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Regression Analysis
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Regression Analysis

• The modeling of the relationship between a response 

variable and a set of explanatory variables is one of the 

most widely used of all statistical techniques. 

– We refer to this type of modeling as regression analysis. 

• A regression model provides the user with a functional 

relationship between the response variable and explanatory

variables that allows the user to determine which of the 

explanatory variables have an effect on the response. 

– The regression model allows the user to explore what happens to 

the response variable for specified changes in the explanatory

variables. 

• {For example, financial officers must predict future cash flows based on

specified values of interest rates, raw material costs, salary increases, 

and so on}
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Regression Analysis

• The basic idea of regression analysis is to obtain a 

model for the functional relationship between a 

response variable (often referred to as the dependent

variable) and one or more explanatory variables (often 

referred to as the independent variables). 

• Regression models have a number of uses:

– The model provides a description of the major features of the 

data set. 

• In some cases, a subset of the explanatory variables will not affect 

the response variable, and, hence, the researcher will not have to 

measure or control any of these variables in future studies. 

– This may result in significant savings in future studies or experiments.
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Regression Analysis

– The equation relating the response variable to the 

explanatory variables produced from the regression analysis 

provides estimates of the response variable for values of the 

explanatory variables not observed in the study. 

• For example, a clinical trial is designed to study the response of a 

subject to various dose levels of a new drug.

• Because of time and budgetary constraints, only a limited number of

dose levels are used in the study. 

– The regression equation will provide estimates of the subjects’ response for 

dose levels not included in the study. 

– In business applications, the prediction of future sales of a 

product is crucial to production planning. 

• If the data provide a model that has a good fit in relating current 

sales to sales in previous months, prediction of sales in future 

months is possible. 
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Regression Analysis

– In some applications of regression analysis, the researcher is 

seeking a model that can accurately estimate the values of a 

variable that is difficult or expensive to measure using 

explanatory variables that are inexpensive to measure and 

obtain. 

• If such a model is obtained, then in future applications it is possible 

to avoid having to obtain the values of the expensive variable by 

measuring the values of the inexpensive variables and using the 

regression equation to estimate the values of the expensive variable. 

– For example, a physical fitness center wants to determine the physical well-

being of its new clients.

– Maximal oxygen uptake is recognized as the single best measure of

cardiorespiratory fitness, but its measurement is expensive. 

– Therefore, the director of the fitness center would want a model that provides 

accurate estimates of maximal oxygen uptake using easily measured variables 

such as weight, age, heart rate after a 1-mile walk, time needed to walk 1 mile, 

and so on.
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Regression Analysis

• After this soft introduction, we now discuss linear 
regression models for either testing a hypothesis 
regarding the relationship between one or more 
explanatory variables and a response variable, or 
predicting unknown values of the response variable 
using one or more predictors.

– We use X to denote explanatory variables and Y to denote 
response variables.

• We start by focusing on problems where the 
explanatory variable is binary. 

– As before, the binary variable X can be either 0 or 1.

• We then continue our discussion for situations where 
the explanatory variable is numerical.
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Linear Regression Models with One Binary Explanatory Variable

• Suppose that we want to investigate the relationship 

between sodium chloride (salt) consumption (low vs. 

high consumption) and blood pressure among elderly 

people (e.g., above 65 years old).

• The next figure shows the dot plot along with sample 

means, shown as black circles, for each group.

• We connect the two sample means to show the overall 

pattern for how blood pressure changes from  one 

group to another.
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Linear Regression Models with One Binary Explanatory Variable

• The dot plot for systolic blood pressure for 25 elderly people (left panel), 
– where 15 people follow a low sodium chloride diet (X = 0), and 10 people follow a high sodium 

chloride diet (X = 1)  

• The dot plot for systolic blood pressure for 25 elderly people (right panel). 
– Here, the sample means among the low and high sodium chloride diet groups are shown as black 

circles. 

– A straight line connects the sample means.

– The line intercepts the vertical axis at a = 133.17 and has slope b = 6.25
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Linear Regression Models with One Binary Explanatory Variable

• Using the intercept a and slope b, we can write the equation for 

the straight line that connects the estimates of the response 

variable for different values of X as follows:

 𝑦 = 𝑎 + 𝑏𝑥
– The constant (intercept) term a is interpreted as the predicted value of y

when x = 0.

– The slope b of the line is the predicted change in y when there is a one-

unit change in x.

• The slope is also known as the regression coefficient of X.

– For the given example,

 𝑦 = 133.17 + 6.25𝑥
• We expect that on average the blood pressure increases by 6.25 units for one unit 

increase in X.

• In this case, one unit increase in X from 0 to 1 means moving from low to high 

sodium chloride diet group.
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Linear Regression Models with One Binary Explanatory Variable

• For an individual with x = 0,  the estimate according to 
the above regression line is

 𝑦 = 𝑎 + 𝑏 × 0 = 𝑎 =  𝑦𝑥=0

which is the sample mean for the first group.

• For an individual with x = 1,  the estimate according to 
the above regression line is

 𝑦 = 𝑎 + 𝑏 × 1 = 𝑎 + 𝑏 =  𝑦𝑥=0 +  𝑦𝑥=1 −  𝑦𝑥=0 =  𝑦𝑥=1

• We refer to the difference between the observed and 
estimated values of the response variable as the 
residual.

– For individual i, we denote the residual ei and calculate it as 
follows: 

𝑒𝑖 = 𝑦𝑖 −  𝑦𝑖
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Linear Regression Models with One Binary Explanatory Variable

– For instance, if someone belongs to the first group, her estimated blood 
pressure is 

 𝑦𝑖= a = 133.17

– Now if the observed value of her blood pressure is yi = 135.08, then the 
residual is

ei = 135.08 – 133.17 = 1.91

• By rearranging the terms in the equation 𝑒𝑖 = 𝑦𝑖 −  𝑦𝑖, we can write 
the observed value yi in terms of the estimate obtained from the 
regression line and the corresponding residual,

𝑦𝑖 =  𝑦𝑖 + 𝑒𝑖
• For individual i, whose values of the explanatory variable and the 

response variable are xi and yi, respectively, the estimated value of the 
response variable, denoted as  𝑦𝑖, is

 𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖

• So, the observed value yi can be given as

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝑒𝑖
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The linear relationship

• The linear relationship between Y and X in the entire 
population can be presented in a similar form,

Y = α +βX +ε

– where α is the intercept, and β is the slope of the regression 
line , ε is called the error term, representing the difference 
between the estimated and the actual values of Y in the 
population. 

– We refer to the above equation as the linear regression 
model. 

– We refer to α and β as the regression parameters. 
• More specifically, β is called the regression coefficient for the 

explanatory variable. 

• The process of finding the regression parameters is 
called fitting a regression model to the data.
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Statistical Inference Using Simple Linear Regression Models

• Using the regression line, we can estimate the unknown 

value of the response variable for members of the 

population who did not participate in our study.

• In this case, we refer to our estimates as predictions.

– For example, we can use the linear regression model we built 

in the previous example to predict the value of blood pressure 

for a person with high sodium chloride diet (i.e., x = 1),

 𝑦 = 133.17 + 6.25 × x

= 133.17 + 6.25 × 1 

= 139.42
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Residual sum of squares

• As a measure of discrepancy between the observed 

values and those estimated by the line, we calculate 

the Residual Sum of Squares (RSS):

𝑅𝑆𝑆 =  

𝑖

𝑛

𝑒𝑖
2

• Here, ei is the residual of the ith observation, and n is 

the sample size.

• The square of each residual is used so that its sign 

becomes irrelevant.
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One Numerical Explanatory Variable

• We now discuss simple linear regression models (i.e., linear regression with 
only one explanatory variable), where the explanatory variable is numerical.

• Left panel: Scatterplot of blood pressure by daily sodium chloride intake along with some 
candidate lines for capturing the overall relationship between the two variables. 

– The black line is the least-squares regression line. 

• Right panel: The least-squares regression line for the relationship between blood pressure and 
sodium chloride intake. 

– The vertical arrows show the residuals for two observations. 

– The stars are the estimated blood pressure for daily sodium chloride intakes from 0 to 14 grams
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One Numerical Explanatory Variable

• Among all possible lines we can pass through the data, 
we choose the one with the smallest sum of squared 
residuals.
– The resulting line is called the least-squares regression 

line.

• First, we find the slope of regression line using the 
sample correlation coefficient r between the response 
variable Y and the explanatory variable X, 

𝑏 = 𝑟
𝑠𝑥
𝑠𝑦

– Here, sy is the sample standard deviation of Y , and sx is the 
sample standard deviation of X. 

• Note that since sx and sy are always positive, the sign of b is the 
same as the sign of the correlation coefficient:

– b > 0 for positively correlated random variables, 

– b < 0 for negatively correlated variables. 
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One Numerical Explanatory Variable

• When r = 0 (i.e., the two variables are not 

linearly related), then b = 0. 

• After finding the slope, we find the intercept as 

follows: 

𝑎 = 𝑦 − 𝑏𝑥

where 𝑦 and 𝑥 are the sample means for Y and 

X, respectively. 

• Then the least-squares regression line with 

intercept a and slope b can be expressed as

 𝑦 = 𝑎 + 𝑏𝑥
18
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Example

• For the blood pressure example, 
– the sample correlation coefficient is r = 0.84; 

– the sample standard deviation of blood pressure is sy = 4.94, 

– the sample standard deviation of sodium chloride intake is 
sx = 3.46. 

• Therefore,

b = 0.84× 4.94/3.46 = 1.20.

• For the observed data, 
– the sample means are 𝑦 = 135.68 and 𝑥 = 5.90. 

• Therefore,

a = 135.68− 1.20×5.90 = 128.60.

• The linear regression model can be written as 

 𝑦 = 128.60+ 1.20x.
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Example

• We can now use this model to estimate the value 
of the response variable. 

• For the individual i in the right panel of the figure
in slide 16, 
– the amount of daily sodium chloride intake is xi = 3.68. 

• The estimated value of the blood pressure for this 
person is

 𝑦i = 128.60+1.20×3.68 = 133.02.

• The actual blood pressure for this individual is 

yi = 128.3 

• The residual therefore is

ei = yi −  𝑦i = 128.3−133.02 = −4.72
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Example

• We can also use our model for predicting the unknown 
values of the response variable (i.e., blood pressure) for 
all individuals in the target population. 

– For example, if we know the amount of daily sodium 
chloride intake is x = 7.81 for an individual, we can predict 
her blood pressure as follows:

 𝑦= 128.60+ 1.20×7.81 = 137.97

• Of course, the actual value of the blood pressure for this 
individual would be different from the predicted value. 

– The difference between the actual and predicted values of 
the response variable is called the model error and is 
denoted as ε. 

• In fact, the residuals are the observed values of ε for the individuals 
in our sample.
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Estimating model parameters

• As an alternative way, the least-squares 
estimates of slope and intercept can be 
obtained as follows:

𝛽 =
𝑆𝑥𝑦

𝑆𝑥𝑥
and 𝛼 = 𝑦 − 𝛽𝑥

where

𝑆𝑥𝑦 =  𝑖(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) and 𝑆𝑥𝑥 =
 𝑖(𝑥𝑖 − 𝑥)2

• Thus, Sxy is the sum of x deviations times y
deviations and Sxx is the sum of x deviations 
squared.

22

Example

• In the road resurfacing example
– Cost yi (in thousands of dollars): 6.0 14.0 10.0 14.0 26.0

– Mileage xi (in miles): 1.0 3.0 4.0 5.0 7.0

• For the road resurfacing data, n =5 and 
 𝑥𝑖 = 1.0 + 3.0 + 4.0 + 5.0 + 7.0 = 20.0

• So 𝑥 =
20.0

5
= 4.0.

• Similarly  𝑦𝑖 = 70.0, 𝑦 =
70.0

5
= 14.0

• Also, 

𝑆𝑥𝑥 =  

𝑖

(𝑥𝑖 − 𝑥)2 = (1.0 − 4.0)2 + ⋯…+ (7.0 − 4.0)2 = 20.00
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Example

• and

𝑆𝑥𝑦 =  

𝑖

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

= 1.0 − 4.0 6.0 − 14.0
+ ⋯… 7.0 − 4.0 26.0 − 14.0 = 60.0

• Thus 

𝛽 =
60.0

20.0
= 3.0

𝛼 = 14.0 − 3.0 4.0 = 2.0

• From the value 𝛽 = 3.0 , we can conclude that the 
estimated average increase in cost for each additional 
mile is $3,000.

24
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Example

• Deviations from the least-squares line from the mean
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Statistical inference using regression models

• We can use R or R-Commander to find the least-

squares regression line.

• The slope of the regression line plays an important 

role in evaluating the relationship between the 

response variable and explanatory variable(s).

• We can also use this regression line to predict the 

unknown value of the response variable.
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Confidence Interval for Regression Coefficients

• We can find the confidence interval for the population 

regression coefficient as follows:

𝑏 − 𝑡crit × 𝑆𝐸𝑏, b + 𝑡crit × 𝑆𝐸𝑏

• For simple (i.e., one predictor) linear regression models, SEb is 

obtained as follows:

𝑆𝐸𝑏=
𝑅𝑆𝑆/(𝑛 − 2)

 𝑖(𝑥𝑖 −  𝑥)2

• The corresponding tcrit is obtained from the t-distribution with 

n - 2 degrees of freedom.
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Confidence Interval for Regression Coefficients

• For the blood pressure example, 

– the sample size is n = 25. 

• Therefore, we use the t-distribution with 25 − 2 = 23 

degrees of freedom. 

• If we set the confidence level to 0.95, 

– then tcrit = 2.07, 

• which is obtained from the t-distribution with 23 degrees of 

freedom by setting the upper tail probability to (1−0.95)/2 = 0.025. 

• Therefore,  

– the 95% confidence interval for β is

[6.25−2.07×1.59, 6.25+ 2.07×1.59] = [2.96, 9.55]
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Hypothesis testing

• To assess the null hypothesis that the population 
regression coefficient is zero, which is interpreted as 
no linear relationship between the response variable 
and the explanatory variable, we first calculate the t-
score.

𝑡 =
𝑏

𝑆𝐸𝑏

• Then, we find the corresponding p-value as follows:
– if HA : β < 0, pobs = P(T ≤ t),

– if HA : β > 0, pobs = P(T ≥ t),

– if HA : β ≠ 0, pobs = 2×P(T ≥ |t|),

where T has the t-distribution with n - 2 degrees of 
freedom
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Hypothesis testing

• In the blood pressure example, 
– the estimate of the regression coefficient was  b = 6.25, 

– the standard error was SEb = 1.59. 

• Therefore, 

t = b / SEb = 6.25 / 1.59 = 3.93.

• If HA : β ≠ 0 (which is the common form of the alternative 
hypothesis), 
– we find the p-value by calculating the upper tail probability of 

|3.93| = 3.93 from the t-distribution with 25 − 2 = 23 degrees of freedom 
and multiplying the result by 2. 

• For this example,

pobs = 2×0.00033 = 0.00066.

• Because pobs for this example is quite small and below any 
commonly used confidence level (e.g., 0.01, 0.05, 0.1), we can 
reject the null hypothesis and conclude that blood pressure is 
related to sodium chloride diet level.
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Example

• Data from a sample of 10 pharmacies are used to examine the relation between

prescription sales volume and percentage of prescription ingredients purchased

directly from the supplier. 

• The sample data are shown in the following table

a. Find the least-squares estimates 

for the regression line

 𝑦 = 𝛼 + 𝛽𝑥

b. Predict sales volume for a 

pharmacy that purchases 15% of 

its prescription ingredients 

directly from the supplier.

c. Plot the (x, y) data and the 

prediction equation  𝑦 = 𝛼 + 𝛽𝑥

d. Interpret the value of β in the 

context of the problem.
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Example

a. Least-squares estimates
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Example

Substituting into the formulas for a and b

𝛽 =
𝑠𝑥𝑦
𝑠𝑥𝑥

=
6714.6

3407.6
= 1.97

𝛼 =  𝑦 − 𝛽  𝑥 = 71.3 − 1.97 × 33.8 = 4.7

b. When x = 15%, the predicted sales volume is 

 𝑦 = 4.7 + 1.97 × 15 = 34.25

(that is, $34,250).

c. The (x, y) data and prediction line are plotted in 

the next slide:
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Example

d. From b = 1.97,

we conclude that 

if a pharmacy 

would increase 

by 1% the 

percentage of 

ingredients 

purchased directly, then the estimated increase

in average sales volume would be $1,970.
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