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Estimation
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Parameter Estimation

• The objective of statistics is to make inferences about 

a population based on information contained in a 

sample. 

• Populations are characterized by numerical descriptive 

measures called parameters. 

• Typical population parameters are the mean m, the 

median M, the standard deviation s, and a proportion 

p. 

• Most inferential problems can be formulated as an 

inference about one or more parameters of a 

population.
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Parameter Estimation

• Methods for making inferences about parameters fall into 

one of two categories:

– estimate the value of the population parameter of interest

– test a hypothesis about the value of the parameter 

• These two methods of statistical inference involve 

different procedures, and they answer two different 

questions about the parameter:

– In estimating a population parameter, we are answering the 

question 

• “What is the value of the population parameter?” 

– In testing a hypothesis, we are seeking an answer to the question

• “Does the population parameter satisfy a specified condition? ”
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Parameter Estimation

• We discussed 
– using random variables to represent characteristics of a population 

• (e.g., BMI, disease status). 

– some commonly used probability distributions for discrete and 
continuous random variables.

• We are specifically interested in population mean and 
population variance of a random variable. 
– These quantities are unknown in general. 

• We refer to these unknown quantities as parameters. 

• Here, we use parameters μ and σ2 to denote the unknown 
population mean and variance respectively. 
– Note that for all the distributions we discussed previously, the population 

mean and variance of a random variable are related to the unknown 
parameters of probability distribution assumed for that random variable.

• Indeed, for normal distributions N(μ,σ2), which are widely used in statistics, the 
population mean and variance are exactly the same parameters used to specify the 
distribution.
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Parameter Estimation

• In this lecture, we discuss statistical methods for parameter 
estimation. 

– Estimation refers to the process of guessing the unknown 
value of a parameter (e.g., population mean) using the 
observed data. 

• For this, we will use an estimator, which is a statistic.

– A statistic is a function of the observed data only.

• Sometimes we only provide a single value as our estimate.
– This is called point estimation.

• Point estimates do not reflect our uncertainty when estimating a parameter.

• We always remain uncertain regarding the true value of the parameter when we 
estimate it using a sample from the population. 

• To address this issue, we can present our estimates in terms of a 
range of possible values. 
– This is called interval estimation.
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Convention

• We use X1, X2, . . . , Xn to denote n possible values of X obtained 

from a sample randomly selected from the population.

• We treat X1, X2, . . . , Xn themselves as n random variables

because their values can change depending on which n

individuals we sample.

• We assume the samples are independent and identically

distributed (IID).

• While theoretically we can have many different samples of size 

n, we usually have only one such sample in practice.

• We use x1, x2, . . . , xn as the specific set of values we have

observed in our sample.

• That is, x1 is the observed value for X1, x2 is the observed value 

X2, and so forth.
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Point estimation - Population Mean

• Sometimes we only provide a single value as our estimate.
– This is called point estimation.

• We use  𝜇 and  𝜎2 to denote the point estimates for  and 𝜇 and 𝜎2.

• For a population of size N, μ is calculated as.

𝜇 =
 𝑖=1

𝑁 𝑥𝑖

𝑁
• Given n observed values, X1, X2, . . . , Xn, from the population, 

we can estimate the population mean μ with the sample mean:

 𝑋 =
 𝑖=1

𝑛 𝑋𝑖

𝑛
– In this case, we say that  𝑋 is an estimator for μ.

• As our sample (the n representative members from the 
population) changes, the value of this estimator (sample mean) 
can also change.
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Point estimation - Population Mean

• We usually have only one sample of size n from the population, x2, ...

, xn .

• Therefore, we only have one value for  𝑋, which we denote

 𝑥 =
 𝑖=1

𝑛 𝑥𝑖

𝑛
where xi is the ith observed value of X in our sample, and  𝑥 is the 

observed value of  𝑋 .

• As an example, 

– {consider the study* to estimate the population mean for body temperature 

among healthy people. From a sample of n = 148 people, they estimated the 

unknown population mean with the sample mean  𝜇 =  𝑥 = 98.25. This 

estimate is lower than the commonly believed value of 98.6°F.}

• [The sample size for this study was relatively small. We would expect that as the sample size 

increases, our point estimate based on the sample mean would become closer to the true 

population mean.]
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*Mackowiak, P.A., Wasserman, S.S., Levine, M.M.: A critical appraisal of 98.6°F, the upper limit of the normal body 

temperature, and other legacies of Carl Reinhold AugustWunderlich.JAMA 268, 1578–1580 (1992)

Law of Large Numbers (LLN)

• The Law of Large Numbers (LLN) indicates that 

(under some general conditions such as independence 

of observations) the sample mean converges to the 

population mean (  𝑋𝑛→μ) as the sample size n

increases (n→∞). 

• Informally, this means that the difference between the 

sample mean and the population mean tends to become 

smaller and smaller as we increase the sample size. 

• The LLN provides a theoretical justification for the use 

of sample mean as an estimator for the population 

mean.
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Law of Large Numbers (LLN)

• The LLN is true regardless of the underlying distribution of the 

random variable.

– Therefore, it justifies using the sample mean  𝑋 to estimate the population 

mean for continuous random variables, discrete random variables, whose 

values are counts (i.e., nonnegative integers), and for discrete binary 

variables, whose possible values are 0 and 1 only.

• For count variables, the mean is usually referred to as the rate

(e.g., rate of traffic accidents). 

• For binary random variables, the mean is usually referred to as 

the proportion of the outcome of interest (denoted as 1). 

– Hence, we sometimes use the notation p instead of  𝑥 for the sample mean 

of binary random variables.
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Law of Large Numbers (LLN)

• Suppose the true population mean for normal body temperature 

is 98.4°F.

• Here, the estimate of the population mean is plotted for different

sample sizes.

• As the sample size is 

increased, the sample mean  𝑋
converges to the population 

mean μ. 

• For the temperature example, 

by increasing n,  𝑋 → μ = 98.4

12



Copyright 2000 N. AYDIN. All rights 

reserved. 3

Point estimation - Population Variance

• The population variance is the average of squared 
deviations of each observation xi from the 
population mean μ and denoted as σ2

𝜎2 =
 𝑖=1

𝑁 (𝑥𝑖−𝜇)2

𝑁
• Given n randomly sampled values X1, X2, . . . , Xn

from the population and their corresponding 
sample mean  𝑋 , we can estimate the variance as :

𝑆2 =
 𝑖=1

𝑛 (𝑋𝑖−  𝑋)2

𝑛
• However, this estimator tends to underestimate the 

population variance.
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Point estimation - Population Variance

• To address this issue, a more commonly used estimator 
for σ2 is the sample variance:

𝑆2 =
 𝑖=1

𝑛 (𝑋𝑖−  𝑋)2

𝑛 − 1
– This is the sum of squared deviations from the sample mean 

divided by n−1 instead of n. 
• Dividing by n−1 instead of n increases the value of the estimator by a 

small amount, which is enough to avoid underestimation associated
with the more natural estimator. 

• Therefore, the sample variance is the usual estimator of 
the population variance. 

– Likewise, the sample standard deviation S, ( 𝑆2), is our 
estimator of the population standard deviation σ.

• We regard the estimator S2 as a random variable since it 
changes as we change the sample.
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Point estimation - Population Variance

• However, in practice, we usually have one set of 
observed values, x1, x2, . . . , xn , and therefore, only one 
value for S2, denoted as s2:

𝑠2 =
 𝑖=1

𝑛 (𝑥𝑖−  𝑥)2

𝑛 − 1
• For binary random variables with 0 and 1 values, we 

can show that the population variance σ2 is equal to 
μ(1−μ), where μ is the population mean (proportion).
– (See the Bernoulli distribution) 

• Therefore, after we estimate the population mean μ
using the sample mean (proportion)  𝑥 = p, we can use it 
to estimate the population variance instead of estimating 
σ2 separately:

𝑠2 = 𝑝(1 − 𝑝)

15

Sampling distribution

• The value of estimators discussed so far (and all 
estimators in general) depend on the specific sample 
selected from the population. 

• If we repeat our sampling, we are likely to obtain a 
different value for an estimator. 
– Therefore, we regard the estimators themselves as random 

variables. 

– As a result, we can talk about their probability distribution. 

• Probability distributions for estimators are called 
sampling distributions. 

• Here, we are mainly interested in the sampling 
distribution of the sample mean  𝑋. 
– For binary random variables, this is the same as the sample 

proportion.
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Sampling distribution

• We start by assuming that the random variable of 
interest, X, has a normal N(μ, σ2) distribution. 

• Further, we assume that the population variance σ2

is known, so the only parameter we want to 
estimate is μ.

• We need to find the sampling distribution of  𝑋
under these assumptions.

– {As a running example, consider the random variable X
∼ N(125, 152) representing systolic blood pressure,
whose population mean μ = 125 is unknown to us, but 
we know the population variance σ2 = 152. 

• The population standard deviation is σ = 15.}
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Sampling distribution

• Suppose that we take a sample of size n = 2 from the population. 

• The corresponding values obtained from this sample are denoted as X1
and X2, which assumed to be identically distributed and independent. 

• We write this as

X1, X2~𝑁(𝜇, 𝜎2)

• Because they are independent and identically distributed (IID), their 
sum is also normally distributed,

X1+X2~𝑁 𝜇 + 𝜇, 𝜎2 +𝜎2 = 𝑁 2𝜇, 2𝜎2

• This can be generalized as

X1+X2+⋯+Xn~𝑁 𝑛𝜇, 𝑛𝜎2 or  

𝑖=1

𝑛

Xi~𝑁 𝑛𝜇, 𝑛𝜎2

18
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Sampling distribution

• If  𝑖−1
𝑛 Xi divided by n, the sample mean is obtained:

 𝑋 =
 𝑖−1

𝑛 Xi

𝑛
• When we multiply a random variable by a constant (here, 

1/n), its mean is multiplied by that constant, and its 
variance is multiplied by the square of that constant.

• So, if we multiply  𝑖−1
𝑛 Xi by 1/n to obtain the sample 

mean  𝑋, the mean becomes nμ/n = μ, and the variance 
becomes nσ2/n2 = σ2/n.

• In this case,
 𝑋~𝑁(𝜇, 𝜎2/𝑛)

where n is the sample size.
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Sampling distribution

• The standard deviation of  𝑋 can be obtained by taking 
the square root of its variance: 

𝜎2

𝑛
=

𝜎

𝑛

• The standard deviation of the sampling distribution in 
this case reflects the extent of the variability of the
sample mean as an estimator for the population mean.
– For the above blood pressure example, if we take a sample of 

size n = 100 from the population and use X1, X2, . . . , X100 to 
denote the 100 possible values obtained from this sample, we 
have

X1, X2, . . . , X100 ∼ N(125, 152)
 𝑋∼ N(125, 152/100)
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Sampling distribution

• Left panel: The (unknown) theoretical distribution of blood pressure, X ∼ N(125, 15).

• Right panel: The density curve for the sampling distribution  𝑋 ∼ N(125, 152/100) along with the
histogram of 1000 sample means. 

– The distribution of sample means is centered on the population mean (shown with the a vertical line), but its 
variance is much less than that of blood pressure itself.

• Note the different scales on the x-axis
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Sampling distribution

• We can simulate the procedure using R-Commander.
– Click Distributions → Continuous distributions → Normal 

distribution → Sample from normal distribution.

– Then enter 125 for the mean, 15 for standard deviation. 

– Set the Number of samples
(rows) to 1000 and the 
Number of observations 
(columns) to 100, as in the
figure.

• This creates 1000 different
samples, where the size of each 
sample is n = 100. 

– Keep the option Sample
means checked; 

• this will store the sample means 
in a variable called mean.

22

Sampling distribution

• We can now plot the histogram of the 1000 sample 
means. (NormalSamples should be the active data set.) 

• Click Graphs → Histograms; choose mean as the 
Variable in Data tab and check Densities in Options tab. 
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Confidence Intervals for the Population Mean

• It is common to express our point estimate 

along with its standard deviation to show how 

much the estimate could vary if different

members of population were selected as our

sample.

• Alternatively, we can use the point estimate and 

its standard deviation to express our estimate as 

a range (interval) of possible values for the 

unknown parameter.

25

Confidence Intervals for the Population Mean

• Consider the estimation of the population mean 

μ in the systolic blood pressure example

• We know that  𝑋~𝑁(𝜇, 𝜎2/𝑛)

• Since the sampling distribution is normal,

– the 68–95–99.7% rule applies.

• Therefore, approximately 95% of the values of
 𝑋 fall within the 2 standard deviations of the 

mean.

26

Confidence Intervals for the Population Mean

• Suppose that σ2 = 152 and sample size is n = 

100.

• So, the SD of  𝑋 is σ/ 𝑛 = 1.5

• Following the 68–95–99.7% rule, with 0.95

probability, the value of  𝑋 is within 2 SDs from 

its mean, μ,

μ − 2×1.5 ≤  𝑋 ≤ μ + 2×1.5

• In other words, with probability 0.95,

μ − 3 ≤  𝑋 ≤ μ + 3

27

Confidence Intervals for the Population Mean

• We are, however, interested in estimating the 
population mean μ
– instead of the sample mean  𝑋. 

• By rearranging the terms of the above inequality,
we find that with probability 0.95,

 𝑋 − 3 ≤ μ ≤  𝑋 + 3
– This means that with probability 0.95, the population 

mean μ is in the interval [  𝑋 - 3,  𝑋 + 3]. 

• The sample mean  𝑋 is itself a random variable and 
changes from one sample to another. 
– Therefore, the above interval is not fixed. 

– With every new sample, we have a new value for  𝑋, and 
as the result, we have a new interval.

28

Confidence Intervals for the Population Mean

• Theoretically, we could repeatedly sample n = 100 people, 
find the sample mean, and determine the interval. 

• Then, the true population mean μ would fall within these 
intervals with probability 0.95.

• Suppose, for example, that 
we repeated this process 20
times to obtain 20 such 
intervals, as shown in the
figure. 

• In this figure, each sample 
mean is shown as a circle 
and the true (but unknown) 
population mean μ = 125 as 
the dashed vertical line. 

• Of 20 intervals, 19 (i.e., 
95%) cover the true mean.
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Confidence Intervals for the Population Mean

• In reality, however, we usually have only one 
sample of n observations, one sample mean  𝑥, and 
one interval [  𝑥 − 3,  𝑥 + 3] for the population mean 
μ. 

• For the blood pressure example, suppose that we 
have a sample of n = 100 people and that the 
sample mean is  𝑥 = 123. 

– Therefore, we have one interval as follows:

[123− 3, 123+ 3] = [120, 126].

• We refer to this interval as our 95% confidence 
interval for the population mean μ.

30
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Confidence Intervals for the Population Mean

• In general, when the population variance σ2 is 
known, the 95% confidence interval for the 
unknown population mean μ is obtained as 
follows:

 𝑥 − 2 × σ/ 𝑛 ,  𝑥 + 2 × σ/ 𝑛

where  𝑥 is the specific value of the sample 
mean (i.e., observed sample mean) we obtain 
based on our sample. 

• Alternatively, we say that the confidence level
or confidence coefficient for the above interval 
is 0.95.
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Confidence Intervals for the Population Mean

• Note that the above interval is only one of many 
possible intervals we could see. 

• While we could assign a probability to all 
possible intervals based on  𝑋 and say that 95%
of them include the true value of the population 
mean, we cannot say the same thing for this 
specific interval based on  𝑥 . 

• This specific interval is either one of those 
intervals that includes the true value of the 
population mean, or it is one of those intervals 
that do not. 
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Confidence Intervals for the Population Mean

• However, we are 95% confident that it belongs 

to the former set of intervals and includes the 

true value of the population mean.

• The 95% confidence refers to our degree of 

confidence in the procedure that generated this 

interval. 

• If we could repeat this procedure many times, 

95% of intervals it creates would include the 

true population mean.
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Confidence Intervals for the Population Mean

• The multiplier 2 we used to obtain the above interval was 
derived from the 68–95–99.7 rule for normal 
distributions, which states that for a normally distributed
random variable (in this case,  𝑋), 95% of the 
observations fall within 2 SDs of the mean. 

• If we want to increase our confidence level to 0.997, we 
use the multiplier 3 since 99.7% of observations fall 
within 3 SDs of the mean. 

• Therefore, our 99.7% CI for the population mean is

 𝑥 − 3 × σ/ 𝑛 ,  𝑥 + 3 × σ/ 𝑛
• For the blood pressure example, the 99.7% CI is

[123 −3×1.5, 123 + 3×1.5] = [118.5, 127.5]

• Alternatively, we say that the confidence level or 
confidence coefficient for the above interval is 0.997.
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Confidence Intervals for the Population Mean

• For estimates at lower confidence level of 0.68, 

we use the multiplier 1 instead.

• Our 68% CI for the population mean is

 𝑥 − σ/ 𝑛 ,  𝑥 + σ/ 𝑛

• For the blood pressure example, the 68 % CI is

[123 −1.5, 123 + 1.5] = [121.5, 124.5]

• Note that the length of this interval is smaller 

than the two previous interval estimates.

35

z-critical Values

• In general, for a given confidence level, c, we 

use the standard normal distribution to find the 

value whose upper tail probability is (1 − c)/2. 

• We refer to this value as the z-critical value for 

the confidence level of c. 

• Then with the point estimate  𝑥 , the confidence 

interval for the population mean at c confidence

level is

 𝑥 − 𝑧crit × σ/ 𝑛 ,  𝑥 + 𝑧crit× σ/ 𝑛

36
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z-critical Values

• Suppose that we want to set the confidence 
level of our interval estimate for the population 
mean to 0.8. 

• To find the corresponding multiplier, we need 
to find the number of units we need to move 
from 0 on each side so that the probability of 
the resulting interval becomes 0.8 based on the 
standard normal distribution. 

• The next figure shows the probability density 
curve of N(0, 1), which is known as the Z-
curve. 

37

z-critical Values

• The shaded area is 0.8, 

– which is the probability of 
the corresponding interval 
on the x axis.

• The upper end of this 
interval is shown as z. 

– Here, z is the number of 
units we need to move away 
from 0 so that the 
probability of the resulting 
interval is 0.8.

• That is, z is the multiplier needed to use to obtain 
80% confidence intervals for population mean

38

z-critical Values

• Since the total area under the curve is 1, the 

unshaded area is 1 − 0.8 = 0.2.

• Because of the symmetry of the curve around 

the mean, the two unshaded areas on the left 

and the right of the plot are equal, 

– which means that the unshaded area on the right-

hand side is 0.2/2 = 0.1. 

• Therefore, the upper-tail probability of z is 0.1, 

– which is equal to (1 − 0.8)/2.

39

z-critical Values

• We can use R-Commander to find the value of z. 

– Click Distributions → Continuous distributions →

Normal distribution → Normal quantiles. 

– Enter 0.1 for the Probabilities and select Upper tail. 

• The result, shown in the Output window, is 1.28. 

– Therefore, we need to move z = 1.28 SDs from the mean 

on each side so that the probability of the resulting

interval becomes 0.8. 

• The 80% confidence interval for the population 

mean is

 𝑥 − 1.28 × σ/ 𝑛 ,  𝑥 + 1.28× σ/ 𝑛

40

z-critical Values

• For the systolic blood pressure example, 

where  𝑥 = 123 and σ/ 𝑛 = 1.5, 

• we are 80% confident that the true mean blood 

pressure is in the interval

[123 −1.28×1.5, 123 + 1.28×1.5] = [122.8, 123.2]

• We call the multiplier 1.28 the z-critical value, 

denoted as zcrit, for the 80% confidence interval. 

41

z-critical Values

• We can follow similar steps to find the z-critical

values for any other confidence level. 

• For example, for 0.9 confidence level, 

zcrit = 1.64. 

• For 0.95 confidence level, so far we have been 

using zcrit = 2. 

• Following the above steps, you will find that a 

more accurate value is zcrit = 1.96, which is 

sometimes used instead of 2 to be more precise.

42
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Standard error

• So far, we have assumed the population variance, σ2, of 
the random variable is known. 
– This is an unrealistic assumption. 

– Almost always, we need to estimate σ2 along with the 
population mean μ. 

• For this, we use our sample of n observations to obtain 
the sample variance s2 and sample standard deviation s. 
– As a result, the standard deviation for  𝑋 is estimated to be 

s/ 𝑛

• We refer to s/ 𝑛 as the standard error of the sample 
mean  𝑋 to distinguish it from σ/ 𝑛 .
– In general, we refer to the standard deviation of an estimator 

(e.g.,  𝑋) as its standard error (SE) if we have to use the data 
to estimate it. 
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Confidence Interval When the Population Variance is Unknown

• To find confidence intervals for the population 

mean when the population variance is unknown, 

we use 

– SE = s/ 𝑛 instead of σ/ 𝑛, 

– tcrit obtained from a t-distribution with n−1 degrees 

of freedom instead of zcrit based on the standard 

normal distribution. 

• The confidence interval for the population mean 

at c confidence level is

 𝑥 − 𝑡crit × s/ 𝑛 ,  𝑥 + 𝑡crit× s/ 𝑛
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Confidence Interval When the Population Variance is Unknown -

Example

• Suppose that we have randomly selected seven 

newborn babies and recorded their heights (in 

inches) at the time of birth as follows:

– Height: 18, 22, 19, 17, 20, 18, 15.

• The point estimates for μ and σ are  𝑥 = 18.4 and 

s = 2.2, respectively. 

• The standard error (estimated SD) for the

sample mean is SE = 2.2/ 7 = 0.83.
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Confidence Interval When the Population Variance is Unknown -

Example

• Suppose that we want to find the 90% 
confidence interval for the population mean, μ. 

• Then, using the t-distribution with 7−1 = 6 
degrees of freedom, we need to find the t-
critical value, tcrit, whose upper tail probability 
is (1−0.9)/2 = 0.05.

• In R-Commander, 

– click Distributions → Continuous distributions → t 
distribution → t quantiles. 

– Set the Probabilities to 0.05, the Degrees of 
Freedom to 6, and check Upper tail option.

46

Confidence Interval When the Population Variance is Unknown -

Example

• The result, shown in Output window, is 

tcrit = 1.94, which is greater than zcrit = 1.64

based on the standard normal distribution.

• The 90% CI, therefore, is

18.4 − 1.94 ×
2.2

7
, 18.4 + 1.94 ×

2.2

7
= 16.8, 20.0

• That is, at 0.9 confidence level, we estimate the 

mean of height for newborn babies to be 

between 16.8 and 20.0 inches.

47

Confidence Interval When the Population Variance is Unknown -

Example

• In this example, if we knew σ = 2.2 instead of 
estimating it to be s = 2.2, 
– we would have used zcrit = 1.64 instead of tcrit = 1.94, and 

the interval would have been smaller. 

• Everything else the same, using t-distribution instead of 
the standard normal leads to wider intervals. 
– This is the price we pay for the additional uncertainty due to 

the estimation of population variance (and SD) from the 
data.

• The t-distribution approaches the standard normal 
distribution as the sample size increases (i.e., the degree 
of freedom increase). 
– Therefore, the difference between the z-critical values and 

the t-critical values becomes negligible for very large 
sample sizes.

48
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Using Central Limit Theorem for Confidence Interval

• So far, we have assumed that the random variable has 
normal distribution, so the sampling distribution of  𝑋 is 
normal too.

• If the random variable is not normally distributed, the
sampling distribution of  𝑋 can be considered as 
approximately normal using (under certain conditions) 
the central limit theorem (CLT):

– For large sample sizes, the CLT indicates that if the random 
variable X has the population mean μ and the population 
variance σ2, then the sampling distribution of  𝑋 is 
approximately normal with mean μ and variance σ2/n

• Note that CLT is true regarding the underlying 
distribution of X so we can use it for random variables 
with Bernoulli and Binomial distributions too.
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Confidence Intervals for the Population Proportion

• For binary random variables, we use the sample 
proportion to estimate the population proportion as well 
as the population variance.
– That is, the sample variance depends on the data through p

and n only. 

• Therefore, estimating the population variance does not 
introduce an additional source of uncertainty to our 
analysis, 
– so we do not need to use a t-distribution instead of the 

standard normal distribution.

• For the population proportion, the confidence interval is
obtained as follows:

𝑝 − 𝑧crit × SE, p + 𝑧crit×SE

where SE= 𝑝(1 − 𝑝)/𝑛
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Confidence Intervals for the Population Proportion

–Example-

• Suppose that we want to find the 95% CI for the 
population proportion of mothers who smoke 
during their pregnancy in the year 1986. 

• Using the birthwt data set with n = 189, the
estimate for this proportion is  𝑥 = p = 0.39. 

• Using p, we estimate the population variance 
p(1−p) = 0.39 × 0.61 = 0.24.

• The SE for the sample mean is

SE= 𝑝(1 − 𝑝)/𝑛 = (0.39 × 0.61)/189 = 0.03

• The 95% CI is then (𝑧crit= 1.96, but round off to 2)
𝑝 − 𝑧crit × SE, p + 𝑧crit×SE

0.39 − 2 × 0.03, 0.39 + 2 × 0.03 = 0.33, 0.45
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Confidence Intervals for the Population Proportion

–Example-

• From the above confidence interval, we can find 

the confidence interval for the number of 

smoking pregnant women in the US during 

1986. 

• Supposing that there are currently N = 4 million 

pregnant women in the US,

• we find the 95% confidence interval for the 

number of smoking pregnant women as follows:

[0.33×4000000, 0.45×4000000] = [1320000, 1800000]
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Margin of Error

• For the above example, we can write the 95%

CI for the population proportion of women who 

smoke during their pregnancy as follows:

0.39± 2×0.03.

• In this case, the term 2 × SE = 2 × 0.03 = 0.06 is 

called the margin of error for 0.95 confidence 

level. 

• In general, it is common to present interval 

estimates for c confidence level as

Point estimate± Margin of error
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Margin of Error

• When the population variance σ2 is known, the 
margin of error e is calculated as

𝑒 = 𝑧𝑐𝑟𝑖𝑡
𝜎

𝑛
• where zcrit is the multiplier obtained for the given 

confidence level c from the standard normal 
distribution. 

• When the population variance is not known and we 
need to use the data to estimate it using the sample 
standard deviation, s, the margin of error is 
calculated as

𝑒 = 𝑡𝑐𝑟𝑖𝑡
𝑠

𝑛
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Sample Size Estimation

• Using the following equation for the margin of 

error:

𝑒 = 𝑧𝑐𝑟𝑖𝑡
𝜎

𝑛

• we can estimate the required sample size n for 

the assumed acceptable margin of error e as 

follows:

𝑛 =
𝑧𝑐𝑟𝑖𝑡 × 𝜎

𝑒

2
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Sample Size Estimation

• For example, let us find the appropriate sample size to 
estimate population mean for BMI. 

• Suppose that we decide that the acceptable margin of 
error at confidence level 0.95 is 3. 

• Further, suppose that, based on previous experience, we 
know that the BMI is roughly between 10 to 50. 

• Therefore, we assume that σ is approximately 

𝜎 ≈
𝑟𝑎𝑛𝑔𝑒

4
=

𝑚𝑎𝑥 − 𝑚𝑖𝑛

4
=

50 − 10

4
= 10

• Then the required sample size is:

𝑛 =
𝑧𝑐𝑟𝑖𝑡 × 𝜎

𝑒

2

=
2 × 10

3

2

≈ 45

• Therefore, we need to measure the BMI of 45 people.
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