## Statistical Data Analysis

Prof. Dr. Nizamettin AYDIN
naydin@yildiz.edu.tr
http://www.yildiz.edu.tr/~naydin

## Example 1

- We have measured the height (in inches) and weight (in pounds) for five newborn babies (shown in the table).

- Manually calculate the mean and standard deviation of height and weight; show all the steps.
- Table: Height (in inches) and weight (in pounds) for five newborn babies


## Examples



## Answer 1

$$
\begin{gathered}
\text { SD of Height }=\sqrt{\sum_{i=1}^{n} \frac{\left(x_{H i}-\bar{x}_{H}\right)^{2}}{n-1}}= \\
\sqrt{\frac{(18-18.2)^{2}+\cdots+(19-18.2)^{2}}{5-1}}=1.92 \\
=\sqrt{\frac{(7.8-8.06)^{2}+\cdots+(8.8-8.06)^{2}}{5-1}}=1.06
\end{gathered}
$$

## Example 2

- Based on the following boxplot, write down the five-number data summary, range and IQR of variable X .
- Boxplot of variable X




## Answer 3

a. I would suggest to use moving (sliding) median filter,
as it is a non-linear filter to remove impulsive noise.
b.
$\mathrm{x}_{\text {new }}=\{\ldots, 4,6,7,7,7,5,4,4,7,7,6,6,8,8,7,5, \ldots\}$
$\mathrm{X}_{\text {old }}=\{\ldots, 4,6,50,7,5,80,4,4,7,60,6,4,8,40,7,5, \ldots\}$

## Example 3

- Some values of a row in an image matrix is given as;
$\mathrm{x}=\{\ldots, 4,6,50,7,5,80,4,4,7,60,6,4,8,40,7,5, \ldots\}$.
- Inspecting the values in this row reveals that this image is contaminated by impulsive noise (for example $50,80, \ldots$ ).
a. Suggest a filtering method to remove this impulsive noise.
b. What will be the resulting values of the row after applying the filter?


## Example 4

- A large drug company has 100 potential new prescription drugs under clinical test.
- About $20 \%$ of all drugs that reach this stage are eventually licensed for sale.
- What is the probability that at least 15 of the 100 drugs are eventually licensed?
- Assume that the binomial assumptions are satisfied, and use a normal approximation with continuity correction.


## Answer 4

- The mean of $y$

$$
\mu=n \theta=100 \times 0.2=20
$$

- The standard deviation

$$
\sigma=\operatorname{sqrt}(n \theta(1-\theta))=\operatorname{sqrt}(100 \times 0.2 \times(1-0.2))=4
$$

- The desired probability is that 15 or more drugs are approved.
- Because $y=15$ is included, the continuity correction is to take the event as $y$ greater than or equal to 14.5 .

$$
\begin{aligned}
P(y \geq 14.5) & =P\left(z \geq \frac{14.5-20}{4.0}\right)=P(z \geq-1.38)=1-P(z<-1.38) \\
& =1-.0838=.9162
\end{aligned}
$$

## Continuity Correction Factor

- used when a continuous probability distribution is used to approximate a discrete probability distribution.
- For example, when you want to use the normal to approximate a binomial.
- According to the Central Limit Theorem, the sample mean of a distribution becomes approximately normal if the sample size is "large enough."
- For example, the binomial distribution can be approximated with a normal distribution as long as $\mathrm{n} \times \mathrm{p}$ and $\mathrm{n} \times \mathrm{q}$ are both at least 5. Here,
- $\mathrm{n}=$ how many items are in your sample,
- $p=$ probability of an event (e.g. $60 \%$ ),
- $\mathrm{q}=$ probability the event doesn't happen $(100 \%-\mathrm{p})$.


## Continuity Correction Factor

- The continuity correction factor accounts for the fact that a normal distribution is continuous, and a binomial is not.
- When you use a normal distribution to approximate a binomial distribution, you're going to have to use a continuity correction factor.
- It is as simple as adding or subtracting 0.5 to/from the discrete $x$-value:
- use the following table to decide whether to add or subtract.
- If $\mathrm{P}(\mathrm{X}=\mathrm{n})$ use $\mathrm{P}(\mathrm{n}-0.5<\mathrm{X}<\mathrm{n}+0.5)$
- If $\mathrm{P}(\mathrm{X}>\mathrm{n})$ use $\mathrm{P}(\mathrm{X}>\mathrm{n}+0.5)$
- If $\mathrm{P}(\mathrm{X} \leq \mathrm{n})$ use $\mathrm{P}(\mathrm{X}<\mathrm{n}+0.5)$
- If $\mathrm{P}(\mathrm{X}<\mathrm{n})$ use $\mathrm{P}(\mathrm{X}<\mathrm{n}-0.5)$
- If $\mathrm{P}(\mathrm{X} \geq \mathrm{n})$ use $\mathrm{P}(\mathrm{X}>\mathrm{n}-0.5)$


Finding Probabilities for a Normal Distribution

- Draw a picture of the distribution.
- Translate the problem into one of the following:
$p(X<a), p(X>b)$, or $p(a<X<b)$
- Shade in the area on your picture.
- Standardize $a$ (and/or $b$ ) to a z-score using the z-formula:
- Look up the z-score on the Z-table and find its
 corresponding probability.
- If you need a "less-than" probability — that is, $p(X<a)$ you're done.
If you want a "greater-than" probability - that is, $p(X>b)$ find 1- $p(X<b)$.
- If you need a "between-two-values" probability - that is, $p(a<X<b)$ - perform the same steps defined above for $b$ and $a$, and subtract the results.


## Example 5

- Suppose that you enter a fishing contest.
- The contest takes place in a pond where the fish lengths have a normal distribution with mean $\mu=16 \mathrm{~cm}$ and standard deviation $\sigma=4$ cm .

1. What is the chance of catching fish less than 8 cm ?
2. Suppose a prize is offered for any fish over 24 cm . What is the chance of winning a prize?
3. What is the chance of catching a fish between 16 and 24 cm ?


## Answer 5

$$
p(Z>2.00)=1-p(Z<2.00)=1-0.9772=0.0228
$$

3. chance of catching a fish between 16 and 24 cm

$$
p(16<X<24)=p\left(\frac{16-16}{4}<Z<\frac{24-16}{4}\right)=p(0<Z<2)
$$

- find $p(Z<2.00)$, which is 0.9772
- find $p(Z<0)$, which is 0.5000
$p(0<Z<2)=0.9772-0.5000=0.4772$
- The chance of a fish being between 16 and 24 cm is 0.4772


## Answer 6

a. $\bar{X} \sim N(\mu, \sigma / \sqrt{n}), \quad \frac{\sigma}{\sqrt{n}}=\frac{6}{\sqrt{9}}=\frac{6}{3}=2$
b. With the point estimate $\bar{x}$, the confidence interval for the population mean at $c$ confidence level is

$$
\begin{aligned}
& {\left[\bar{x}-z_{\text {crit }} \times \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\text {crit }} \times \frac{\sigma}{\sqrt{n}}\right]} \\
& =\left[110-z_{\text {crit }} \times \frac{\sigma}{\sqrt{n}}, 110+z_{\text {crit }} \times \frac{\sigma}{\sqrt{n}}\right]
\end{aligned}
$$

The upper-tail probability of $z=(1-0.8) / 2=0.1$
Using R-Commander, $z_{\text {crit }}=1.28$
$80 \%$ confidence interval estimation for $\mu$ is
$[110-1.28 \times 2,110+1.28 \times 2]=[107.44,112.56]$

## Example 6

- We assume that the probability distribution of blood pressure, $X$, is $N\left(\mu, \sigma^{2}\right)$ distribution.
- Suppose we know that $\sigma=6$.
- To estimate $\mu$, we randomly selected 9 people and measured their blood pressure.
- The sample mean is $\bar{x}=110$.
a.Write down the sampling distribution of the sample mean $\bar{X}$ and find its standard deviation.
b. Find the $80 \%$ confidence interval estimation for $\mu$.


## Example 7

- For the question in Example 5, suppose that we did not know $\sigma$ and estimated it using the sample standard deviation $s=6$.
a. Find the standard error for the sample mean as the estimator of the population mean.
b. Find the $80 \%$ confidence interval estimation for $\mu$ based on this sample.


## Answer 7

a. $\quad S E=\frac{s}{\sqrt{n}}=\frac{6}{\sqrt{9}}=\frac{6}{3}=2$
b. The confidence interval for the population mean at $c$ confidence level is

$$
\begin{aligned}
& {\left[\bar{x}-t_{\text {crit }} \times \frac{s}{\sqrt{n}}, \bar{x}+t_{\text {crit }} \times \frac{s}{\sqrt{n}}\right]} \\
& =\left[110-t_{\text {crit }} \times 2,110+t_{\text {crit }} \times 2\right]
\end{aligned}
$$

We use the $t$-distribution with $9-1=8$ degrees of freedom. $t_{\text {crit }}$ : its upper tail probability is $(1-0.8) / 2=0.1$ ( 0.8 confidence) Using R-Commander, $t_{\text {crit }}=1.40$
The $80 \%$ confidence interval estimation for $\mu$ based on this sample:
$[110-1.40 \times 2,110+1.40 \times 2]=[107.2,112.8]$

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DF | $\left\lvert\, \begin{aligned} & \mathrm{A} \\ & \mathrm{P} \end{aligned}\right.$ | $\begin{aligned} & 0.80 \\ & 0.20 \end{aligned}$ | $\left\lvert\, \begin{array}{l\|l\|} 0.90 \\ 0.10 \end{array}\right.$ | $\begin{aligned} & 0.95 \\ & 0.05 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 0.02 \end{aligned}$ | $\begin{gathered} 0.99 \\ 0.01 \end{gathered}$ | $\begin{aligned} & 0.995 \\ & 0.005 \end{aligned}$ | $\begin{aligned} & 0.998 \\ & 0.002 \end{aligned}$ | $\begin{aligned} & 0.999 \\ & 0.091 \end{aligned}$ | ${ }^{28}$ | ${ }^{1.313}$ | ${ }^{1.701}$ | 2.048 | 2.467 | 2.76 | 3.047 | 3.408 | ${ }^{3.674}$ |
| 1 |  | 3.078 | 6.314 | ${ }^{12.706}$ | 31.820 | 63.657 | 127.321 | 318.309 | 636.619 | 29 | 1.3 | 1.699 | 2.045 | 2.462 | 2.756 | 3.038 | 3.396 | 3.659 |
| 2 |  | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 14.089 | 22.327 | ${ }^{31.599}$ | 30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.330 | ${ }^{3} 3385$ | 3.64 |
| 3 |  | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 7.453 | 10.215 | 12.924 | 31 32 | 1.309 1.309 | 1.695 | 2.040 | $2.453$ | 2.744 | ${ }_{3.015}^{3.02}$ | ${ }_{3}^{3.375}$ | ${ }_{362}^{3.63}$ |
| 4 |  | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 5.598 | 7.173 | 8.610 | 32 <br> 33 | 1.309 <br> 1.308 | 1.694 | 2.037 | 2.449 2.445 | ${ }_{2}^{2.738}$ | 3.015 | $\begin{aligned} & 3.365 \\ & \hline 3.356 \end{aligned}$ | ${ }_{3.611}^{3.622}$ |
| 5 |  | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 4.773 | 5.893 | ${ }^{6.8699}$ | 34 | 1.307 | 1.691 | 2.032 | 2.441 | 2.728 | 3.002 | 3.348 | 3.60 |
| 6 |  | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 4.317 | 5.208 | 5.959 | 35 | ${ }^{1.306}$ | 1.690 | 2.030 | 2.438 | 2.724 | 2.996 | 3.340 | 3.5 |
| 7 |  | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.029 | 4.785 | ${ }^{5.408}$ | 36 | 1.306 | 1.688 | 2.028 | 2.434 | 2.719 | 2.991 | 3.333 | 3.5 |
| 8 |  | 1.397 | 1.860 | 2.306 | 2.897 | ${ }^{3.355}$ | ${ }^{3.833}$ | 4.501 | 5.041 | 37 | 1.305 | 1.687 | 2.026 | 2.431 | 2.715 | 2.985 | 3.326 | 3.5 |
| 9 |  | 1.383 1.372 | 1.833 | ${ }_{\text {2.262 }}^{2.228}$ | 2.8221 | 3.250 3.169 | 3.690 3.581 | 4.4 .297 | 4.781 | 38 | 1.304 | 1.688 | 2.024 | 2.42 | 2.71 | 2.980 | 3.319 | 3.566 |
| 10 |  | 1.372 1.363 1 | 1.812 | 2.228 | ${ }^{2} 2.764$ | ${ }^{3.169}$ | ${ }_{3.581}^{3.57}$ | 4.144 | 4.587 | 39 | 1.304 | 1.685 | 2.023 | 2.426 | 2.708 | 2.976 | 3.313 | 3.558 |
| 11 |  | ${ }^{1.363}$ | 1.796 | 2.201 | 2.718 | 3.106 | 3.497 | ${ }^{4.025}$ | 4.437 | 40 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 2.971 | 3.307 | 3.5 |
| 12 |  | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | ${ }^{3.428}$ | ${ }^{3.930}$ | 4.318 | 42 | 1.302 | 1.682 | 2.018 | 2.418 | 2.698 | 2.963 | 3.296 | 3.538 |
| 13 |  | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.372 | 3.852 | 4.221 | 44 | 1.301 | 1.680 | 2.015 | 2.414 | 2.692 | 2.956 | 3.286 | 3.5 |
| 14 |  | 1.345 | 1.761 | 2.145 | 2.625 | 2.977 | ${ }^{3.326}$ | 3.787 | 4.140 | 46 | 1.300 | 1.679 | 2.013 | 2.410 | 2.687 | 2.949 | 3.277 | 3.5 |
| 15 |  | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.286 | 3.733 | 4.073 | 48 | 1.299 | 1.677 | 2.011 | 2.407 | 2.682 | 2.943 | 3.269 | 3.505 |
| 16 |  | 1.337 | 1.746 | 2.120 | 2.584 | 2.921 | 3.252 | 3.686 | 4.015 | 50 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 2.937 | 3.261 | 3.496 |
| 17 |  | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | ${ }^{3.222}$ | ${ }^{3.646}$ | ${ }^{3.965}$ | 60 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 2.915 | 3.232 | 3.460 |
| 18 |  | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.197 | 3.610 | 3.922 | 70 | 1.294 | 1.667 | 1.994 | 2.381 | 2.648 | 2.899 | 3.211 | 3.435 |
| 19 |  | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.174 | 3.579 | ${ }^{3.883}$ | 80 | 1.292 | 1.664 | 1.990 | 2.374 | 2.639 | 2.887 | 3.195 | 3.416 |
| 20 |  | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.153 | 3.552 | 3.850 | 90 | 1.291 | 1.662 | 1.987 | 2.369 | 2.632 | 2.878 | 3.183 | 3.402 |
| 21 |  | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.135 | 3.527 | 3.819 | 100 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | 2.871 | 3.174 | 3.391 |
| 22 |  | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.119 | 3.505 | 3.792 | 120 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 2.860 | 3.160 | 3.373 |
| 23 |  | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.104 | 3.485 | 3.768 | 150 | 1.287 | 1.655 | 1.976 | 2.351 | 2.609 | 2.849 | 3.145 | 3.357 |
| 24 |  | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.090 | 3.467 | 3.745 | 200 | 1.286 | 1.652 | 1.972 | 2.345 | 2.601 | 2.839 | 3.131 | 3.340 |
| 25 |  | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.078 | 3.450 | 3.725 | 300 | 1.284 | 1.650 | 1.968 | 2.339 | 2.592 | 2.828 | 3.118 | 3.323 |
| 26 |  | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.067 | 3.435 | 3.707 | 500 | 1.283 | 1.648 | 1.965 | 2.334 | 2.586 | 2.820 | 3.107 | 3.310 |
| 27 |  | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.057 | 3.421 | 3.690 | $\infty$ | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 2.807 | 3.090 | 3.291 |

## Answer 8

a. Let $y$ be the blood pressure measurement of the patient.
$-y$ has a normal distribution with $\mu=160$ and $\sigma=20$
$P($ measurement faiks so deect thigh pressure $)=P(y \leq 150)=P\left(z \leq \frac{150-160}{20}\right)=$ $P(z \leq-0.5)=0.3085$

- Thus, there is over a $30 \%$ chance of failing to detect that the patient has high blood pressure if only a single measurement is taken.
b. Let $\bar{y}$ be the average blood pressure of the five measurements.
- Then, $\bar{y}$ has a normal distribution with $\mu=160$ and $\sigma=$

$$
20 \quad \sigma=\frac{20}{\sqrt{5}}=8.944
$$

## Example 8

- A person visits her doctor with concerns about her blood pressure. If the systolic blood pressure exceeds 150 , the patient is considered to have high blood pressure and medication may be prescribed.
- A patient's blood pressure readings often have a considerable variation during a given day.
- Suppose a patient's systolic blood pressure readings during a given day have a normal distribution with a mean $\mu=160 \mathrm{~mm}$ mercury and a standard deviation $\sigma=20 \mathrm{~mm}$.
a. What is the probability that a single blood pressure measurement will fail to detect that the patient has high blood pressure?
b. If five blood pressure measurements are taken at various times during the day, what is the probability that the average of the five measurements will be less than 150 and hence fail to indicate that the patient has high blood pressure?
c. How many measurements would be required in a given day so that there is at most $1 \%$ probability of failing to detect that the patient has high blood pressure?

$$
\begin{aligned}
& \text { AnSWer } \mathbf{8} \\
& P(\bar{y} \leq 150)=P\left(z \leq \frac{150-160}{8.944}\right)=P(z \leq-1.12)=0.1314 \\
& - \text { Therefore, by using the average of five measurements, the } \\
& \text { chance of failing to detect the patient has high blood } \\
& \text { pressure has been reduced from over } 30 \% \text { to about } 13 \% \text {. } \\
& \text { c. We need to determine the sample size } n \text { such that } \\
& P(\bar{y}<150) \leq 0.01 \text {. } \\
& - \text { Now, } P(\bar{y}<150)=P\left(z \leq \frac{150-160}{20 / \sqrt{n}}\right) \text {. } \\
& - \text { From the normal tables, we have } P(z \leq-2.326)=0.01 \text {. } \\
& \text { - Therefore, } \frac{150-160}{20 / \sqrt{n}}=-2.326 \text {. } \\
& \text { - Solving for } n \text { yealds } n=21.64 \text {. } \\
& \text { - It would require at least } 22 \text { measurements in order to } \\
& \text { achieve the goal of at most a } 1 \% \text { chance of failing to detect } \\
& \text { high blood pressure. }
\end{aligned}
$$

## Example 9

- A company took a random sample of 30 firstyear employees and asked them their level of satisfaction with their jobs.
- It found that $80 \%$ of those sampled were "very happy" with their employment, $\pm 3 \%$ at a confidence level of $95 \%$.
- The company took this information and reported that $80 \%$ of all its employees were very happy with their jobs, $\pm 3 \%$.
- Is that report is correct?


## Answer 9

- Sample size $n=30, \hat{p}$ is 0.8 , and $z^{*}$ is 1.96 (for \%95 CI)
- Margin of error for a population proportion

$$
\begin{aligned}
M O E=z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} & =1.96 \sqrt{\frac{0.8(1-0.8)}{30}}=1.96 \sqrt{\frac{0.8(0.2)}{30}} \\
& =1.96 \times 0.073=0.1431
\end{aligned}
$$

- Convert the proportion to a percent by multiplying by $100 \%$ : $0.1431(100 \%)=14.31 \%$
- This value is much larger than the reported MOE of $3 \%$.


## Example 10

- A poll of 1000 likely voters showed that Candidate Ali had $48 \%$ of the vote, and Candidate Veli had $52 \%$ of the vote.
- The margin of error was $\pm 3 \%$, and the confidence level was $98 \%$.
- Who is most likely to win the election?


## Answer 10

- The margin of error is used to construct the confidence interval,
- which is a range of likely values for the population parameter
- here, the parameter is the percentage of all voters who would vote for a candidate.
- To calculate a confidence interval, you take the result from the sample and add and subtract the margin of error.
- In this case,
- the $98 \%$ confidence interval for the proportion of all voters for Candidate Ali is $48 \%$ plus or minus $3 \%$,
- which is a range of $45 \%$ to $51 \%$.


## Answer 10

- For Candidate Veli,
- the $98 \%$ confidence interval is $52 \%$ plus or minus $3 \%$,
- which is a range of $49 \%$ to $55 \%$.
- Both confidence intervals contain possible values above $50 \%$, so either candidate could win;
- therefore, the results are too close to call.

