Statistical Data Analysis

Prof. Dr. Nizamettin AYDIN
naydin@yildiz.edu.tr
http://www3.yildiz.edu.tr/~naydin

Relationship Between a Numerical Variable and a Binary Variable

- In general, we can denote the means of the two groups as μ_{1} and μ_{2}.
- The null hypothesis indicates that the population means are equal, $H_{0}: \mu_{1}=\mu_{2}$.
- In contrast, the alternative hypothesis is one the following: - if $H_{\mathrm{A}}: \mu_{1}>\mu_{2}$, if we believe the mean for group 1 is greater
if $H_{\mathrm{A}}: \mu_{1}<\mu_{2}, \quad \begin{aligned} & \text { than the mean for group 2. } \\ & \text { if we believe the mean for group } 1 \text { is less than }\end{aligned}$ the mean for group 2 .
- if $H_{\mathrm{A}}: \mu_{1} \neq \mu_{2}, \quad$ if we believe the means are different but we do not specify which one is greater.
- We can also express these hypotheses in terms of the difference in the means:

$$
H_{\mathrm{A}}: \mu_{1}-\mu_{2}>0, H_{\mathrm{A}}: \mu_{1}-\mu_{2}<0, \text { or } H_{\mathrm{A}}: \mu_{1}-\mu_{2} \neq 0
$$

- Then the corresponding null hypothesis is that there is no difference in the population means, $H_{0}: \mu_{1}-\mu_{2}=0$

Relationship Between a Numerical Variable and a Binary Variable

- By the Central Limit Theorem,

$$
\bar{X}_{1} \sim N\left(\mu_{1}, \frac{\sigma_{1}^{2}}{n_{1}}\right), \quad \bar{X}_{2} \sim N\left(\mu_{2}, \frac{\sigma_{2}^{2}}{n_{2}}\right)
$$

where n_{1} and n_{2} are the number of observations.

- Therefore,

$$
\bar{X}_{12} \sim N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)
$$

- We can rewrite this as

$$
\bar{X}_{12} \sim N\left(\mu_{12}, S D_{12}^{2}\right) \text { where } S D_{12}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

Statistical Inference for the Relationship Between Two Variables

- Previously, we used the sample mean \bar{X} to perform statistical inference regarding the population mean μ.
- To evaluate our hypothesis regarding the difference between two means, $\mu_{1}-\mu_{2}$, it is reasonable to choose the difference between the sample means, $\bar{X}_{1}-\bar{X}_{2}$, as our statistic.
- We use μ_{12} to denote the difference between the population means μ_{1} and μ_{2}, and use \bar{X}_{12} to denote the difference between the sample means \bar{X}_{1} and \bar{X}_{2} :

$$
\mu_{12}=\mu_{1}-\mu_{2} \quad \bar{X}_{12}=\bar{X}_{1}-\bar{X}_{2}
$$

Relationship Between a Numerical Variable and a Binary Variable

- We want to test our hypothesis that $H_{\mathrm{A}}: \mu_{12} \neq 0$ (i.e., the difference between the two means is not zero) against the null hypothesis that $H_{0}: \mu_{12}=0$.
- To use X_{12} as a test statistic, we need to find its sampling distribution under the null hypothesis (i.e., its null distribution).
- If the null hypothesis is true, then $\mu_{12}=0$.

Therefore, the null distribution of \bar{X}_{12} is

$$
\bar{X}_{12} \sim N\left(0, S D_{12}^{2}\right)
$$

- As before, however, it is more common to standardize the test statistic by subtracting its mean (under the null) and dividing the result by its standard deviation.

$$
Z=\frac{\bar{X}_{12}}{S D_{12}}
$$

where Z is called the z-statistic, and it has the standard normal distribution: $Z \sim N(0,1)$.

Two-sample z-test

- To test the null hypothesis $H_{0}: \mu_{12}=0$, we determine the z -score,

$$
z=\frac{\bar{x}_{12}}{S D_{12}}
$$

- Then, depending on the alternative hypothesis, we can calculate the p-value, which is the observed significance level, as:

$$
\begin{array}{ll}
\text { - if } H_{\mathrm{A}}: \mu_{12}>0, & p_{\text {obs }}=P(Z \geq z), \\
\text { - if } H_{\mathrm{A}}: \mu_{12}<0, & p_{\text {obs }}=P(Z \leq z), \\
\text { - if } H_{\mathrm{A}}: \mu_{12} \neq 0, & p_{\text {obs }}=2 \times P(\mathrm{Z} \geq \mid z),
\end{array}
$$

- The above tail probabilities are obtained from the standard normal distribution.

Example

- Suppose that our sample includes $n_{1}=25$ women and $n_{2}=27 \mathrm{men}$.
- The sample mean of body temperature is $\bar{x}_{1}=98.2$ for women and $\quad \bar{x}_{2}=98.4$ for men.
- Then, our point estimate for the difference between population means is $\bar{x}_{12}=-0.2$.
- We assume that $\sigma_{1}^{2}=0.8$ and $\sigma_{2}^{2}=1$.
- The variance of the sampling distribution is $(0.8 / 25)+(1 / 27)=0.07$, and the standard deviation is $S D_{12}=\sqrt{ } 0.07=0.26$.
- The z-score is $z=\frac{\bar{x}_{12}}{S D_{12}}=\frac{-0.2}{0.26}=-0.76$

Example

- $H_{\mathrm{A}}: \mu_{12} \neq 0$ and $z=-0.76$.
- Therefore, $p_{\text {obs }}=2 P(Z \geq|-0.76|)=2 \times 0.22=0.44$.
- For the body temperature example, $p_{\text {obs }}=0.44$ is greater than the commonly used significance levels (e.g., $0.01,0.05$, and 0.1).
- Therefore, the test result is not statistically significant, and we cannot reject the null hypothesis (which states that the population means for the two groups are the same) at these levels.
- That is, any observed difference could be due to chance alone.

Two-Sample t-test

- Using the specific value of \bar{X}_{12}, which is denoted \bar{x}_{12}, as our point estimate for the difference between the two population means, $\mu_{12}=\mu_{1}-\mu_{2}$, along with the standard error $S E_{12}$ of \bar{X}_{12}, we find confidence intervals for μ_{12} as follows:

$$
\left[\bar{x}_{12}-t_{\text {crit }} \times S E_{12}, \bar{x}_{12}+t_{\text {crit }} \times S E_{12}\right]
$$

where $t_{\text {crit }}$ is the t-critical value from a t-distribution for the desired confidence level c.

- When comparing the population means for two groups, the formula for finding the degrees of freedom is as follows:

$$
d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}
$$

Two-Sample t-test

- In practice, $S D_{12}$ is not known since σ_{1} and σ_{2} are unknown.
- As before, we can use the sample variances S_{1}^{2} and S_{2}^{2} to estimate σ_{1}^{2} and σ_{2}^{2}, and take this additional source of uncertainty into account by using t-distributions instead of the standard normal distribution.
- We use s_{1}^{2} and s_{2}^{2} (point estimates for population variances σ_{1}^{2} and σ_{2}^{2}) to estimate the standard deviation,

$$
S E_{12}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

where $S E_{12}$ is the standard error of \bar{X}_{12}.

- Then, instead of the standard normal distribution, we need to use t -distributions to find p-values.
- For this, we can use R or R-Commander.

Two-Sample t-test

- For testing a hypothesis regarding $\mu_{12}=\mu_{1}-\mu_{2}$ when the population variances are unknown,
- we follow similar steps as above,
- but we use $S E_{12}$ instead of $S D_{12}$ and use the following t statistic instead of the z-statistic to account for the additional source of uncertainty involved in estimating the population variances:

$$
\begin{aligned}
& T=\frac{\bar{X}_{12}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}} \\
& -\bar{X}_{2} \text { as before. }
\end{aligned}
$$

Two-Sample t-test

- Using the observed data, we obtain $\bar{x}_{12}=\bar{x}_{1}-\bar{x}_{2}$ as the observed value of \bar{X}_{12}.
- We also use the observed data to obtain s_{1} and s_{2} as the observed values of sample variances.
- Then, we calculate the observed value of the test statistic T as follows:

$$
t=\frac{\bar{x}_{12}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{\bar{x}_{12}}{S E_{12}}
$$

which is called the t-score.

- Depending on the alternative hypothesis, we calculate $p_{\text {obs }}$ as
- if $H_{\mathrm{A}}: \mu_{12}>0, \quad p_{\text {obs }}=P(T \geq t)$,
- if $H_{\mathrm{A}}: \mu_{12}<0, \quad p_{\text {obs }}=P(T \leq t)$,
- if $H_{\mathrm{A}}: \mu_{12} \neq 0, \quad p_{\text {obs }}=2 \times P(T \geq|t|)$,
where T has a t-distribution with the degrees of freedom obtained as above

Example

- To find the corresponding $t_{\text {crit }}$, we follow similar steps as before.
- Suppose that we are interested in 95% confidence interval for μ_{12}.
- We find $t_{\text {crit }}$ from the t-distribution with $d f=49.9$ degrees of freedom.
- In R-Commander,
- click Distributions \rightarrow tdistribution $\rightarrow t$ quantiles.
- Then enter $(1-0.95) / 2=0.025$ for Probabilities, 49.9 for Degrees of freedom, and check the option Upper tail.
- The corresponding t-critical value is 2.01 .

Example

- For the body temperature example, suppose that the sample variances based on our sample of $n_{2}=25$ women and $n_{2}=27 \mathrm{men}$ are $s_{1}^{2}=1.1$ and $s_{2}^{2}=1.2$, respectively.
- The standard error of \bar{X}_{12} is

$$
S E_{12}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=\sqrt{\frac{1.1}{25}+\frac{1.2}{27}}=0.3
$$

- Degrees of freedom is

$$
d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}=\frac{\left(\frac{1.1}{25}+\frac{1.2}{27}\right)^{2}}{\frac{1}{26-1}\left(\frac{1.1}{25}\right)^{2}+\frac{1}{27-1}\left(\frac{1.2}{27}\right)^{2}}=49.9
$$

