Statistical Data Analysis

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Bayesian inference

- Bayes' theorem is the basis of the Bayesian Statistics.
- It describes the probability of an event, based on prior knowledge of conditions that might be related to the event
- For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately (by conditioning it on their age) than simply assuming that the individual is typical of the population as a whole.
- Bayesian inference regarding the population proportion
- an example for the application of Bayesian methods.
- Now suppose that we take a random sample of $n=$ 20 breast cancer patients from the population.
- We use Y to denote the number of survivals out of 20.
- We know that Y has a $\operatorname{Binomial}(n, \mu)$ distribution
- assuming that the patients are selected independently and they all have the same probability of survival.
- Therefore,
- if $\mu=0.75$, the distribution of Y is $\operatorname{Binomial}(20,0.75)$.
- if $\mu=0.85$, the distribution of Y is $\operatorname{Binomial}(20,0.85)$.

Bayesian Analysis
 Bay Analys

- For the example, we can write Bayes' formula in terms of μ and Y, so E_{1} corresponds to the event that $Y=18$, and E_{2} corresponds to the event that $\mu=0.85$:
$P(\mu=0.85 \mid Y=18)=\frac{P(Y=18 \mid \mu=0.85) \times P(\mu=0.85)}{P(Y=18)}$
- $P(\mu=0.85 \mid Y=18)$ is the probability that the true value of the survival rate is 0.85 given the information that 18 people have survived (out of 20),
- $P(Y=18 \mid \mu=0.85)$ is the probability that 18 people survive assuming that the true survival rate is 0.85 ,
- $P(\mu=0.85)$ is the probability that the survival rate is in fact 0.85 (we assumed this probability is 0.5),
- $P(Y=18)$ is the probability that 18 people survive regardless of what the probability of survival is (0.85 or $0.75)$.

A Simple Case of Bayesian Analysis for Population Proportion

- To find $P(Y=18)$, use the law of total probability:

$$
\begin{gathered}
P(Y=18)=P(Y=18 \mid \mu=0.85) \times P(\mu=0.85) \\
\quad+P(Y=18 \mid \mu=0.75) \times P(\mu=0.75)
\end{gathered}
$$

- To find the probability of 18 survivals assuming that the true value of the survival rate is $\mu=0.75$, repeat the same steps, setting Binomial trials to 20 and Probability of success to 0.75 ;

$$
P(Y=18 \mid \mu=0.75)=0.07
$$

- Therefore,

$$
P(Y=18)=0.23 \times 0.5+0.07 \times 0.5=0.15
$$

A Simple Case of Bayesian Analysis for Population Proportion

- Following similar steps, we find that

$$
P(\mu=0.75 \mid Y=18)=0.24
$$

- Given the observed data, we have reduced the probability of $\mu=0.75$ from 0.5 to 0.24 .
- Therefore, while we gave equal probabilities to both values 0.75 and 0.85 at the beginning, based on the new empirical evidence we observed, we increased the probability of $\mu=$ 0.85 and decreased the probability of $\mu=0.75$.
- This is intuitive, because our point estimate for the survival rate is 0.9 (18 out of 20), which is closer to 0.85 than 0.75 .
- We can use these updated probabilities and write

$$
\frac{P(\mu=0.85 \mid Y=18)}{P(\mu=0.75 \mid Y=18)}=\frac{0.76}{0.24}=3.2
$$

- Therefore, given the observed data, the value 0.85 is 3.2 times more likely than 0.75

A Simple Case of Bayesian Analysis for Population Proportion

- In R-Commander, apply the following steps - to install RC: install.packages("Rcmdr", dependencies=TRUE) - to run RC: library(Remdr)

- Click Distributions \rightarrow Discrete distributions \rightarrow Binomial distribution \rightarrow Binomial probabilities.
- Then, set Binomial trials to 20 and Probability of success to 0.85
- The probabilities for all possible values of Y will be obtained.
- The probability for 18 survivals assuming that $\mu=$ 0.85 is $P(Y=18 \mid \mu=0.85)=0.23$.

A Simple Case of Bayesian Analysis for Population Proportion

- Now we can find $P(\mu=0.85 \mid Y=18)$:

$$
\begin{aligned}
P(\mu=0.85 \mid Y=18) & =\frac{P(Y=18 \mid \mu=0.85) \times P(\mu=0.85)}{P(Y=18)} \\
& =\frac{0.23 \times 0.5}{0.15}=0.76
\end{aligned}
$$

- At the beginning (before observing any data), we believed that $\mu=0.85$ with probability of 0.5 .
- Knowing that 18 out of 20 people have survived, we increase this probability to 0.76 .

Prior and Posterior Probabilities

- In our example, $P(\mu=0.75)$ and $P(\mu=0.85)$ are referred to as prior probabilities for the population proportion μ.
- These are probabilities we assign to possible values of μ before observing any data.
- In practice, these probabilities might be obtained from previous studies.
- For example, two other research groups might have conducted similar studies in the past;
- one group estimated μ to be 0.75 , and the other group estimated it to be 0.85 , and we do not have any reason to prefer one estimate over the other.
- In this case, we want to conduct a new study, collect new empirical evidence, and estimate μ, but we want to take the available information regarding the value of μ into account.

Prior and Posterior Probabilities

- $P(Y=18 \mid \mu=0.85)$ is referred to as likelihood,
- i.e., how likely it is to see this specific data (18 survivals out of 20) if μ is in fact 0.85 .
- We can express the probability of the specific data we have observed (i.e., 18 survivals out of 20) as a function of different values of μ.
- This function is referred to as the likelihood function.
- For our example, the likelihood function is

$$
P(Y=18 \mid \mu)= \begin{cases}0.07 & \mu=0.75 \\ 0.23 & \mu=0.85\end{cases}
$$

Prior and Posterior Probabilities

- The posterior odds can be found as follows:
$\frac{P(\mu=0.85 \mid Y=18)}{P(\mu=0.75 \mid Y=18)}=\frac{P(Y=18 \mid \mu=0.85) \times P(\mu=0.85) / P(Y=18)}{P(Y=18 \mid \mu=0.75) \times P(\mu=0.75) / P(Y=18)}$
$=\frac{P(Y=18 \mid \mu=0.85) \times P(\mu=0.85)}{P(Y=18 \mid \mu=0.75) \times P(\mu=0.75)}$
$=\frac{P(Y=18 \mid \mu=0.85)}{P(Y=18 \mid \mu=0.75)} \times \frac{P(\mu=0.85)}{P(\mu=0.75)}$
- The term $P(\mu=0.85) / P(\mu=0.75)$ on the right-hand side of the above equation is called prior odds.
- In our example, the prior odds is 1
- The posterior odds is obtained by multiplying the prior odds by the following term:

$$
\frac{P(Y=18 \mid \mu=0.85)}{P(Y=18 \mid \mu=0.75)}=\frac{0.23}{0.07}=32.86
$$

- This term is in fact the ratio of two possible values for the likelihood function and is known as the likelihood ratio.

Prior and Posterior Probabilities

- The updated probability of μ after we observe the data is referred to as the posterior probability of μ.
- The posterior probabilities in our example are
$-P(\mu=0.75 \mid Y=18)=0.24$
$-P(\mu=0.85 \mid Y=18)=0.76$
- These posterior probabilities, which are obtained after we observed 18 survivals among 20 patient, can be used to write

$$
\frac{P(\mu=0.85 \mid Y=18)}{P(\mu=0.75 \mid Y=18)}=\frac{0.76}{0.24}=3.2
$$

- This is known as the posterior odds
- Here, we find the odds of 0.85 over 0.75 .

General Form of Bayesian Analysis for Population Proportion

- In general, the population proportion could take values from 0 to 1 .
- Therefore, we need a continuous prior distribution whose range is from 0 to 1 .
- The beta distribution, whose range is from 0 to 1 , is commonly used as the prior distribution for the population proportion μ.
- The beta distribution is specified by two parameters, α and β, and is denoted as $\operatorname{Beta}(\alpha, \beta)$.
- We refer to α and β as shape 1 and shape 2, respectively.
- Both parameters must be positive numbers.

General Form of Bayesian Analysis for Population Proportion

- In R-Commander, we can plot different beta distributions by setting α and β to different values.
- For example, suppose that we want to plot $\operatorname{Beta}(8,2)$.
- In R-Commander, click Distributions \rightarrow Continuous distributions \rightarrow Beta distribution \rightarrow Plot beta distribution and set Shape 1 and Shape 2 to 8 and 2, respectively.
- Make sure the option Plot density function is checked and press OK.

General Form of Bayesian Analysis for Population Proportion

- Comparing the plots of the probability density function for a beta distribution with different parameter values.

- The solid line represents the pdf of $\operatorname{Beta}(1,1)$.
- This distribution is known as the Uniform $(0,1)$ distribution.
- The dashed line represents the pdf of $\operatorname{Beta}(8,2)$, and the dotted line represents the pdf of $\operatorname{Beta}(2,8)$
- In general, for a beta distribution with parameters α and β, the mean is $\alpha /(\alpha+\beta)$.
- For example, the mean of the $\operatorname{Beta}(2,8)$ is $2 /(2+8)=0.2$.
- Reconsider the breast cancer survival example.
- Instead of assuming that only two values are possible, assume that the true population proportion could be any value from 0 to 1
- In general, it is recommended to avoid making overly restrictive assumptions such as the one we used for illustrative purposes earlier.
- That is, even if previous studies estimated the population proportion to be either 0.75 and 0.85 , we still should consider all other feasible values.

General Form of Bayesian Analysis for Population Proportion

- Note that this prior probability distribution reflects our knowledge (based on previous studies) regarding the possible values of survival rate before we obtain new data.
- We update our knowledge after we observe new empirical evidence.
- Our updated knowledge is expressed as the posterior probability distribution, which could be drastically different from the prior probability distribution.
- Therefore, even though we believe in prior that the survival rate is around 0.8 , a new empirical evidence could overwhelmingly change this belief.
- We might be even convinced that values around 0.2 are more probable than values around 0.8 if the observed data strongly suggest that.

General Form of Bayesian Analysis for Population Proportion

- In our example, we obtained a sample of 20 patients from the population and found that 18 of them survived after 5 years.
- Assuming that the prior probability distribution for the breast cancer survival rate is $\operatorname{Beta}(8,2)$, the posterior probability distribution for the survival rate is $\operatorname{Beta}(8+18,2+20-18)$.
- We can use R-Commander to plot the probability density function for this distribution by following the steps described earlier, but this time we set Shape 1 and Shape 2 to 26 and 4, respectively.
- We could of course use the results from previous studies and assume that while the survival rate could be any value from 0 to 1 , it is more likely to be around 0.8 .
- When specifying the prior distribution, we can use a beta distribution that reflects this assumption.
- For the Beta $(8,2)$ distribution (dashed curve in the
figure in slide 18), the probability (i.e., the area under the density curve) is high for values around 0.8 , whereas the probability is almost zero for values around 0.2 .
- Therefore, we use $\operatorname{Beta}(8,2)$ as the prior distribution for the survival rate of breast cancer patients.

General Form of Bayesian Analysis for Population Proportion

- To find the posterior probability (PP) distribution, we use Bayes' theorem as before.
- PP Distribution is a beta distribution with updated parameters
- If we assume that the prior knowledge of the population proportion μ, can be expressed using a $\operatorname{Beta}(\alpha, \beta)$ distribution, then the posterior distribution of μ is $\operatorname{Beta}(\alpha+y, \beta+n-y)$,
- where n is the sample size, and y is the number of times the event of interest has been observed.
- The density curve for the posterior probability distribution, $\operatorname{Beta}(26,4)$

- The prior probability distribution (dashed curve) for breast cancer survival rate and the resulting posterior probability distribution (solid curve) after observing 18 survivals among 20 patients

