

The VVM Program
Editor Screen

This screen allows you to edit a new or existing VVM language program in the blue editor window. Programs
can be in Assembly Language or in Machine Language format. See the help topic "VVM Language" for details
on these programming languages. Program statements must be the first non-blank characters on a line.
Operands are entered as unsigned two-digit integers. Data values are entered as signed or unsigned
three-digit integers. Program lines beginning with "//" are treated as comments and are ignored.

Remaining characters following a program statement are ignored, and may be used for line numbers, to
document memory addresses, or for program comments. Extra space characters are also ignored and can be
used to indent statements or comments. Program statements can be entered in upper-case or in lower-case
letters.

By default, programs are loaded in sequential addresses starting at 00. Memory load address can be adjusted
with the load directive "*nn", where "nn" is a two-digit address. When this directive is found, subsequent
statements are loaded beginning with that new address. Prefixing a program statement with "nn:" will also
adjust the load address of that and subsequent statements.

A simple VVM Assembly Language program which adds an input value to the constant value -1 is shown
below:

// A sample VVM Assembly program
// to add a number to the value -1.
IN Input number to be added
ADD 99 Add value stored at address 99 to input
OUT Output result
HLT Halt (program ends here)
*99 Next value loaded at address 99
DAT -001 Data value

This same program could be entered in VVM Machine Language format as follows:

// The Machine Language version
901 Input number to be added
199 Add value stored at address 99 to input
902 Output result
000 Halt (program ends here)
*99 Next value loaded at address 99
-001 Data value

The AutoSyntax menu (or right-click in the Editor Window) can be used to enter program statements using
the mouse. This menu eliminates the need to memorize the VVM language syntax.

Use the File menu to store, retrieve, and print program files. Files may use a .VVM or a .TXT file extension. A
sample program file named "SAMPLE.VVM" is included for your use.

Use the Validate button to check the syntax of your program. This action will display a Program Address Map
window showing how your program will be mapped to the VVM memory space. After a program has been
validated, you can use the Load button to load it into the Visible Virtual Machine.

The Zero Out Memory Before Load option determines whether the VVM RAM is initialized to zero values
prior to the program load operation. When this option is deselected, RAM locations are initialized to randomly
generated values before the program is loaded.

Context sensitive popup menus, activated through a right-button mouse click, are available throughout the
Program Editor Screen.

The VVM Program
Execution Screen

This screen allows you to execute your program while observing the hardware mechanisms at work. See the
help topic "VVM Machine" for details on the Visible Virtual Machine hardware and operation. The program
which was created in the editor screen is initially loaded into RAM starting at address 00. This is called the
initial program state.

User Activated Controls

The user controllable features of the machine are located in the lower left corner of the screen and in the menu
selections in the upper left. Context sensitive popup menus, activated through a right-button mouse click, are
available throughout the Execution Screen. The Return button returns you to the Editor Screen where you can
revise and reload your VVM program, or exit the system.

Five additional controls manipulate the execution of your program:

• Run/Resume button. This control begins or resumes execution of the program from its current state. The
button is labeled Run if the program is in its initial load state, while it is labeled Resume if program
execution has begun. Program execution continues until the program ends either normally, through a fatal
VVM Machine error, or because it is paused or canceled by the user.

• Step button. This control executes the current instruction and fetches the next instruction. Control of the

machine is then returned to the user. This button allows you to walk through all or part of your program
one step at a time.

• Pause button. This button interrupts the execution of the program and returns control of the machine to

the user. The interruption occurs after the next instruction is fetched, but before it is executed.

• Restart button. Use this button to restart the program from its beginning (see the Reload @ Restart
option, below).

• Speed control. This control allows you to control the speed at which the program is executed. It does not

come into play while Stepping through the program. Using this control, you can add a delay of up to five
seconds to each program instruction. By default, the control is set for a one second delay. The delay occurs
after the fetch, but before the execution of an instruction. If the delay is set to one second or more, then an
hourglass symbol shows next to the mouse pointer while the machine is waiting. The exact delay time can
be displayed by resting the mouse pointer on the "speed" label of this control. Each t or u click changes
the delay by 0.5 seconds.

• Show Source Window option. The Source Program Window displays the original (source) program that is
currently loaded in the VVM hardware. The load address of each executable statement or program data
value is also shown. As your program is executed in the VVM machine, each "current" instruction is
highlighted in yellow, thus illustrating how the individual machine actions relate to your original source
program. As source instructions are executed they are tagged with an "x" symbol in the program listing.
This tag can be used to indicate the execution of loops, or to identify which conditional paths have been
taken in the program. This window can be resized or moved as desired.

Note: If any instruction or data value from the source program is modified by the execution of the
program, its load address is changed to red in the Source Program Window to indicate this modification.

• Tick option. This option determines whether an audible "tick" sound is generated with each instruction
(the sound is quelled at faster execution speeds). The sound used is the "Windows Default Sound" as set
through the Windows Control Panel.

 The Machine Views

 By selecting the appropriate tabs, you can configure the right half of the screen to provide either of two

different views of the program execution. These are the Hardware View and the Trace View.

 Hardware View provides a visual representation of various hardware components of the machine while your
program is executing. Trace View shows the details of the individual instructions of your program as they are
executing. Both views are detailed below.

 The Hardware Components (Hardware View)

 Hardware View shows the various hardware components of the VVM machine as your program is executing.
These are described below, moving from the top left in clockwise order.

• I/O Log. This represents the system console which shows the details of relevant events in the execution of

the program. Examples of events are the program begins, the program aborts, or input or output is
generated. Each entry begins with a two-digit number in square brackets. This is the address of the
instruction that caused the event.

• Accumulator Register* (Accum.). This displays the current value of the Accumulator. Legitimate values

are any integer between -999 and +999. Values outside of this range will cause a fatal VVM Machine
error. Non integer values are converted to integers before being loaded into the register.

• Instruction Cycle Display*. This shows the number of instructions that have been executed since the

program began.

• Instruction Register* (Instr. Reg.). This register holds the next instruction to be executed. The register is
divided into two parts: a one-digit operation code, and a two digit operand. The Assembly Language
mnemonic code for the operation code is displayed below the register.

• Program Counter Register* (Prog. Ctr.). The two-digit integer value in this register "points" to the next

instruction to be fetched from RAM. During the fetch phase of the instruction cycle, which is most often
visible on the screen, the value of the register is the RAM address of the instruction which is currently in
the Instruction Register. Legitimate values range from 00 to 99. A value beyond this range causes a fatal
VVM Machine error.

• RAM*. The 100 data-word Random Access Storage is shown as a matrix of ten rows and ten columns.

The two-digit memory addresses increase sequentially across the rows and run from 00 to 99. Each storage
location can hold a three-digit integer value between -999 and +999. Whenever a storage location is
referenced, either by loading the program, or by the execution of the program, its background is changed
to white. When an instruction is fetched from RAM and copied to the Instruction Register, its value in
RAM is shown in bold.

* This hardware component supports the How's it work? feature (see below).

Trace View

The Trace View window provides a history of the execution of your program. Prior to the execution of each
statement, the window shows:

1. The instruction cycle count (begins at 1)

2. The address from which the instruction was fetched

3. The instruction itself (in VVM Assembly Language format)

4. The current value of the Accumulator Register

The "How's it work?" Feature

The active components of the VVM CPU (registers, displays and RAM locations) support a special feature

called How's it work?. When the mouse pointer is placed over any of these components, the pointer is changed
to include a "?" symbol. This indicates that the feature is available.

Clicking on a How's it work? component produces a description of how that specific device performs within
the context of its current value. As a program executes, the description of each component will change to
reflect the current program context.

Other Configuration Options

• Reload @ Restart option (on Execute menu). When this option is selected, which is the usual case,
Restarting the program invokes a full program load. In other words, both RAM and the registers are
restored to the initial program state. When this option is deselected, Restarting the program causes the
registers to be reset, but maintains RAM in its current state. This option is reset to its default (selected)
state each time a program is loaded or executed.

• MessageBox @ Output option (on Configure menu). When this option is selected (default), each output
operation results in a message window announcing the output. This option can be turned off in the
instance when a large amount of output is generated by a program.

• Preserve Configuration option (on Configure menu). This option controls whether the various VVM
machine options are maintained when returning to and from the VVM Editor.

Hard Copy Output

The File menu provides two printing options which can document the current state of the VVM machine. The
Print Dump option (Ctrl-D) produces a text listing of the current state of all relevant hardware elements (i.e.,
registers, active RAM locations, etc.). The Print Trace option (Ctrl-T) produces a listing of the program trace
as shown in the Trace View window. This is, in essence, the history of the execution of your program.

The Debug Menu

In addition to the Dump and Trace printouts described above, the Debug menu provides two program
debugging helps. These mechanisms are Address Traps (program breakpoints and data watchpoints), and the
Modify RAM Value facility.

• Address Traps. When an Address Trap is placed on a RAM address, that RAM location is made sensitive
to program activity. When the content of a trapped address is used as a program instruction, it is called a
breakpoint because program execution breaks at that point. When the content of a trapped address is used
as a data value it is called a watchpoint because the system watches that point in memory for activity.
Whenever the next instruction to be executed either contains a breakpoint, or modifies a watchpoint value,
the program is interrupted prior to the execution of that instruction. The user can then either Step
through, or Resume execution of the program to observe the effect of that specific instruction. Address
Traps are indicated in red in the VVM RAM.

• Modify RAM Value facility. This mechanism allows the user to modify the value of any RAM location

after the program has been loaded, and even after program execution has begun. Both instructions and
data values can be modified. The change stays in effect until the program is either reloaded into memory,
or until the address is modified by the program.

The VVM Language

The Visible Virtual Machine (VVM) is based on a model of a simple computer device called the Little Man
Computer which was originally developed by Stuart Madnick in 1965, and revised in 1979. The revised Little
Man Computer model is presented in detail in "The Architecture of Computer Hardware and System
Software" (2'nd), by Irv Englander (Wiley, 2000). The programming language of this machine has eleven
different executable operations. There are two forms of the language - Machine, and Assembly.

In the Machine Language format, each instruction is a three-digit integer where the first digit specifies the
operation code (op code), and the remaining two digits represent the (required) operand. In the Assembly
Language format, the operation code is replaced by a three-character mnemonic code. The two-digit operand is
optional in some instances in the Assembly version. When the operand is used, it is separated from the
mnemonic operation code by a space character. In both language versions, the two-digit operand usually
represents a memory address.

The Language Instructions

The eleven operations are described below. The Machine Language codes are shown in parentheses, while the
Assembly Language version is in square brackets.

• Load Accumulator (5nn) [LDA nn] The content of RAM address nn is copied to the Accumulator
Register, replacing the current content of the register. The content of RAM address nn remains
unchanged. The Program Counter Register is incremented by one.

• Store Accumulator (3nn) [STO nn] or [STA nn] The content of the Accumulator Register is copied to
RAM address nn, replacing the current content of the address. The content of the Accumulator Register
remains unchanged. The Program Counter Register is incremented by one.

• Add (1nn) [ADD nn] The content of RAM address nn is added to the content of the Accumulator
Register, replacing the current content of the register. The content of RAM address nn remains
unchanged. The Program Counter Register is incremented by one.

• Subtract (2nn) [SUB nn] The content of RAM address nn is subtracted from the content of the

Accumulator Register, replacing the current content of the register. The content of RAM address nn
remains unchanged. The Program Counter Register is incremented by one.

• Input (901) [IN] or [INP] A value input by the user is stored in the Accumulator Register, replacing the

current content of the register. Note that the two-digit operand does not represent an address in this
instruction, but rather specifies the particulars of the I/O operation (see Output). The operand value can be
omitted in the Assembly Language format. The Program Counter Register is incremented by one with this
instruction.

• Output (902) [OUT] or [PRN] The content of the Accumulator Register is output to the user. The current

content of the register remains unchanged. Note that the two-digit operand does not represent an address
in this instruction, but rather specifies the particulars of the I/O operation (see Input). The operand value
can be omitted in the Assembly Language format. The Program Counter Register is incremented by one
with this instruction.

• Branch if Zero (7nn) [BRZ nn] This is a conditional branch instruction. If the value in the Accumulator

Register is zero, then the current value of the Program Counter Register is replaced by the operand value
nn (the result is that the next instruction to be executed will be taken from address nn rather than from the
next sequential address). Otherwise (Accumulator >< 0), the Program Counter Register is incremented by
one (thus the next instruction to be executed will be taken from the next sequential address).

• Branch if Positive or Zero (8nn) [BRP nn] This is a conditional branch instruction. If the value in the

Accumulator Register is nonnegative (i.e., >= 0), then the current value of the Program Counter Register
is replaced by the operand value nn (the result is that the next instruction to be executed will be taken from
address nn rather than from the next sequential address). Otherwise (Accumulator < 0), the Program
Counter Register is incremented by one (thus the next instruction to be executed will be taken from the

next sequential address).

• Branch (6nn) [BR nn] or[BRU nn] or [JMP nn] This is an unconditional branch instruction. The
current value of the Program Counter Register is replaced by the operand value nn. The result is that the
next instruction to be executed will be taken from address nn rather than from the next sequential address.
The value of the Program Counter Register is not incremented with this instruction.

• No Operation (4nn) [NOP] or [NUL] This instruction does nothing other than increment the Program
Counter Register by one. The operand value nn is ignored in this instruction and can be omitted in the
Assembly Language format. (This instruction is unique to the VVM and is not part of the Little Man
Model.)

• Halt (0nn) [HLT] or [COB] Program execution is terminated. The operand value nn is ignored in this
instruction and can be omitted in the Assembly Language format.

Embedding Data in Programs

Data values used by a program can be loaded into memory along with the program. In Machine or Assembly
Language form simply use the format "snnn" where s is an optional sign, and nnn is the three-digit data value.
In Assembly Language, you can specify "DAT snnn" for clarity.

The VVM Load Directive

By default, VVM programs are loaded into sequential memory addresses starting with address 00. VVM
programs can include an additional load directive which overrides this default, indicating the location in which
certain instructions and data should be loaded in memory. The syntax of the Load Directive is "*nn" where nn
represents an address in memory. When this directive is encountered in a program, subsequent program
elements are loaded in sequential addresses beginning with address nn.

A Sample VVM Program

A simple VVM Assembly Language program which adds an input value to the constant value -1 is shown
below (note that lines starting with "//" and characters to the right of program statements are considered
comments, and are ignored by the VVM machine).

// A sample VVM Assembly program
// to add a number to the value -1.
IN Input number to be added
ADD 99 Add value stored at address 99 to input
OUT Output result
HLT Halt (program ends here)
*99 Next value loaded at address 99
DAT -001 Data value

This same program could be written in VVM Machine Language format as follows:

// The Machine Language version
901 Input number to be added
199 Add value stored at address 99 to input
902 Output result
000 Halt (program ends here)
*99 Next value loaded at address 99
-001 Data value

The VVM Machine

The Visible Virtual Machine (VVM) is based on a model of a simple computer device called the Little Man
Computer which was originally developed by Stuart Madnick in 1965, and revised in 1979. The revised Little
Man Computer model is presented in detail in "The Architecture of Computer Hardware and System
Software" (2'nd), by Irv Englander (Wiley, 2000).

The VVM is a virtual machine because it only appears to be a functioning hardware device. In reality, the
VVM "hardware" is created through a software simulation. One important simplifying feature of this machine
is that it works in decimal rather than in the traditional binary number system. Also, the VVM works with only
one form of data - decimal integers.

Hardware Components

The VVM machine comprises the following hardware components:

• I/O Log. This represents the system console which shows the details of relevant events in the execution of
the program. Examples of events are the program begins, the program aborts, or input or output is
generated.

• Accumulator Register (Accum). This register holds the values used in arithmetic and logical

computations. It also serves as a buffer between input/output and memory. Legitimate values are any
integer between -999 and +999. Values outside of this range will cause a fatal VVM Machine error. Non
integer values are converted to integers before being loaded into the register.

• Instruction Cycle Display. This shows the number of instructions that have been executed since the

current program execution began.

• Instruction Register (Instr. Reg.). This register holds the next instruction to be executed. The register is
divided into two parts: a one-digit operation code, and a two digit operand. The Assembly Language
mnemonic code for the operation code is displayed below the register.

• Program Counter Register (Prog. Ctr.). The two-digit integer value in this register "points" to the next

instruction to be fetched from RAM. Most instructions increment this register during the execute phase of
the instruction cycle. Legitimate values range from 00 to 99. A value beyond this range causes a fatal
VVM Machine error.

• RAM. The 100 data-word Random Access Storage is shown as a matrix of ten rows and ten columns. The

two-digit memory addresses increase sequentially across the rows and run from 00 to 99. Each storage
location can hold a three-digit integer value between -999 and +999.

 Data and Addresses

 All data and address values are maintained as decimal integers. The 100 data-word memory is addresses with
two-digit addressed in the range 00-99. Each memory location holds one data-word which is a decimal integer
in the range -999 - +999. Data values beyond this range cause a data overflow condition and trigger a VVM
system error.

 VVM System Errors

 Various conditions or events can cause VVM System Errors. The possible errors and probable causes are as
follows:

• Data value out of range. This condition occurs when a data value exceeds the legitimate range -999 - +

999. The condition will be detected while the data resides in the Accumulator Register. Probable causes
are an improper addition or subtraction operation, or invalid user input.

• Undefined instruction. This occurs when the machine attempts to execute a three-digit value in the

Instruction Register which can not be interpreted as a valid instruction code. See the help topic "VVM

Language" for valid instruction codes and their meaning. Probable causes of this error are attempting to
use a data value as an instruction, an improper Branch instruction, or failure to provide a Halt instruction
in your program.

• Program counter out of range. This occurs when the Program Counter Register is incremented beyond

the limit of 99. The likely cause is failure to include a Halt instruction in your program, or a branch to a
high memory address.

• User cancel. The user pressed the "Cancel" button during an Input or Output operation.

VVM Debugging Aids
(Execution Screen)

Hard Copy Output

The File menu provides two printing options which can document the current state of the VVM machine. The
Print Dump option (Ctrl-D) produces a text listing of the current state of all relevant hardware elements (i.e.,
registers, active RAM locations, etc.). The Print Trace option (Ctrl-T) produces a listing of the program trace
as shown in the Trace View window. This is, in essence, the history of the execution of your program.

The Debug Menu

In addition to the Dump and Trace printouts described above, the Debug menu provides two program
debugging helps. These mechanisms are Address Traps (program breakpoints and data watchpoints), and the
Modify RAM Value facility.

• Address Traps. When an Address Trap is placed on a RAM address, that RAM location is made sensitive
to program activity. When the content of a trapped address is used as a program instruction, it is called a
breakpoint because program execution breaks at that point. When the content of a trapped address is used
as a data value it is called a watchpoint because the system watches that point in memory for activity.
Whenever the next instruction to be executed either contains a breakpoint, or modifies a watchpoint value,
the program is interrupted prior to the execution of that instruction. The user can then either Step
through, or Resume execution of the program to observe the effect of that specific instruction. Address
Traps are indicated in red in the VVM RAM.

• Modify RAM Value facility. This mechanism allows the user to modify the value of any RAM location

after the program has been loaded, and even after program execution has begun. Both instructions and
data values can be modified. The change stays in effect until the program is either reloaded into memory,
or until the address is modified by the program.

 The "How's it work?" Feature

 The active components of the VVM CPU (registers, displays and RAM locations) support a special feature
called How's it work?. When the mouse pointer is placed over any of these components, the pointer is changed
to include a "?" symbol. This indicates that the feature is available.

 Clicking on a How's it work? component produces a description of how that specific device performs within
the context of its current value. As a program executes, the description of each component will change to
reflect the current program context.

 VVM System Errors

 Various conditions or events can cause VVM System Errors. The possible errors and probable causes are as
follows:

• Data value out of range. This condition occurs when a data value exceeds the legitimate range -999 - +

999. The condition will be detected while the data resides in the Accumulator Register. Probable causes
are an improper addition or subtraction operation, or invalid user input.

• Undefined instruction. This occurs when the machine attempts to execute a three-digit value in the

Instruction Register which can not be interpreted as a valid instruction code. See the help topic "VVM
Language" for valid instruction codes and their meaning. Probable causes of this error are attempting to
use a data value as an instruction, an improper Branch instruction, or failure to provide a Halt instruction
in your program.

• Program counter out of range. This occurs when the Program Counter Register is incremented beyond

the limit of 99. The likely cause is failure to include a Halt instruction in your program, or a branch to a
high memory address.

• User cancel. The user pressed the "Cancel" button during an Input or Output operation.

