
Copyright 2000 N. AYDIN. All rights

reserved. 1

Statistical Data Analysis

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

1

Introduction to R

2

The R Project

• Environment for statistical computing and

graphics

• Free software

• Associated with simple programming language

– Similar to S and S-plus

– www.r-project.org

3

R, S and S-plus

• S is an interactive environment for data

analysis developed at Bell Laboratories since

1976

– 1988 - S2: RA Becker, JM Chambers, A Wilks

– 1992 - S3: JM Chambers, TJ Hastie

– 1998 - S4: JM Chambers

• Exclusively licensed by AT&T/Lucent to

Insightful Corporation, Seattle WA.

– Product name is “S-plus”.

• Implementation languages C, Fortran.

4

R, S and S-plus

• R is initially written by Ross Ihaka and Robert

Gentleman at Dep. of Statistics of University of

Auckland, New Zealand during 1990s.

• GNU General Public License (GPL)

– can be used by anyone for any purpose

• Open Source

– efficient bug tracking and fixing system supported

by the user community

– http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html

5

Compiled C vs Interpreted R

• C requires a complete program to run

– Program is translated into machine code

– Can then be executed repeatedly

• R can run interactively

– Statements converted to machine instructions as

they are encountered

– This is much more flexible, but also slower

• R Programming Language

– Interpreted language

6

mailto:naydin@yildiz.edu.tr

Copyright 2000 N. AYDIN. All rights

reserved. 2

R and statistics

• Packaging:

– a crucial infrastructure to efficiently produce, load

and keep consistent software libraries from (many)

different sources / authors

• Statistics:

– most packages deal with statistics and data analysis

• State of the art:

– many statistical researchers provide their methods

as R packages

7

Tutorials

• From R website under “Documentation”

– “Manual” is the listing of official R documentation

• An Introduction to R

• R Language Definition

• Writing R Extensions

• R Data Import/Export

• R Installation and Administration

• The R Reference Index

8

Tutorials

– “Contributed” documentation are tutorials and

manuals created by R users

• Simple R

• R for Beginners

• Practical Regression and ANOVA Using R

– R FAQ

– Mailing Lists (listserv)

• r-help

9

Interactive R

• R defaults to an interactive mode

– A prompt “>” is

presented to

users

– Each input

expression is

evaluated…

– … and a result

returned

10

R as a Calculator

> 1 + 1 # Simple Arithmetic

[1] 2

> 2 + 3 * 4 # Operator precedence

[1] 14

> 3 ^ 2 # Exponentiation

[1] 9

> exp(1) # Basic mathematical functions are available

[1] 2.718282

> sqrt(10)

[1] 3.162278

> pi # The constant pi is predefined

[1] 3.141593

> 2*pi*6378 # Circumference of earth at equator (in km)

[1] 40074.16
11

R as a Calculator

> log2(32)

[1] 5

> seq(0, 5, length=6)

[1] 0 1 2 3 4 5

> plot(sin(seq(0, 2*pi, length=100)))

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

Variables in R

• Numeric
– Store floating point values

> a = 49

• Boolean (T or F)
– Values corresponding to True or False

> a = (1+1==3)

> a

[1] FALSE

• Strings
– Sequences of characters

a = "The dog ate my homework"

> sub("dog","cat",a)

[1] "The cat ate my homework“

• Type determined automatically when variable is created
with "<-" operator

13

R as a Smart Calculator

> x <- 1 # Can define variables

> y <- 3 # using "<-" operator to set values

> z <- 4

> x * y * z

[1] 12

> X * Y * Z # Variable names are case sensitive

Error: Object "X" not found

> This.Year <- 2004 # Variable names can include period

> This.Year

[1] 2004

14

Missing Values

• Variables of each data type (numeric, character, logical) can also take
the value NA: not available.
– NA is not the same as 0

– NA is not the same as ""

– NA is not the same as FALSE

• Any operations (calculations, comparisons) that involve NA may or
may not produce NA:

> NA==1

[1] NA

> 1+NA

[1] NA

> max(c(NA, 4, 7))

[1] NA

> max(c(NA, 4, 7), na.rm=T)

[1] 7

> NA | TRUE

[1] TRUE

> NA & TRUE

15

Functions and Operators

• Functions do things with data

– “Input”: function arguments (0,1,2,…)

– “Output”: function result (exactly one)

– Example:

add = function(a,b)

{ result = a+b

return(result) }

• Operators:

– Short-cut writing for frequently used functions of

one or two arguments.

• Examples: + - * / ! & | %%
16

R Vectors

• An ordered collection of data of the same type

– Created with

• c() to concatenate elements or sub-vectors

> a = c(1,2,3)

> a*2

[1] 2 4 6

• rep() to repeat elements or patterns

• seq() or m:n to generate sequences

• Most mathematical functions and operators can

be applied to vectors

– Without loops!

17

Defining Vectors

> rep(1,10) # repeats the number 1, 10 times

[1] 1 1 1 1 1 1 1 1 1 1

> seq(2,6) # sequence of integers between 2 and 6

[1] 2 3 4 5 6 # equivalent to 2:6

> seq(4,20,by=4) # Every 4th integer between 4 and 20

[1] 4 8 12 16 20

> x <- c(2,0,0,4) # Creates vector with elements 2,0,0,4

> y <- c(1,9,9,9)

> x + y # Sums elements of two vectors

[1] 3 9 9 13

> x * 4 # Multiplies elements

[1] 8 0 0 16

> sqrt(x) # Function applies to each element

[1] 1.41 0.00 0.00 2.00 # Returns vector
18

Copyright 2000 N. AYDIN. All rights

reserved. 4

Accessing Vector Elements

• Use the [] operator to select elements

• To select specific elements:

– Use index or vector of indexes to identify them

• To exclude specific elements:

– Negate index or vector of indexes

• Alternative:

– Use vector of T and F values to select subset of
elements

19

Accessing Vector Elements

> x <- c(2,0,0,4)

> x[1] # Select the first element, equivalent to x[c(1)]

[1] 2

> x[-1] # Exclude the first element

[1] 0 0 4

> x[1] <- 3 ; x

[1] 3 0 0 4

> x[-1] = 5 ; x

[1] 3 5 5 5

> y < 9 # Compares each element, returns result as vector

[1] TRUE FALSE FALSE FALSE

> y[4] = 1

> y < 9

[1] TRUE FALSE FALSE TRUE

> y[y<9] = 2 # Edits elements marked as TRUE in index vector

> y

[1] 2 9 9 2

20

Matrices and Arrays

• matrix: a rectangular table of data of the same

type

– example:

• the expression values for 10000 genes for 30 tissue

biopsies: a matrix with 10000 rows and 30 columns.

• array: 3-,4-,..dimensional matrix

– example:

• the red and green foreground and background values for

20000 spots on 120 chips: a 4 x 20000 x 120 (3D) array.

21

Lists

• vector:
– an ordered collection of data of the same type.

> a = c(7,5,1)

> a[2]

[1] 5

• list:
– an ordered collection of data of arbitrary types.

> x = list(ad="ali", yas=30, bekar=F)

• Typically, vector elements are accessed by their index (an
integer), list elements by their name (a character string).
– But both types support both access methods.

– the following all retrieve ad:
> x$ad > x["ad"] > x[1] > x[-2:-3]

[1] "ali" [1] "ali" [1] "ali" [1] "ali"

22

Data Frames

• Group a collection of related vectors

– Most of the time, when data is loaded, it will be
organized in a data frame

• It is a rectangular table with rows and columns;
– data within each column has the same type (e.g. number, text,

logical), but different columns may have different types.

• Example:

> a

localization tumorsize progress

XX348 proximal 6.3 FALSE

XX234 distal 8.0 TRUE

XX987 proximal 10.0 FALSE

23

Setting Up Data Sets

• Load from a text file using read.table()

– Parameters header, sep, and na.strings control

useful options

– read.csv() and read.delim() have useful defaults for

comma or tab delimited files

• Create from scratch using data.frame()

– Example:

data.frame(height=c(150,160), weight=(65,72))

24

Copyright 2000 N. AYDIN. All rights

reserved. 5

Blood Pressure Data Set

HEIGHT WEIGHT WAIST HIP BPSYS BPDIA

172 72 87 94 1 27.5 80

166 91 109 107 172.5 100

174 80 95 101 123 64

176 79 93 100 117 76

166 55 70 94 100 60

163 76 96 99 160 87.5

...

• Read into R using:

bp <- read.table(“bp.txt”, header=T, na.strings=c(“x”))

25

Accessing Data Frames

• Multiple ways to retrieve columns…

• The following all retrieve weight data:

> bp[“WEIGHT”]

> bp[,2]

> bp$WEIGHT

• The following excludes weight data:

> bp[,-2]

26

Factors

• A character string can contain arbitrary text.

• Sometimes it is useful to use a limited vocabulary,

with a small number of allowed words.

• A factor is a variable that can only take such a

limited number of values, which are called levels.

> a

[1] Kolon(Rektum) Magen Magen

[4] Magen Magen Retroperitoneal

[7] Magen Magen(retrogastral) Magen

Levels: Kolon(Rektum) Magen Magen(retrogastral)

Retroperitoneal

27

Factors

> class(a)

[1] "factor"

> as.character(a)

[1] "Kolon(Rektum)" "Magen" "Magen"

[4] "Magen" "Magen" "Retroperitoneal"

[7] "Magen" "Magen(retrogastral)" "Magen"

> as.integer(a)

[1] 1 2 2 2 2 4 2 3 2

> as.integer(as.character(a))

[1] NA NA NA NA NA NA NA NA NA NA NA NA

Warning message:

NAs introduced by coercion

28

Subsetting

• Individual elements of a vector, matrix, array or data frame are accessed
with "[]" by specifying their index, or their name

> a

localisation tumorsize progress

XX348 proximal 6.3 0

XX234 distal 8.0 1

XX987 proximal 10.0 0

> a[3, 2]

[1] 10

> a["XX987", "tumorsize"]

[1] 10

> a["XX987",]

localisation tumorsize progress

XX987 proximal 10 0

29

Subsetting

> a

localisation tumorsize progress

XX348 proximal 6.3 0

XX234 distal 8.0 1

XX987 proximal 10.0 0

• subset rows by a vector of indices
> a[c(1,3),]

localisation tumorsize progress

XX348 proximal 6.3 0

XX987 proximal 10.0 0

• subset rows by a logical vector
> a[c(T,F,T),]

localisation tumorsize progress

XX348 proximal 6.3 0

XX987 proximal 10.0 0

30

Copyright 2000 N. AYDIN. All rights

reserved. 6

Subsetting

> a

localisation tumorsize progress

XX348 proximal 6.3 0

XX234 distal 8.0 1

XX987 proximal 10.0 0

• subset a column
> a$localisation

[1] "proximal" "distal" "proximal"

• comparison resulting in logical vector
> a$localisation=="proximal"

[1] TRUE FALSE TRUE

• subset the selected rows
> a[a$localisation=="proximal",]

localisation tumorsize progress

XX348 proximal 6.3 0

XX987 proximal 10.0 0

31

Common Forms of Data in R

• Variables are created as needed

• Numeric values

• Vectors

• Data Frames

• Lists

• Used some simple functions:

– c(), seq(), read.table(), …

32

Programming Constructs

• Grouped Expressions

• Control statements

– if … else …

– for loops

– repeat loops

– while loops

– next, break statements

33

Grouped Expressions

{expr_1; expr_2; … }

• Valid wherever single expression could be used

• Return the result of last expression evaluated

• Relatively similar to compound statements in C

34

Branching (if … else …)

if (expr_1) expr_2 else expr_3

• The first expression should return a single logical value

– Operators && or || may be used

• Conditional execution of code
if (logical expression)

{

statements

}

else

{

alternative statements

}

else branch is optional

35

Example: if … else …

Standardize observation i

if (sx[i] == "male")

{

z[i] <- (obsrvd[i] - males.mean) / males.sd;

}

else

{

z[i] <- (obsrvd[i] - females.mean) / females.sd;

36

Copyright 2000 N. AYDIN. All rights

reserved. 7

Loops (for)

• When the same or similar tasks need to be

performed multiple times; for all elements of a

list; for all columns of an array; etc.

for (name in expr_1) expr_2

– name is the loop variable

– expr_1 is often a sequence

• e.g. 1:20

• e.g. seq(1, 20, by = 2)

37

Example: for

Sample M random pairings in a set of N objects

for (i in 1:M)

{

As shown, the sample function returns a

single

element in the interval 1:N

p = sample(N, 1)

q = sample(N, 1)

Additional processing as needed…

ProcessPair(p, q);

}

38

repeat

repeat expr

• Continually evaluate expression

• Loop must be terminated with break statement

39

Example: repeat

Sample with replacement from a set of N objects

until the number 615 is sampled twice

M <- matches <- 0

repeat

{

Keep track of total connections sampled

M <- M + 1

Sample a new connection

p = sample(N, 1)

Increment matches whenever we sample 615

if (p == 615)

matches <- matches + 1;

Stop after 2 matches

if (matches == 2)

break;

}
40

while

while (expr_1) expr_2

• While expr_1 is false, repeatedly evaluate

expr_2

• break and next statements can be used within

the loop

41

Example: while

Sample with replacement from a set of N objects

until 615 and 815 are sampled consecutively

match <- false

while (match == false)

{

sample a new element

p = sample(N, 1)

if not 615, then goto next iteration

if (p != 615)

next;

Sample another element

q = sample(N, 1)

Check if we are done

if (q != 815)

match = true;

}
42

Copyright 2000 N. AYDIN. All rights

reserved. 8

Example: for and while

for (i in 1:10)

{

print(i*i)

}

i=1

while (i<=10)

{

print(i*i)

i = i+1

}

43

lapply, sapply, apply

• When the same or similar tasks need to be performed multiple
times for all elements of a list or for all columns of an array.

– May be easier and faster than “for” loops

• lapply(li, fct)

– To each element of the list li, the function fct is applied.

– The result is a list whose elements are the individual fct
results.

> li = list("ali","mehmet","zeynep")

> lapply(li, toupper)

[[1]]

[1] "ALİ"

[[2]]

[1] "MEHMET"

[[3]]

[1] "ZEYNEP"

44

lapply, sapply, apply

• sapply(li, fct)

– Like lapply, but tries to simplify the result, by
converting it into a vector or array of appropriate
size

> li = list("ali","mehmet","zeynep")

> sapply(li, toupper)

[1] "ALİ" "MEHMET" "ZEYNEP«

> fct = function(x) { return(c(x, x*x, x*x*x)) }

> sapply(1:5, fct)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 1 4 9 16 25

[3,] 1 8 27 64 125

45

lapply, sapply, apply

• apply(arr, margin, fct)

– Applies the function fct along some dimensions of
the array arr, according to margin, and returns a
vector or array of the appropriate size.

> x

[,1] [,2] [,3]

[1,] 5 7 0

[2,] 7 9 8

[3,] 4 6 7

[4,] 6 3 5

> apply(x, 1, sum)

[1] 12 24 17 14

> apply(x, 2, sum)

[1] 22 25 20

46

Functions in R

• Easy to create your own functions in R

– As tasks become complex, it is a good idea to organize
code into functions that perform defined tasks

• In R, it is good practice to give default values to function
arguments

• Functions can be defined as

name <- function(arg1, arg2, …)

expression

• Arguments can be assigned default values:

arg_name = expression

• Return value is the last evaluated expression or can
be set explicitly with return()

47

Defining Functions

> square <- function(x = 10) x * x

> square()

[1] 100

> square(2)

[1] 4

> intsum <- function(from=1, to=10)

{

sum <- 0

for (i in from:to)

sum <- sum + i

sum

}

> intsum(3) # Evaluates sum from 3 to 10 …

[1] 52

> intsum(to = 3) # Evaluates sum from 1 to 3 …

[1] 6
48

Copyright 2000 N. AYDIN. All rights

reserved. 9

Some notes on functions …

• You can print the arguments for a function

using args() command

> args(intsum)

function (from = 1, to = 10)

• You can print the contents of a function by

typing only its name, without the ()

• You can edit a function using

> my.func <- edit(my.old.func)
49

Debugging Functions

• Toggle debugging for a function with debug() /

undebug() command

• With debugging enabled, R steps through

function line by line

– Use print() to inspect variables along the way

– Press <enter> to proceed to next line

> debug(intsum)

> intsum(10)

50

Useful R Functions - Random Generation

• In contrast to many C implementations, R

generates pretty good random numbers

• set.seed(seed) can be used to select a specific

sequence of random numbers

• sample(x, size, replace = FALSE) generates a

sample of size elements from x.

– If x is a single number, sample is from 1:x

51

Useful R Functions - Random Generation

• Samples from Uniform distribution

– runif(n, min = 1, max = 1)

• Samples from Binomial distribution

– rbinom(n, size, prob)

• Samples from Normal distribution

– rnorm(n, mean = 0, sd = 1)

• Samples from Exponential distribution

– rexp(n, rate = 1)

• Samples from T-distribution

– rt(n, df)

• And others!

52

􀁺 rexp(n, rate = 1)

R Help System

• R has a built-in help system with useful

information and examples

– help() provides general help

– help(plot) will explain the plot function

– help.search("histogram") will search for topics that

include the word histogram

• example(plot) will provide examples for the

plot function
53

Input / Output

• Use sink(file) to redirect output to a file

• Use sink() to restore screen output

• Use print() or cat() to generate output inside

functions

• Use source(file) to read input from a file

54

Copyright 2000 N. AYDIN. All rights

reserved. 10

Basic Utility Functions

• length() returns the number of elements

• mean() returns the sample mean

• median() returns the sample median

• range() returns the largest and smallest values

• unique() removes duplicate elements

• summary() calculates descriptive statistics

• diff() takes difference between consecutive

elements

• rev() reverses elements

55

Managing Workspaces

• As you generate functions and variables, these

are added to your current workspace

• Use ls() to list workspace contents

• Use rm() to delete variables or functions

• When you quit, with the q() function, you can

save the current workspace for later use

56

