical Operations

- The three basic logical operations are:
 - AND
 - -OR
 - NOT
- AND is denoted by a dot (\cdot)
- OR is denoted by a plus (+)
- NOT is denoted by an overbar (⁻), a single quote mark (') after, or (~) before the variable

Notation Examples

- Examples:
- Y=A.B is read "Y is equal to A AND B."
- z=x+y is read "z is equal to x OR y."
- $X=\overline{A}$ is read "X is equal to NOT A."
- Note:
 - The statement:
 - 1 + 1 = 2 (read "one plus one equals two")
 is not the same as
 - 1 + 1 = 1 (read "1 or 1 equals 1").

Operator Definitions

• Operations are defined on the values "0" and "1" for each operator:

ANDORNOT $0 \cdot 0 = 0$ 0 + 0 = 0 $\overline{0} = 1$ $0 \cdot 1 = 0$ 0 + 1 = 1 $\overline{1} = 0$ $1 \cdot 0 = 0$ 1 + 0 = 1 $1 \cdot 1 = 1$ 1 + 1 = 1

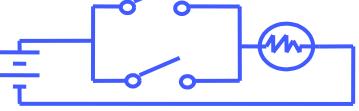
Truth Tables

- Truth table
 - a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example:
 - Truth tables for the basic logic operations:

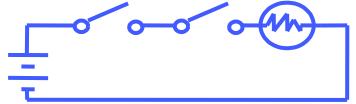
AND				OR			NOT	
X	Y	$\mathbf{Z} = \mathbf{X} \cdot \mathbf{Y}$	X	Y	$\mathbf{Z} = \mathbf{X} + \mathbf{Y}$		X	$Z = \overline{X}$
0	0	0	0	0	0		0	1
0	1	0	0	1	1		1	0
1	0	0	1	0	1			
1	1	1	1	1	1			

Logic Function Implementation

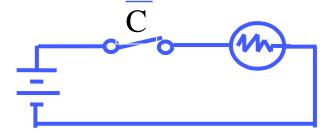
- Using Switches
 - For inputs:
 - logic 1 is switch closed
 - logic 0 is <u>switch open</u>
 - For outputs:
 - logic 1 is <u>light on</u>
 - logic 0 is <u>light off</u>.
 - NOT uses a switch such that:
 - logic 1 is switch open
 - logic 0 is <u>switch closed</u>



Switches in series => AND

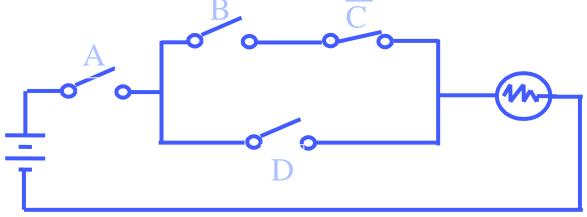


Normally-closed switch => NOT



Logic Function Implementation (Continued)

• Example: Logic Using Switches



• Light is on (L = 1) for

 $L(A, B, C, D) = A \cdot ((B \cdot C') + D)$ and off (L = 0), otherwise.

• Useful model for relay circuits and for CMOS gate circuits, the foundation of current digital logic technology

Logic Gates

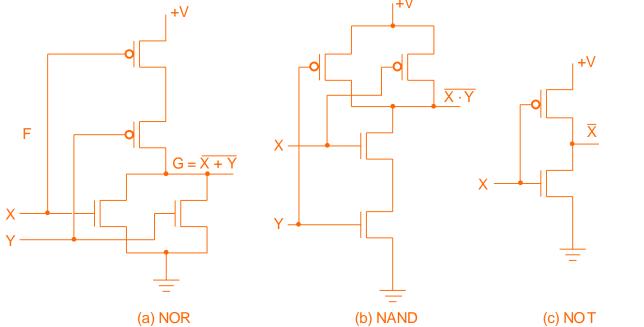
• In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in *relays*.

The switches in turn opened and closed the current paths.

- Later, *vacuum tubes* that open and close current paths electronically replaced relays.
- Today, *transistors* are used as electronic switches that open and close current paths.

Logic Gates (continued)

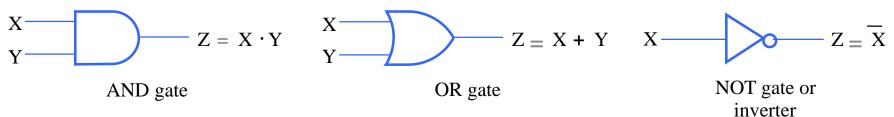
 Implementation of logic gates with transistors (See Reading Supplement – CMOS Circuits)



- Transistor or tube implementations of logic functions are called logic gates or just gates
- Transistor gate circuits can be modeled by switch circuits

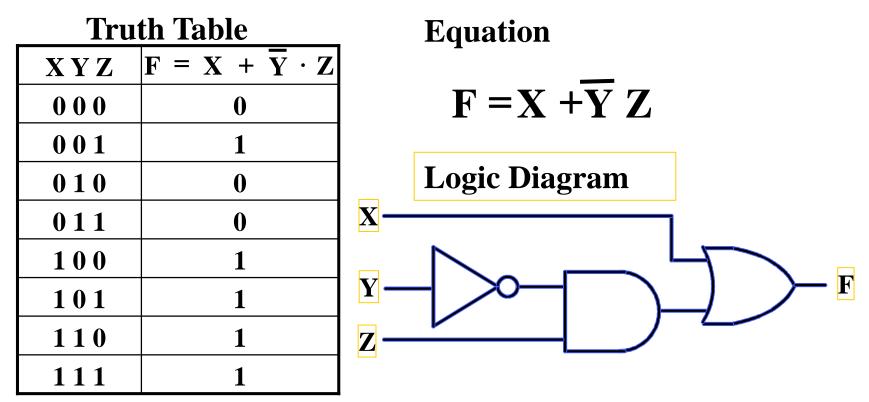
Logic Gate Symbols and Behavior

• Logic gates have special symbols (Graphic symbols):



• Waveform behavior in time (Timing diagram):

Logic Diagrams and Expressions



- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Boolean Algebra

An algebraic structure defined on a set of at least two elements, B, together with three binary operators (denoted +, · and) that satisfies the following basic identities:

1.	X + 0 = X	2.	$X \cdot 1 = X$	Existence of 0 and 1
3.	X + 1 = 1	4.	$X \cdot 0 = 0$	
5.	X + X = X	6.	$X \cdot X = X$	Idempotence
7.	$X + \overline{X} = 1$	8.	$X \cdot \overline{X} = 0$	Existence of complement
9.	$\overline{\overline{X}} = X$			Involution
10.	X + Y = Y + X	11.	XY = YX	Commutative
12.	(X+Y)+Z = X+(Y+Z)	13.	(XY)Z = X(YZ) Associative
14.	X(Y+Z) = XY+XZ	15.	X + YZ = (2	(X + Y)(X + Z) Distributive
16.	$\overline{X+Y} = \overline{X} \cdot \overline{Y}$	17.	$\overline{X \cdot Y} = \overline{X} + \overline{X}$	Y DeMorgan's

Some Properties of Identities & the Algebra

- If the meaning is unambiguous, we leave out the symbol "·"
- The identities appear in **dual** pairs.
- The dual of an algebraic expression is obtained by interchanging + and • and interchanging 0's and 1's.
 - A function is said to be self-dual if and only if its dual is equivalent to the given function,
 - i.e., if a given function is f(X, Y, Z) = (XY + YZ + ZX) then its dual is, fd(X, Y, Z) = (X + Y).(Y + Z).(Z + X) = (XY + YZ + ZX), it is equivalent to the given function

Some Properties of Identities & the Algebra

• Unless it happens to be self-dual, the dual of an expression does not equal the expression itself.

• Example:
$$F = (A + \overline{C}) \cdot B + 0$$

dual $F = (A \cdot \overline{C} + B) \cdot 1 = A \cdot \overline{C} + B$

- Example: $G = X \cdot Y + (\overline{W + Z})$ dual G =
- Example: $H = A \cdot B + A \cdot C + B \cdot C$ dual H =
- Are any of these functions self-dual?

Some Properties of Identities & the Algebra

- There can be more than 2 elements in B,
 - i. e., elements other than 1 and 0.
- What are some common useful Boolean algebras with more than 2 elements?
 - Algebra of Sets
 - Algebra of n-bit binary vectors
- If B contains only 1 and 0, then B is called the <u>switching algebra</u> which is the algebra we use most often.

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - Parentheses
 - NOT
 - AND
 - OR
- Consequence:
 - Parentheses appear around OR expressions
- Example:
 - $F = A(B + C)(C + \overline{D})$

Example 1: Boolean Algebraic Proof

- $A + A \cdot B = A$ (Absorption Theorem) Proof Steps Justification (identity or theorem)
- $A + A \cdot B$ = $A \cdot 1 + A \cdot B$ $X = X \cdot 1$ = $A \cdot (1 + B)$ $X \cdot Y + X \cdot Z = X \cdot (Y + Z)$ (Distributive Law) = $A \cdot 1$ 1 + X = 1= A $X \cdot 1 = X$
- Our primary reason for doing proofs is to learn:
 - Careful and efficient use of the identities and theorems of Boolean algebra, and
 - How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.

Example 2: Boolean Algebraic Proofs

- $AB + \overline{A}C + BC = AB + \overline{A}C$ (Consensus Theorem)
- Proof Steps: Justification (identity or theorem) $AB + \overline{A}C + BC$
 - $= AB + \overline{A}C + 1 \cdot BC$
 - $= AB + \overline{A}C + (A + \overline{A}) \cdot BC$
 - $= AB + \overline{AC} + ABC + \overline{ABC}$
 - $= AB(1 + C) + \overline{A}C(1 + B)$
 - $= AB \cdot 1 + \overline{A}C \cdot 1$
 - $= AB + \overline{A}C$

Example 3: Boolean Algebraic Proofs

• $(\overline{X + Y})Z + X\overline{Y} = \overline{Y}(X + Z)$ Proof Steps Justification (identity or theorem) $(\overline{X + Y})Z + X\overline{Y}$

=

Useful Theorems

 $x \cdot y + \overline{x} \cdot y = y \quad (x + y)(\overline{x} + y) = y \quad \text{Minimization}$ $x + x \cdot y = x \quad x \cdot (x + y) = x \quad \text{Absorption}$ $x + \overline{x} \cdot y = x + y \quad x \cdot (\overline{x} + y) = x \cdot y \quad \text{Simplification}$ $x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z \quad \text{Consensus}$ $(x + y) \cdot (\overline{x} + z) \cdot (y + z) = (x + y) \cdot (\overline{x} + z)$ $\overline{x + y} = \overline{x} \cdot \overline{y} \quad \overline{x \cdot y} = \overline{x} + \overline{y} \quad \text{DeMorgan's Laws}$

Proof of Simplification

$\mathbf{x} \cdot \mathbf{y} + \overline{\mathbf{x}} \cdot \mathbf{y} = \mathbf{y}$

$(x+y)(\overline{x}+y) = y$

Proof of DeMorgan's Laws

$\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$

$\overline{\mathbf{x}\cdot\mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$

Boolean Function Evaluation

F1 = $xy\overline{z}$ F2 = $x + \overline{y}z$ F3 = $\overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}$ F4 = $x\overline{y} + \overline{x}z$

X	y	Z	F1	F2	F3	F4
0	0	0	0	0	1	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of <u>literals</u> (complemented and uncomplemented variables):
 - $\mathbf{A}\mathbf{B} + \overline{\mathbf{A}}\mathbf{C}\mathbf{D} + \overline{\mathbf{A}}\mathbf{B}\mathbf{D} + \overline{\mathbf{A}}\mathbf{C}\overline{\mathbf{D}} + \mathbf{A}\mathbf{B}\mathbf{C}\mathbf{D}$
- $= \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{B}\mathbf{C}\mathbf{D} + \mathbf{\overline{A}}\mathbf{C}\mathbf{D} + \mathbf{\overline{A}}\mathbf{C}\mathbf{\overline{D}} + \mathbf{\overline{A}}\mathbf{B}\mathbf{D}$
- $= \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{B}(\mathbf{C}\mathbf{D}) + \mathbf{\overline{A}}\mathbf{C}(\mathbf{D} + \mathbf{\overline{D}}) + \mathbf{\overline{A}}\mathbf{B}\mathbf{D}$
- $= \mathbf{A}\mathbf{B} + \overline{\mathbf{A}}\mathbf{C} + \overline{\mathbf{A}}\mathbf{B}\mathbf{D} = \mathbf{B}(\mathbf{A} + \overline{\mathbf{A}}\mathbf{D}) + \overline{\mathbf{A}}\mathbf{C}$
- $= B (A + D) + \overline{A}C$ 5 literals

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - **1. Interchange AND and OR operators**
 - 2. Complement each constant value and literal
- Example: Complement F = $\overline{x}y\overline{z}+x\overline{y}\overline{z}$ $\overline{F} = (x + \overline{y} + z)(\overline{x} + y + z)$
- Example: Complement $G = (\overline{a} + bc)\overline{d} + e$ $\overline{G} = ?$

Overview – Canonical Forms

- What are Canonical Forms?
- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Minterm (SOM) Representations
- Product-of-Maxterm (POM) Representations
- Representation of Complements of Functions
- Conversions between Representations

Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

Minterms

- <u>Minterms</u> are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., x), there are 2ⁿ minterms for *n* variables.
- <u>Example</u>: Two variables (X and Y)produce $2 \ge 2 = 4$ combinations:
 - **XY** (both normal)
 - **XY** (X normal, Y complemented)
 - **XY** (X complemented, Y normal)
 - **XY** (both complemented)
- Thus there are <u>four minterms</u> of two variables.

Maxterms

- <u>Maxterms</u> are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., x), there are 2ⁿ maxterms for *n* variables.
- <u>Example:</u> Two variables (X and Y) produce 2 x 2 = 4 combinations:

X+Y	(both normal)
$X+\overline{Y}$	(X normal, Y complemented)
X +Y	(X complemented, Y normal)
$\overline{\mathbf{X}} + \overline{\mathbf{Y}}$	(both complemented)

Maxterms and Minterms

• Examples: Two variable minterms and maxterms.

Index	Minterm	Maxterm
0	$\overline{\mathbf{x}} \overline{\mathbf{y}}$	x + y
1	x y	$\mathbf{x} + \overline{\mathbf{y}}$
2	xy	$\overline{\mathbf{x}} + \mathbf{y}$
3	x y	$\overline{\mathbf{x}} + \overline{\mathbf{y}}$

• The index above is important for describing which variables in the terms are true and which are complemented.

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript is a number, corresponding to a binary pattern
- The bits in the pattern represent the complemented or normal state of each variable listed in a standard order.
- All variables will be present in a minterm or maxterm and will be listed in the <u>same order</u> (usually alphabetically)
- Example: For variables a, b, c:
 - Maxterms: $(a + b + \bar{c})$, (a + b + c)
 - Terms: (b + a + c), a \bar{c} b, and (c + b + a) are NOT in standard order.
 - Minterms: $a \bar{b} c$, a b c, $\bar{a} \bar{b} c$
 - Terms: (a + c), b c, and (a + b) do not contain all variables

Purpose of the Index

- The <u>index</u> for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.
- For Minterms:
 - "1" means the variable is "Not Complemented" and
 - "0" means the variable is "Complemented".
- For Maxterms:
 - "0" means the variable is "Not Complemented" and
 - "1" means the variable is "Complemented".

Index Example in Three Variables

- Example: (for three variables)
- Assume the variables are called X, Y, and Z.
- The standard order is X, then Y, then Z.
- The <u>Index 0</u> (base 10) = 000 (base 2) for three variables). All three variables are complemented for <u>minterm 0</u> ($\overline{X}, \overline{Y}, \overline{Z}$) and no variables are complemented for <u>Maxterm 0</u> (X,Y,Z).
 - Minterm 0, called m_0 is $\overline{X}\overline{Y}\overline{Z}$.
 - Maxterm 0, called M_0 is (X + Y + Z).
 - Minterm 6 ?
 - Maxterm 6 ?

Index Examples – Four Variables

Index Binary Minterm Maxterm

i	Pattern	$\mathbf{m}_{\mathbf{i}}$	$\mathbf{M_{i}}$
0	0000	abcd	a+b+c+d
1	0001	abcd	?
3	0011	?	$a+b+\overline{c}+\overline{d}$
5	0101	abcd	$\mathbf{a} + \mathbf{\overline{b}} + \mathbf{c} + \mathbf{\overline{d}}$
7	0111	?	$\mathbf{a} + \mathbf{\overline{b}} + \mathbf{\overline{c}} + \mathbf{\overline{d}}$
10	1010	abcd	$\bar{a}+b+\bar{c}+d$
13	1101	abīd	?
15	1111	abcd	$\overline{a} + \overline{b} + \overline{c} + \overline{d}$

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem $\overline{x \cdot y} = \overline{x} + \overline{y}$ and $\overline{x + y} = \overline{x} \cdot \overline{y}$
- Two-variable example: $M_2 = \overline{x} + y$ and $m_2 = x \cdot \overline{y}$ Thus M_2 is the complement of m_2 and vice-versa.
- Since DeMorgan's Theorem holds for *n* variables, the above holds for terms of *n* variables
- giving:

$$\mathbf{M}_{i} = \overline{\mathbf{m}}_{i \text{ and }} \mathbf{m}_{i} = \overline{\mathbf{M}}_{i}$$

Thus M_i is the complement of m_i.

Function Tables for Both

Minterms of Maxterms of 2 variables
2 variables

x y	m ₀	m ₁	m ₂	m ₃	ſ	ху	\mathbf{M}_{0}	\mathbf{M}_{1}	M ₂	M3
00	1	0	0	0		00	0	1	1	1
01	0	1	0	0	ſ	01	1	0	1	1
10	0	0	1	0		10	1	1	0	1
11	0	0	0	1		11	1	1	1	0

 Each column in the maxterm function table is the complement of the column in the minterm function table since M_i is the complement of m_i.

Observations

- In the function tables:
 - Each <u>min</u>term has one and only one 1 present in the 2^n terms (a <u>minimum</u> of 1s). All other entries are 0.
 - Each <u>max</u>term has one and only one 0 present in the 2^n terms All other entries are 1 (a <u>max</u>imum of 1s).
- We can implement any function by "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function.
- We can implement any function by "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.
- This gives us two <u>canonical forms</u>:
 - <u>Sum of Minterms (SOM)</u>
 - Product of Maxterms (POM)

for stating any Boolean function.

Minterm Function Example

- Example: Find $F_1 = m_1 + m_4 + m_7$
- $F1 = \overline{x} \overline{y} z + x \overline{y} \overline{z} + x y z$

хуz	index	m ₁	+	m ₄	+	m ₇	$= \mathbf{F}_1$
000	0	0	+	0	+	0	= 0
001	1	1	+	0	+	0	= 1
010	2	0	+	0	+	0	= 0
011	3	0	+	0	+	0	= 0
100	4	0	+	1	+	0	= 1
101	5	0	+	0	+	0	= 0
110	6	0	+	0	+	0	= 0
111	7	0	+	0	+	1	= 1

Minterm Function Example

- $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$
- F(A, B, C, D, E) =

Maxterm Function Example

• Example: Implement F1 in maxterms: $F_1 = M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$ $F_1 = (x + y + z) \cdot (x + \overline{y} + z) \cdot (x + \overline{y} + \overline{z})$ $\cdot (\overline{x} + y + \overline{z}) \cdot (\overline{x} + \overline{y} + z)$

хуz	i	$\mathbf{M}_0 \cdot \mathbf{M}_2 \cdot \mathbf{M}_3 \cdot \mathbf{M}_5 \cdot \mathbf{M}_6 = \mathbf{F1}$
000	0	$0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$
001	1	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$
010	2	$1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 = 0$
011	3	$1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 = 0$
100	4	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$
101	5	$1 \cdot 1 \cdot 1 \cdot 0 \cdot 1 = 0$
110	6	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 0 = 0$
111	7	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$

Maxterm Function Example

- $\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}) = \mathbf{M}_3 \cdot \mathbf{M}_8 \cdot \mathbf{M}_{11} \cdot \mathbf{M}_{14}$
- F(A, B, C, D) =

Canonical Sum of Minterms

- Any Boolean function can be expressed as a <u>Sum of Minterms</u>.
 - For the function table, the <u>minterms</u> used are the terms corresponding to the 1's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term $(v + \overline{v})$.
- Example: Implement $f = x + \overline{x} \overline{y}$ as a sum of minterms.

First expand terms: $\mathbf{f} = \mathbf{x}(\mathbf{y} + \overline{\mathbf{y}}) + \overline{\mathbf{x}} \ \overline{\mathbf{y}}$ Then distribute terms: $\mathbf{f} = \mathbf{x}\mathbf{y} + \mathbf{x}\overline{\mathbf{y}} + \overline{\mathbf{x}}\ \overline{\mathbf{y}}$ Express as sum of minterms: $\mathbf{f} = \mathbf{m}_3 + \mathbf{m}_2 + \mathbf{m}_0$

Another SOM Example

- Example: $\mathbf{F} = \mathbf{A} + \overline{\mathbf{B}} \mathbf{C}$
- There are three variables, A, B, and C which we take to be the standard order.
- Expanding the terms with missing variables:

- Collect terms (removing all but one of duplicate terms):
- Express as SOM:

Shorthand SOM Form

- From the previous example, we started with: $F = A + \overline{B}C$
- We ended up with:
- $F = m_1 + m_4 + m_5 + m_6 + m_7$
- This can be denoted in the formal shorthand: $F(A,B,C) = \Sigma_m(1,4,5,6,7)$
- Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a <u>Product</u> of <u>Maxterms (POM)</u>.
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable V with a term equal to V·V and then applying the distributive law again.
- Example: Convert to product of maxterms:

$$f(x, y, z) = x + \overline{x} \overline{y}$$

Apply the distributive law:

 $x + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \cdot (x + \overline{y}) = x + \overline{y}$

Add missing variable z:

$$\mathbf{x} + \overline{\mathbf{y}} + \mathbf{z} \cdot \overline{\mathbf{z}} = (\mathbf{x} + \overline{\mathbf{y}} + \mathbf{z})(\mathbf{x} + \overline{\mathbf{y}} + \overline{\mathbf{z}})$$

Express as POM: $f = M_2 \cdot M_3$

Another POM Example

• Convert to Product of Maxterms:

 $f(A,B,C) = A \overline{C} + BC + \overline{A} \overline{B}$

- Use $x + y z = (x+y) \cdot (x+z)$ with x = (AC + BC), y = A, and $z = \overline{B}$ to get: $f = (A\overline{C} + BC + \overline{A})(A\overline{C} + BC + \overline{B})$
- Then use $x + \overline{x}y = x + y$ to get: $f = (\overline{C} + BC + \overline{A})(A\overline{C} + C + \overline{B})$

and a second time to get:

$$\mathbf{f} = (\overline{\mathbf{C}} + \mathbf{B} + \overline{\mathbf{A}})(\mathbf{A} + \mathbf{C} + \overline{\mathbf{B}})$$

• Rearrange to standard order,

 $f = (\overline{A} + B + \overline{C})(A + \overline{B} + C)$ to give $f = M_5 \cdot M_2$

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices.
- Example: Given $F(x, y, z) = \Sigma_m(1, 3, 5, 7)$ $\overline{F}(x, y, z) = \Sigma_m(0, 2, 4, 6)$ $\overline{F}(x, y, z) = \Pi_M(1, 3, 5, 7)$

Conversion Between Forms

- To convert between sum-of-minterms and productof-maxterms form (or vice-versa) we follow these steps:
 - Find the function complement by swapping terms in the list with terms not in the list.
 - Change from products to sums, or vice versa.
- Example: Given F as before: $F(x, y, z) = \Sigma_m(1, 3, 5, 7)$
- Form the Complement: $\overline{F}(x, y, z) = \Sigma_m(0, 2, 4, 6)$
- Then use the other form with the same indices this forms the complement again, giving the other form of the original function: $F(x, y, z) = \prod_M (0, 2, 4, 6)$

Standard Forms

- <u>Standard Sum-of-Products (SOP) form:</u> equations are written as an OR of AND terms
- <u>Standard Product-of-Sums (POS) form:</u> equations are written as an AND of OR terms
- Examples:
 - **SOP:** $A B C + \overline{A} \overline{B} C + B$
 - **POS:** $(\mathbf{A}+\mathbf{B})\cdot(\mathbf{A}+\mathbf{\overline{B}}+\mathbf{\overline{C}})\cdot\mathbf{C}$
- These "mixed" forms are <u>neither SOP nor POS</u>
 - (A B + C) (A + C)
 - $AB\overline{C} + AC(A+B)$

Standard Sum-of-Products (SOP)

- A sum of minterms form for *n* variables can be written down directly from a truth table.
 - Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates, and
 - The second level is a single OR gate (with fewer than 2^n inputs).
- This form often can be simplified so that the corresponding circuit is simpler.

Standard Sum-of-Products (SOP)

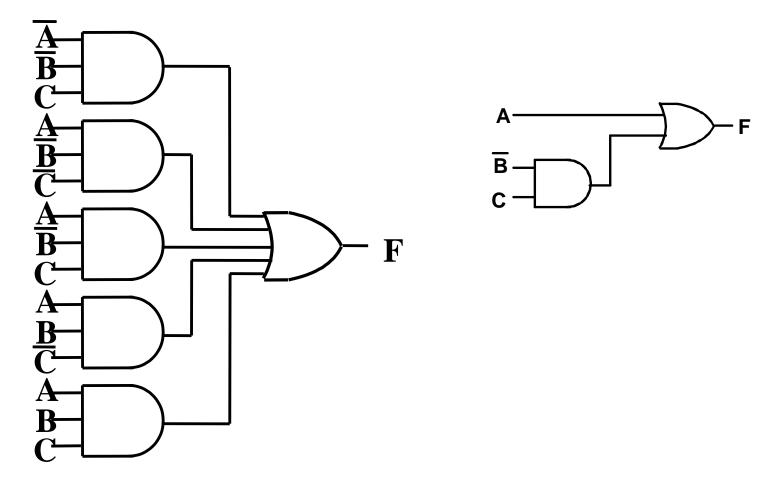
- A Simplification Example:
- $F(A,B,C) = \Sigma m(1,4,5,6,7)$
- Writing the minterm expression: $F = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} \overline{C} + AB\overline{C} + AB\overline{C} + AB\overline{C}$
- Simplifying:

 $\mathbf{F} = \mathbf{A} + \overline{\mathbf{B}}\mathbf{C}$

 Simplified F contains 3 literals compared to 15 in minterm F

AND/OR Two-level Implementation of SOP Expression

• The two implementations for F are shown below – it is quite apparent which is simpler!



- The previous examples show that:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations

• Questions:

- How can we attain a "simplest" expression?
- Is there only one minimum cost circuit?
- The next part will deal with these issues.