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Hypothesis Testing
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Hypothesis

• A hypothesis (plural: hypotheses):

– a testable statement about the relationship between two or 

more variables or a proposed explanation for some observed 

phenomenon. 

• In a scientific experiment or study, the hypothesis is a 

brief summation of the researcher's prediction of the 

study's findings, which may be supported or not by the 

outcome. 

• Hypothesis testing is the core of the scientific method.
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Hypothesis

• Scientific method 

– an approach to seeking knowledge that involves forming and testing a 
hypothesis. 

– used to answer questions in a wide variety of disciplines outside of 
science, including business. 

– provides a logical, systematic way to answer questions and removes 
subjectivity by requiring each answer to be authenticated with objective 
evidence that can be reproduced. 

– often carried out in a linear manner, but the approach can also be 
cyclical, because once a conclusion has been reached, it often raises 
more questions. 

• Goal of scientific method is to gather data that will validate or 
invalidate a cause and effect relationship.
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Hypothesis
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Hypothesis

• In general, many scientific investigations start by 
expressing a hypothesis.

• To evaluate hypotheses, we rely on 

– estimators, 

– their sampling distributions, 

– their specific values 

from observed data.

• For example,

– Mackowiak et al.* hypothesized that the average normal (i.e., for 
healthy people) body temperature is less than the widely accepted 
value of 98.6°F. 

– If we denote the population mean of normal body temperature as 
μ, then we can express this hypothesis as μ<98.6.

6

*Mackowiak, P.A., Wasserman, S.S., Levine, M.M.: A critical appraisal of 98.6°F, the upper limit of the normal body 

temperature, and other legacies of Carl Reinhold AugustWunderlich.JAMA 268, 1578–1580 (1992)
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Null and Alternative hypotheses

• The null hypothesis 
– usually reflects the “status quo" or “nothing of interest".

– denoted as H0

• The alternative hypothesis 
– the hypothesis we are investigating through a scientific study

– denoted as HA

• Consider the body temperature example, where we want to examine 
the null hypothesis H0 : µ = 98.6 against the alternative hypothesis 
HA : µ < 98.6.

• The procedure for evaluating a hypothesis is called hypothesis 
testing, and it rises in many scientific problems.
– For hypothesis testing, we focus on the null hypothesis since it tends to 

be simpler.

– To this end, we examine the evidence that the observed data provide 
against the null hypothesis H0. 

• If the evidence against H0 is strong, we reject H0. 

• If not, we state that the evidence provided by the data is not strong enough to 
reject H0, and we fail to reject it.
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Null and Alternative hypotheses

• With respect to our decision regarding the null 
hypothesis H0, we might make two types of errors:
– Type I error: 

• we reject H0 when it is true and should not be rejected.

– Type II error: 
• we fail to reject H0 when it is false and should be rejected.

• We denote the probability of making type I error as α
and the probability of making type II error as β.
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Actual Validity of H0

Decision 

Made

H0  is true H0  is false

Accept H0  True Negative False Negative

(Type II Error)

Reject H0  False Positive

(Type I Error)

True Positive 

Null and alternative hypotheses

• Now suppose that we have a hypothesis testing 

procedure that fails to reject the null hypothesis when 

it should be rejected with probability β. 

– This means that our test correctly rejects the null hypothesis 

with probability 1 − β. 

• Note that the two events are complementary. 

– We refer to this probability (i.e., 1 − β) as the power of the 

test. 

• In practice, it is common to first agree on a tolerable 

type I error rate α, such as 0.01, 0.05, and 0.1. 

• Then try to find a test procedure with the highest 

power among all reasonable testing procedures.
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Hypothesis testing for the population mean

• To decide whether we should reject the null hypothesis, we 

quantify the empirical support (provided by the observed data) 

against the null hypothesis using some statistics.

• We use statistics to evaluate our hypotheses. 

– We refer to them as test statistics.

• To evaluate hypotheses regarding the population mean, we use the sample mean  𝑋 as 

the test statistic

• For a statistic to be considered as a test statistic, its sampling 

distribution must be fully known (exactly or approximately) 

under the null hypothesis.

– We refer to the distribution of test statistics under the null hypothesis as 

the null distribution.

• For the sample mean, the CLT states that the sampling distribution is approximately 

normal when the sample size is large.
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Hypothesis testing for the population mean

• Consider the body temperature example, where 

– we want to examine the null hypothesis H0 : μ = 98.6 against the alternative 
hypothesis HA : μ < 98.6. 

• To start with, suppose that σ2 = 1 is known and  we have randomly 
selected a sample of 25 healthy people from the population and 
measured their body temperature.

• Using the CLT, the sampling distribution of  𝑋 is approximately 
normal as follows:

 𝑋~𝑁(𝜇, 𝜎2/n)

• For the above example,
 𝑋~𝑁(𝜇, 1/25)

• If the null hypothesis is true and the population mean is μ = 98.6,

• the sampling distribution of  𝑋 becomes
 𝑋|𝐻0~𝑁(98.6, 0.04)

– Note that the distribution of  𝑋 is obtained conditional (hence the notation for 
conditional probability) on the assumption that the null hypothesis is true
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Hypothesis testing for the population mean

• In reality, we have one value, 𝑥, for the sample 

mean. 

• We can use this value to quantify the evidence of 

departure from the null hypothesis.

• Suppose that from our sample of 25 people we 

find that the sample mean is 𝑥 = 98.4

• To evaluate the null hypothesis H0 : µ = 98.6 

versus the alternative HA : µ < 98.6, 

– we use the lower tail probability of this value from the 

null distribution.
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Hypothesis testing for the population mean

• For the normal body temperature example, examining the hypotheses
H0 : µ = 98.6 versus the alternative HA : µ < 98.6. 

• Left panel: The shaded area shows the lower-tail probability of the 
observed sample mean, 𝑥 = 98.4. 
– This is the observed significance level, p-value, which is denoted as pobs.

• Right panel: After standardizing, the p-value corresponds to the lower
tail probability of z = −1 based on the standard normal distribution
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Observed significance level

• The observed significance level for a test is the probability 
of values as or more extreme than the observed value, 
based on the null distribution in the direction supporting 
the alternative hypothesis.

• This probability is also called the p-value and denoted as 
pobs.

• For the above example,

𝑝𝑜𝑏𝑠 = 𝑃 𝑋 ≤ 𝑥 𝐻0 = 𝑃(𝑋 ≤ 98.4) = 0.16

• To find the p-value in R-Commander, 

– click Distributions → Continuous distributions → Normal 
distribution → Normal probabilities.

– Then set the Variable value to 98.4 and the parameters for the 
null distribution (μ = 98.6 and σ = 0.2).
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z-Tests of the Population Mean

• In practice, it is more common to use the standardized version of the 
sample mean as our test statistic.
– We know that if a random variable is normally distributed (as it is the case 

for 𝑋 ), subtracting the mean and dividing by standard deviation creates a 
new random variable with standard normal distribution, 𝑍~𝑁(0,1)

• We refer to the standardized value of the observed test statistic as the 
z-score,

𝑧 =
𝑥 − 𝜇0

𝜎
𝑛

=
98.4 − 98.6

0.2
= −1

𝑝𝑜𝑏𝑠 = 𝑃(𝑍 ≤ −1) = 0.16

• We refer to the corresponding hypothesis test of the population mean 
as the z-test.

• In a z-test, instead of comparing the observed sample mean  𝑥 to the 
population mean according to the null hypothesis, we compare the z-
score to 0
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Interpretation of p-value

• The p-value is the conditional probability of extreme 

values (as or more extreme than what has been observed) 

of the test statistic assuming that the null hypothesis is 

true.

– When the p-value is small, say 0.01 for example, it is rare to find 

values as extreme as what we have observed (or more so).

• As the p-value increases, it indicates that there is a good 

chance to find more extreme values (for the test statistic) 

than what has been observed. 

– Then, we would be more reluctant to reject the null hypothesis.

• The common significance levels are 0.01, 0.05, and 0.1. 
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Interpretation of p-value

• If pobs is less than the assumed cutoff, we say that the 

data provides statistically significant evidence against 

H0

• For the body temperature example where pobs = 0.16, 
if we set the significance level at 0.05, 

– we say that there is not significant evidence against the null 
hypothesis  H0: μ = 98.6 at the 0.05 significance level, so we 
do not reject the null hypothesis. 

• If we had set the cutoff at 0.05 and we had observed
𝑥 = 98.25 instead of 98.4, then pobs = 0.04, and we 
could reject the null hypothesis. 

– In this case, we say that the result is statistically significant 
and the data provide enough evidence against H0 : μ = 98.6.

17

One-Sided Hypothesis Testing

• In general, for one-sided hypothesis testing, we 

evaluate the null hypothesis H0 : μ = μ0 by using the 

following standardized test statistic:

𝑍 =
𝑋 − 𝜇0

𝜎
𝑛

• We find the sample mean 𝑥 and calculate the observed 

value of Z called z-score (assuming σ is known):

𝑧 =
𝑥 − 𝜇0

𝜎
𝑛
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One-Sided Hypothesis Testing

• We then use the standard normal distribution to find 

the p-value. 

– If the alternative hypothesis regarding the population mean 

is HA : μ < μ0, 

• we use the standard normal distribution to find lower tail probability 

of the z-score: P(Z ≤ z). 

– If the alternative hypothesis regarding the population mean 

is HA : μ > μ0, 

• we use P(Z ≥ z) instead. 

• The resulting probability, pobs, is the observed 

significance level, which can be compared to several 

significance levels such as 0.01, 0.05, and 0.1.
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One-Sided Hypothesis Testing

• In some situations, we might hypothesize that the 
population mean is greater than a specific value and 
express our hypothesis as HA :μ>μ0. 

• Our null hypothesis is still H0 : μ = μ0. 

• This is also a one-sided test since the departure from the 
null is still in one direction: toward values larger than μ0.

• For example, 
– suppose that we have observed that many Pima Indian women 

suffer from diabetes. 

– We know that obesity and diabetes are related; we might therefore
hypothesize that this population is obese on average, where 
obesity is defined as BMI higher than 30. 

– If we denote the population mean of BMI for Pima Indian
women, we can then express our hypothesis as μ>30. 

– In this case, the null hypothesis is H0 : μ = 30; that is, μ0 = 30.
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One-Sided Hypothesis Testing

• As before, we use the sample mean as the test statistic. 

• For illustrative purposes,

– suppose that we have obtained a sample of size n = 100 from the 

population of Pima Indian women. 

– Further, suppose we know that the population variance is σ2 = 62.

• If the null hypothesis is true and the population mean is μ = 30, 

then the sampling distribution is
 𝑋|𝐻0~𝑁(30,62/100)

• The distribution is shown in the left panel of the figure

in the next slide
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One-Sided Hypothesis Testing

• Left panel: The sampling distribution for the test statistic under the 

null hypothesis H0 : μ = 30. 

– The p-value, which is the probability of values as or more extreme than the 

observed value of the test statistic 𝑥 = 31, is shown as the shaded area. 

• Right panel: Obtaining the upper tail probability using one-sided z-

test
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One-Sided Hypothesis Testing

• If the null hypothesis is indeed true, then we would expect to 
see the value of sample mean near the population mean 
according to the null distribution (here, 30). 

• In contrast, if the null hypothesis is false, then the null 
distribution does not represent the sampling distribution of the 
test statistics, and we would expect to see the value of the 
sample mean away from 30, in this case, larger than 30
according to the alternative hypothesis.

• Suppose that from our sample of 100 Pima Indian women we 
find that the sample mean is 𝑥 = 31. 

• As before, we find the observed significance level, p-value, to
measure the amount of evidence provided by the data in support 
for H0. 
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One-Sided Hypothesis Testing

• Recall that we defined p-value as the probability of values as or 
more extreme than the observed value of the test statistic (here, 
𝑥 = 31) based on the null distribution, in the direction specified 
by the alternative hypothesis. 

• If the null distribution is in fact true and μ = 30, then values 
larger than 𝑥 = 31 would seem more extreme than what we 
have observed. 

• Therefore, since HA :μ>μ0

pobs = P(𝑋 ≥ 𝑥|H0)

• If we drop H0 for simplicity,

pobs = P(𝑋 ≥ 31)

• This probability is shown as the shaded area in the left panel of 
the figure (in slide 22).
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One-Sided Hypothesis Testing

• We can standardize the test statistic by subtracting the mean 
and dividing the result by the standard deviation:

𝑍 =
𝑋 − 𝜇0

𝜎
𝑛

=
𝑋 − 30

6

100

=
𝑋 − 30

0.6
~𝑁(0,1)

• The corresponding z-score is obtained as follows:

𝑧 =
𝑥 − 𝜇0

0.6
=

31 − 30

0.6
= 1.67

• Now, to find the p-value, we can find the upper tail probability 
of z = 1.67 from the null distribution N(0, 1):

pobs = P(Z ≥ 1.67)

• This probability is shown as the shaded area in the right panel 
of the figure (in slide 22).
– This is the upper tail probability at 1.67 based on the standard normal 

distribution.
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One-Sided Hypothesis Testing

• The upper tail probability is by convention 

P(Z >1.67). 

• However, for continuous random variables, 

P(Z > 1.67) = P(Z ≥ 1.67) since the probability of any 

specific value (here, 1.67) is zero. 

• For this example, pobs = 0.048. 

• We can reject the null hypothesis at 0.05 level but not 

at 0.01 level. 

• At 0.05 level, we can conclude that the population

mean of BMI for Pima Indian women is higher than 

30 and the difference is statistically significant.
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Two-Sided Hypothesis Testing

• For many hypothesis testing problems, we might be indifferent 

to the direction of departure from the null value. 

– In such cases, we can express the null and alternative hypotheses as 

H0 : μ = μ0 and HA : μ ≠ μ0, respectively. 

– Then we consider both large positive values and small negative values of 

z-score as evidence against the null hypothesis, and our alternative 

hypothesis is referred to as two-sided.

• The p-value for the two-sided hypothesis test is calculated as 

follows (assuming σ is known):

– Determine the observed z-score: 𝑧 =
𝑥−𝜇0

𝜎/ 𝑛

– Take the absolute value of the z score: |z|.

– Obtain the upper tail probability: P(Z ≥ |z|).

– Double the resulting probability: pobs = 2×P(Z ≥ |z|).
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Two-Sided Hypothesis Testing

• For example, suppose we believe that the average 

normal body temperature is different from the 

accepted value 98.6°F, but we are not sure whether it 

is higher or lower than 98.6. 

• Then the null hypothesis remains H0 : μ = 98.6, 

• But the alternative hypothesis is expressed as HA : μ ≠ 

98.6.

• We calculate the sample mean 𝑥 = 98.4 and 

standardize it to obtain the z-score,

𝑧 =
𝑥 − 𝜇0

𝜎/ 𝑛
=

98.4 − 98.6

1/ 25
=

98.4 − 98.6

0.2
=

−0.2

0.2
= −1
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Two-Sided Hypothesis Testing

• The p-value is still calculated as the probability of 

values as or more extreme than the observed z-score. 

– However, in this case, extreme values are those whose 

distance from 0 is more than the distance of −1 from zero. 

• These are values that are either less than −1 or greater than 1. 

• Therefore, to find the observed significance level, we 

need to add the probabilities for Z ≤ −1 and Z ≥ 1:

pobs = P(Z ≤ ˗1) + P(Z ≥ 1)

• This probability is equal to the shaded area in the

following figure
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Two-Sided Hypothesis Testing

• Illustrating the

p-value for a two-sided

hypothesis test of average

normal body temperature,

where H0 : μ = 98.6 and

HA : μ ≠ 98.6. 

• After standardizing, 

pobs = P(Z ≤−1)+P(Z ≥ 1) = 2×0.16 = 0.32

• The p-value is greater than typical significance levels such as 0.01, 
0.05, and 0.1, so we cannot reject it at these levels. 

• Therefore, we conclude that the observed difference is not 
statistically significant, and could be due to chance alone.
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Hypothesis testing using t-tests

• So far, we have assumed that the population variance 

σ2 is known.

– In reality, σ2 is almost always unknown, and we need to 

estimate it from the data.

• As before, we estimate σ2 using the sample variance 

S2.

• Similar to our approach for finding confidence 

intervals, we account for this additional source of 

uncertainty by using the t-distribution with n-1 degrees 

of freedom instead of the standard normal distribution.

– The hypothesis testing procedure is then called the t-test.
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Hypothesis testing using t-tests

• To perform a t-test , we use the following test statistic:

𝑇 =
𝑋 − 𝜇0

𝑆/ 𝑛

• The test statistic, T , has a t-distribution with n −1

degrees of freedom under the null.

𝑇~𝑡(𝑛 − 1)

• Using the observed values of 𝑋 and S, the observed 

value of the test statistic is obtained as follows:

𝑡 =
𝑥 − 𝜇0

𝑠/ 𝑛

• We refer to t as the t-score.
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Hypothesis testing using t-tests

• To assess the null hypothesis H0 : μ = μ0 using the t -
test, 

– we first calculate the t-score based on the observed sample 
mean 𝑥 and sample standard deviation.

• We then calculate the corresponding p-value as 
follows:

– if HA : μ < μ0, pobs = P(T ≤ t),

– if HA : μ > μ0, pobs = P(T ≥ t),

– if HA : μ ≠ μ0, pobs = 2×P(T ≥ |t|),

where T has a t-distribution with n − 1 degrees of 
freedom, and t is our observed t-score. 

• This is known as the single-sample t-test.

33

Hypothesis testing using t-tests - example

• Suppose we hypothesize that the population mean of BMI 

among Pima Indian women is above 30: HA : μ > 30. 

• The corresponding null hypothesis is H0 : μ = 30. 

• To test this hypothesis, we use the Pima.tr data set from 

the MASS package. 

• The sample size is n = 200. 

• The sample mean and standard deviation are 𝑥 = 32.31 and 

s = 6.13, respectively. 

• The t-score is

𝑡 =
𝑥 − 𝜇0

𝑠/ 𝑛
=

32.31 − 30

6.13/ 200
= 5.33
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Hypothesis testing using t-tests - example

• For the above example, pobs = P(T ≥ 5.33), which we 
obtain from the t-distribution with 200 − 1 = 199 degrees 
of freedom. 

• To obtain this probability in R-Commander, 

– click Distributions → Continuous Distributions → t 
distribution → t probabilities. 

– Then enter 5.33 for Variable value and 199 for Degrees of 
freedom, and select Upper tail. 

– The resulting probability is 1.33×10−07.

• At any reasonable significance level, there is strong 
evidence to reject the null hypothesis and conclude that the 
population mean of BMI among Pima Indian women is in 
fact greater than 30. 

– Therefore, on average, the population is obese.
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Hypothesis testing for population proportion

• For a binary random variable X with possible values 0

and 1, we are typically interested in evaluating 

hypotheses regarding the population proportion of the 

outcome of interest, denoted as X = 1.

• As discussed before, the population proportion is the 

same as the population mean for such binary variables.

• So we follow the same procedure as described above.

• More specifıcally, we use the z-test for hypothesis 

testing.

• Note that we do not use t-test, because for binary 

random variable, population variance is σ2 = µ(1 - µ).
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Hypothesis testing for population proportion

• In general, to assess the null hypothesis H0 : μ = μ0, 
where μ is the population proportion (mean) of a binary 
random variable, 
– we first calculate z-score based on the observed sample 

proportion p:

𝑧 =
𝑝 − 𝜇0

µ0 (1 − µ0)/𝑛

• Then we determine the support for the null hypothesis 
as:
– if HA : μ < μ0, pobs = P(Z ≤ z),

– if HA : μ > μ0, pobs = P(Z ≥ z),

– if HA : μ ≠ μ0, pobs = 2×P(Z ≥ |z|),

where Z has the standard normal distribution, and z is the 
observed z-score. 
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Hypothesis testing for population proportion

• Consider the Melanoma dataset  available from the 
MASS package. 

• Suppose that we hypothesize that less than 50% of 
cases ulcerate: μ < 0.5. 

• Then the null hypothesis can be expressed as H0 : μ = 
0.5. 

• Using the Melanoma data set, we can test the above 
null hypothesis. 

• The number of observations in this data set is n = 205, 
of which 90 patients had ulceration. 

• Therefore, 

p = 90/205 = 0.44
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Hypothesis testing for population proportion

• Next, we can find the z-score for our test statistic as 

follows:

𝑧 =
𝑝 − 𝜇0

µ0 (1 − µ0)/𝑛
=

0.44 − 0.5

0.5 (1 − 0.5)/202
= −1.72

• Because HA : μ < 0.5, the observed significance level 

based on this z-score is the lower tail probability

P(Z ≤−1.72). 

• Using R-Commander, we find the p-value to be

pobs = 0.043. 

• Therefore, we can reject the null hypothesis at 0.05

level but not at 0.01 level.
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Test of Normality

• Visual inspection of the distribution may be 

used for assessing normality, although this 

approach is usually unreliable and does not 

guarantee that the distribution is normal.

– The frequency distribution (histogram), 

– stem-and-leaf plot, 

– boxplot, 

– P-P plot (probability-probability plot), 

– Q-Q plot (quantile-quantile plot) 

are used for checking normality visually
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Test of Normality

• The appropriateness of the normality assumption
can be evaluated formally using a testing 
procedure such as 

– Kolmogorov-Smirnov (K-S) test 

– Lilliefors corrected K-S test

– Shapiro-Wilk test 

– Anderson-Darling test 

– Cramer-von Mises test 

– D’Agostino skewness test 

– Anscombe-Glynn kurtosis test 

– D’Agostino-Pearson omnibus test 

– the Jarque-Bera test
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Test of Normality - Example

• More specifically, this test evaluates the null 

hypothesis that the distribution of the random 

variable is normal. 

• As usual, we then either reject this hypothesis 

and conclude that the normality assumption is 

not appropriate, or fail to reject it and conclude 

that there is no strong evidence of deviation 

from normality.

• Suppose we assume that the bmi variable in 

Pima.tr has normal distribution.
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Test of Normality - Example

• To evaluate this assumption, In R-Commander, 

– click Statistics → Summaries → Test of normality

and chose Shapiro-Wilk, 

– then select the bmi.

• The p-value for this test is 0.25. 

• Therefore, we do not reject the null hypothesis

(which states that the distribution is normal) 

and conclude that the deviation of the

distribution from normality is not statistically 

significant.
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Test of Normality - Example

• For comparison, repeat the above steps to test 

the normality assumption for the age variable in 

the Pima.tr data set. 

• Using the Shapiro–Wilk test, the p-value is

1.853 × 10−12, which is very small. 

• Therefore, we can comfortably reject the null

hypothesis and conclude that the deviation from 

normality is statistically significant.
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Test of Normality - Example
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Hypothesis Testing with R Programming

• To perform the z-test in R, use the function pnorm()

• For the body temperature example discussed earlier,

the z-score was −1. 

– For the one-sided hypothesis of the form H0 :μ<μ0, we find 

the lower tail probability of −1 as follows:

> pnorm(-1, mean = 0, sd = 1, lower.tail = TRUE)

[1] 0. 1586553

• For the BMI example, z-score was 1.67. 

– For the one-sided hypothesis of the form H0 :μ>μ0, we need 

to find the upper tail probability of 1.67 as follows:

> pnorm(1.67, mean = 0, sd = 1, lower.tail = FALSE)

[1] 0.04745968
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Hypothesis Testing with R Programming

• When σ2 is unknown and we need to use the data to 

estimate it separately, we use the t-test to evaluate 

hypotheses regarding the mean of a normal 

distribution.

• For the BMI example discussed earlier, the t-score was 

t = 5.33. 

– For the one-sided hypothesis of the form H0 :μ>μ0, we find 

the upper tail probability of 5.33 from a t distribution with 

n−1 degrees of freedom, where n = 200 in this example. 

– We use the pt() function:

> pt(5.33, df = 199, lower.tail = FALSE)

[1] 0.0000001324778
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