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Random Variables 

and 

Probability Distributions
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Random variables

• We are interested in calculating the probabilities 

associated with both quantitative and qualitative events.

• For example, 

– we can determine the probability that a machinist selected at 

random from the workers in a large automotive plant would 

suffer an accident during an 8-hour shift.

– We can also find the probability that a machinist selected at 

random would work more than 80 hours without suffering an 

accident.

• These qualitative and quantitative events can be 

classified as events (or outcomes) associated with 

qualitative and quantitative variables. 
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Qualitative Random variables

• For example, 

– in the automotive plant accident study, the randomly 

selected machinist’s accident report would consist of 

checking one of the following: 

• No Accident, Minor Accident, or Major Accident. 

– Thus, the data on 100 machinists in the study would be 

observations on a qualitative variable because the possible 

responses are the different categories of accident and are 

not different in any measurable, numerical amount. 

• Because we cannot predict with certainty what type of 

accident a particular machinist will suffer, the variable 

is classified as a qualitative random variable.
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Qualitative Random variables

• Other examples of qualitative random variables that 

are commonly measured are 

– political party affiliation,

– socioeconomic status, 

– the species of insect discovered on an apple leaf, 

– the brand preferences of customers.

– …

• There are a finite (and typically quite small) number 

of possible outcomes associated with any qualitative 

variable.
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Quantitative Random variables

• Many times the events of interest in an experiment are 

quantitative outcomes associated with a quantitative 

random variable, since the possible responses vary in 

numerical magnitude. 

– For example, in the automotive plant accident study, the

number of consecutive 8-hour shifts between accidents for a 

randomly selected machinist is an observation on a 

quantitative random variable. 

– Events of interest, such as the number of 8-hour shifts 

between accidents for a randomly selected machinist, are 

observations on a quantitative random variable. 
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Quantitative Random variables

• Other examples of quantitative random variables are:

– the change in earnings per share of a stock over the next 

quarter, 

– the length of time a patient is in remission after a cancer

treatment, 

– the yield per acre of a new variety of wheat, 

– the number of persons voting for the incumbent in an 

upcoming election.

– …
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Random variables

• Formally, a random variable X assigns a numerical 

value to each possible outcome (and event) of a 

random phenomenon.

• For instance, we can define X based on possible 

genotypes of a bi-allelic gene A as follows:

• In this case, the random variable assigns 0 to the 

outcome AA, 1 to the outcome Aa, and 2 to the 

outcome aa.
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Random variables

• The way we specify random variables based on 

a specific random phenomenon is not unique.

• Alternatively, we can define a random variable 

Y as:

• In this case, Y assigns 0 to the homozygous 

event and assigns 1 to the heterozygous event.
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Random variables

• When the underlying outcomes are numerical, the 
values the random variable assigns to each 
outcome can be the same as the outcome itself.

– For the die Rolling example, we can define a random 
variable Z to be equal to 1, 2, . . . , 6 for outcomes 1, 2, 
. . . , 6, respectively. 

– Alternatively, we can define a random variable W and 
set W to 1 when the outcome is an odd number and to 2
when the outcome is an even number.

• The set of values that a random variable can 
assume is called its range. 

– For the above examples, the range of X is {0, 1, 2}, 
and the range of Z is {1, 2, . . . , 6}.
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Random variables

• After we define a random variable, we can find the
probabilities for its possible values based on the 
probabilities for its underlying random phenomenon.

• This way, instead of talking about the probabilities for
different outcomes and events, 

– we can talk about the probability of different values for a 
random variable.

• {For example, 

– suppose P(AA) = 0.49, P(Aa) = 0.42, and P(aa) = 0.09.

– Then, we can say that P(X = 0) = 0.49, 

• i.e., X is equal to 0 with probability of 0.49.}

– Note that the total probability for the random variable is still
1.
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Random variables

• The probability distribution of a random 

variable specifies its possible values (i.e., its 

range) and their corresponding probabilities.

– For the random variable X defined based on 

genotypes, the probability distribution can be 

simply specified as follows:

• Here, x denotes a specific value (i.e., 0, 1, or 2) of the

random variable.

12
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Discrete vs. continuous random variables

• We divide the random variables into two major 

groups:

– discrete and continuous. 

• When observations on a quantitative random 

variable can assume only a countable number 

of values, the variable is called a discrete 

random variable.

– These variables can be categorical (nominal or ordinal), 

such as genotype, or counts, such as the number of patients

visiting an emergency room per day
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Discrete vs. continuous random variables

• When observations on a quantitative random 

variable can assume any one of the uncountable 

number of values in a line interval, the variable 

is called a continuous random variable.

– Typical continuous random variables are 

temperature, pressure, height, weight, and distance.

• The distinction between discrete and 

continuous random variables is pertinent when 

we are seeking the probabilities associated with 

specific values of a random variable. 
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Probability distribution

• The probability distribution of a random variable 
provides the required information to find the 
probability of its possible values.

• We need to know the probability of observing a 
particular sample outcome in order to make an 
inference about the population from which the 
sample was drawn. 

• To do this, we need to know the probability 
associated with each value of the variable. 

• Viewed as relative frequencies, these probabilities
generate a distribution of theoretical relative 
frequencies called the probability distribution of 
the variable. 
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Probability distribution

• Probability distributions differ for discrete and 
continuous random variables. 

– For discrete random variables, we will compute the 
probability of specific individual values occurring. 

– For continuous random variables, the probability of 
an interval of values is the event of interest. 

• The probability distributions discussed here are 
characterized by one or more parameters.

• The parameters of probability distributions we 
assume for random variables are usually 
unknown.
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Probability distribution

• Typically, we use Greek alphabets such as µ

and σ to denote these parameters and 

distinguish them from known values.

– We usually use µ to denote the mean of a random 

variable and use σ2 to denote its variance.

• For a population of size N, the mean and 

variance are calculated as follows:
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Discrete probability distributions

• The probability distribution for a discrete 
random variable displays the probability P(y) 
associated with each value of y. 

– This display can be presented as a table, a graph, or 
a formula.

• The probability distribution of a discrete 
random variable is fully defined by the 
probability mass function (pmf). 

– This is a function that specifies the probability of 
each possible value within range of random 
variable. 

18
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Discrete probability distributions

• For the genotype example, the pmf of the random 
variable X is

• As another example, suppose Y is a random 
variable that is equal to 1 when a newborn baby 
has low birthweight, and is equal to 0 otherwise. 
– We say Y is a binary random variable. 

• Further, assume that the probability of having a 
low birthweight for babies is 0.3. 
– Then the pmf for the random variable Y is 

19

Discrete probability distributions

• Example:

– Probability distribution for the number of heads 

when two coins are tossed

20

Properties of Discrete Random Variables

• The probability distribution for the discrete 

random variable given in previous slide illustrates 

three important properties of discrete random 

variables. 

– The probability associated with every value of y lies 

between 0 and 1.

– The sum of the probabilities for all values of y is equal 

to 1.

– The probabilities for a discrete random variable are 

additive. 

• Hence, the probability that y = 1 or 2 is equal to P(1) + P(2)

21

Bernoulli Distribution

• Binary random variables are abundant in scientific 
studies.
– Examples include disease status (healthy and diseased), 

gender (male and female), survival status (dead, survived), 
and a gene with two possible alleles (A and a). 

• The binary random variable X with possible values 0 and 
1 has a Bernoulli distribution with parameter θ,
– where, P(X = 1) = θ and P(X = 0) = 1 − θ. 

• We denote this as X  Bernoulli (θ), where 0 ≤ θ ≤ 1.
– Here θ is unknown parameter.

• If θ were known, we could fully specify the probability 
mass function:

P(X = x) =  
1 − θ for 𝑥 = 0
θ for 𝑥 = 1
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Bernoulli Distribution

• For example, let X be a random variable representing the five-year 
survival status of breast cancer patient, 
– where X = 1 if the patient survived and X = 0 otherwise. 

• Suppose that the probability of survival is θ = 0.8: P(X = 1) = 0.8

• Plot of the pmf for Bernoulli(0.8)
distribution

23

• Therefore, the probability of 

not surviving is 

P(X = 0) = 1 − θ = 0.2 

• Then X has a Bernoulli 

distribution with parameter 

θ = 0.8, and we denote this as

X ∼ Bernoulli(0.8).

• The pmf for this distribution is

P(X = x) =  
0.2 𝑓𝑜𝑟 𝑥 = 0
0.8 𝑓𝑜𝑟 𝑥 = 1

Bernoulli Distribution

• The mean of a binary random variable, X, with 
Bernoulli(θ) distribution is θ . 

– We show this as μ = θ . 

• In this case, the mean can be interpreted as the proportion of 
the population who have the outcome of interest. 

• The variance of a random variable with 
Bernoulli(θ) distribution is

σ2 = θ(1 − θ) = μ(1 − μ) 

• The standard deviation is obtained by taking the 
square root of variance

σ = 𝜃(1 − 𝜃) = μ(1− μ)

24
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Bernoulli Distribution

• In the above example, μ = 0.8. 

– 80% of patients survive.

• The variance of the random variable is 

σ2 = 0.8 × 0.2 = 0.16, 

• Its standard deviation is σ = 0.4. 

• This reflects the extent of variability in 
survival status from one person to another. 

– For this example, the amount of variation is rather 
small.

• Therefore, we expect to see many survivals (X = 1) with 
occasional death (X = 0).

25

Bernoulli Distribution

• For comparison, suppose that the probability of 

survival for bladder cancer is θ = 0.6.

• Then, the variance becomes 

σ2 = 0.6×(1−0.6) = 0.24. 

• This reflects a higher variability in the survival 

status for bladder cancer patients compared to 

that of breast cancer patients.
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Binomial Distribution

• A sequence of binary random variables X1, X2 , 

. . . , Xn is called Bernoulli trials 

– if they all have the same Bernoulli distribution and 

are independent.

• The random variable representing the number 

of times the outcome of interest occurs in n

Bernoulli trials (i.e., the sum of Bernoulli 

trials) has a Binomial(n,θ) distribution, 

– where θ is the probability of the outcome of 

interest (a.k.a. the probability of success). 

27

Binomial Distribution

• A binomial distribution is defined by the number 
of Bernoulli trials n and the probability of the 
outcome of interest θ for the underlying Bernoulli 
trials.

• The pmf of a Binomial(n,θ) specifies the 
probability of each possible value (integers from 0
through n) of the random variable.

• The theoretical (population) mean of a random 
variable Y with Binomial(n,θ) distribution is  μ = 
nθ.

• The theoretical (population) variance of Y is σ2 = 
nθ(1 − θ).
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Binomial Distribution

• A binomial experiment is one that has the 

following properties:

– The experiment consists of n identical trials.

– Each trial results in one of two outcomes. 

• We will label one outcome a success and the other a failure.

– The probability of success on a single trial is equal to 

p, and p remains the same from trial to trial.

– The trials are independent; 

• that is, the outcome of one trial does not influence the 

outcome of any other trial.

– The random variable y is the number of successes 

observed during the n trials.

29

Binomial Distribution -Example

• A large power utility company uses gas turbines to generate
electricity.

The engineers employed at the company monitor the
reliability of each turbine
– that is, the probability that the turbine will perform properly

under standard operating conditions over a specified period of
time.

The engineers wanted to estimate the probability a turbine
will operate successfully for 30 days after being put into
service.

The engineers randomly selected 75 of the 100 turbines
currently in use and examined the maintenance records.

They recorded the number of turbines that did not need
repairs during the 30-day time period.

• Is this a binomial experiment?

30
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Binomial Distribution -Example

• For solution, we check this experiment against the five characteristics of a 
binomial experiment.

– Are there identical trials? 
• The 75 trials could be assumed identical only if the 100 turbines are the same type of turbine, 

are the same age, and are operated under the same conditions.

– Does each trial result in one of two outcomes? 
• Yes. Each turbine either does or does not need repairs in the 30-day time period.

– Is the probability of success the same from trial to trial? 
• No. If we let success denote a turbine “did not need repairs,” then the probability of success 

can change considerably from trial to trial. 

– For example, suppose that 15 of the 100 turbines needed repairs during 
the 30-day inspection period. 

• Then p, the probability of success for the first turbine examined, 
would be 85/100=0.85. 

• If the first trial is a failure (turbine needed repairs), the probability 
that the second turbine  examined did not need repairs is 
85/99=0.859. 

– Suppose that after 60 turbines have been examined, 50 did not need 
repairs and 10 needed repairs. 

• The probability of success of the next (61st) turbine would be 
35/40=0.875.

31

Binomial Distribution -Example

– Were the trials independent? 
• Yes, provided that the failure of one turbine does not affect the 

performance of any other turbine. 
– However, the trials may be dependent in certain situations. For example, 

• suppose that a major storm occurs that results in several turbines being 
damaged. 

• Then the common event, a storm, may result in a common result, the 
simultaneous failure of several turbines.

– Was the random variable of interest to the engineers the number 
of successes in the 75 trials? 

• Yes. The number of turbines not needing repairs during the 30-day 
period was the random variable of interest.

• This example shows how the probability of success can 
change substantially from trial to trial in situations in which 
the sample size is a relatively large portion of the total 
population size. 

• This experiment does not satisfy the properties of a binomial 
experiment.
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Binomial Distribution

• Although it is possible to approximate P(y), the probability 
associated with a value of y in a binomial experiment, by 
using a relative frequency approach, it is easier to use a 
general formula for binomial probabilities.

• The probability of observing y successes in n trials of a 
binomial experiment is

𝑃 𝑦 =
𝑛!

𝑦! 𝑛 − 𝑦 !
θ
𝑦

(1−θ)
𝑛−𝑦

where

n = number of trials

θ = probability of success on a single trial

1 - θ = probability of failure on a single trial

y = number of successes in n trials

n! = n(n-1)(n-2) . . . (3)(2)(1)
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Binomial Distribution - Example

• A new variety of turf grass has been developed for use 
on golf courses, with the goal of obtaining a germination 
rate of 85%. 

• To evaluate the grass, 20 seeds are planted in a 
greenhouse so that each seed will be exposed to identical 
conditions. 

• If the 85% germination rate is correct, 
– what is the probability that 18 or more of the 20 seeds will 

germinate?

– what is the average number of seeds that will germinate in 
the sample of 20 seeds ?

– what is the variance of seeds that will germinate in the 
sample of 20 seeds ?

– what is the standard deviation of seeds that will germinate in 
the sample of 20 seeds ?

34

Binomial Distribution - Example

• Solution:

• 𝑃 𝑦 =
𝑛!

𝑦! 𝑛−𝑦 !
θ
𝑦

(1−θ)
𝑛−𝑦

• n = 20, θ = 0.85, y = 18, 19, and 20

• 𝑃 𝑦 = 18 =
20!

18! 20−18 !
(0.85)

18
(1−0.85)

20−18= 0.229

• 𝑃 𝑦 = 19 =
20!

19! 20−19 !
(0.85)

19
(1−0.85)

20−19= 0.137

• 𝑃 𝑦 = 20 =
20!

20! 20−20 !
(0.85)

20
(1−0.85)

20−20= 0.038

• 𝑃 𝑦 ≥ 18 = 𝑃 𝑦 = 18 + 𝑃 𝑦 = 19 + 𝑃 𝑦 = 20 = 0.405

• The following commands in R will compute the binomial 
probabilities:

– To calculate P(X = 18), use the command dbinom(18, 20, 0.85)

– To calculate P(X ≤ 17), use the command pbinom (17, 20, 0.85)

– To calculate P(X ≥ 18), use the command 1 - pbinom(17, 20, 0.85)

35

Binomial Distribution - Example

• The average number of seeds that will 

germinate in the sample of 20 seeds is

μ = nθ = 20  0.85 = 17

• The variance of seeds that will germinate in the 

sample of 20 seeds is

σ2 = nθ(1 − θ) = 20  0.85 (1 – 0.85) = 2.55

• The standard deviation of seeds that will 

germinate in the sample of 20 seeds is

σ = 𝑛𝜃(1 − 𝜃) = σ2 = σ2 = 1.60

36
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Binomial Distribution - Example

• Suppose we examine the germination records of a large number of 
samples of 20 seeds each. 

• If the germination rate has remained constant at 85%, then the 
average number of seeds that germinate should be close to 17 per 
sample. 

• If in a particular sample of 20
seeds we determine that only 
12 had germinated, would the 
germination rate of 85% seem 
consistent with our results? 

• Using a computer software 
program, we can generate the 
probability distribution for the 
number of seeds that 
germinate in the sample of 20
seeds, as shown in the Figure

37

Binomial Distribution - Example

• Suppose that a sample of households is randomly

selected from all the households in the city in

order to estimate the percentage in which the head

of the household is unemployed.

• To illustrate the computation of a binomial

probability, suppose that the unknown percentage

is actually 10% and that a sample of n = 5 (we

select a small sample to make the calculation

manageable) is selected from the population.

• What is the probability that all five heads of

households are employed?
38

Binomial Distribution - Example

• Solution:

• We must carefully define which outcome we wish to call a 

success. 

– For this example, we define a success as being employed. 

• Then the probability of success when one person is selected 

from the population is θ = 0.9 (because the proportion 

unemployed is 0.1). 

• We wish to find the probability that y = 5 (all five are 

employed) in five trials.

• 𝑃 𝑦 =
𝑛!

𝑦! 𝑛−𝑦 !
θ
𝑦

(1−θ)
𝑛−𝑦

• 𝑃 𝑦 = 5 =
5!

5! 5−5 !
(0.9)

5
(1−0.9)

5−5= 0.59
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Binomial Distribution - Example

• The binomial probability distribution for n = 5, 

θ = 0.9 is shown in the figure. 

– Here, the 

probability of 

observing five 

employed in a 

sample of five 

is shown to be 

0.59.

40

Poisson Distribution

• In 1837, S. D. Poisson developed a discrete 
probability distribution, suitably called the 
Poisson distribution, which has as one of its 
important applications the modeling of events 
of a particular time over a unit of time or space

• For example, the number of automobiles 
arriving at a toll booth during a given 5-minute
period of time.

– The event of interest would be an arriving 
automobile, and the unit of time would be 5 
minutes. 

41

Poisson Distribution

• A second example would be the situation in 

which an environmentalist measures the 

number of PCB particles discovered in a liter of 

water sampled from a stream contaminated by 

an electronics production plant. 

– The event would be a PCB particle discovered. 

– The unit of space would be 1 liter of sampled water.

42
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Poisson Distribution

• Let y be the number of events occurring during a fixed 
time interval of length t or a fixed region R of area or 
volume m(R). 

• Then the probability distribution of y is Poisson, 
provided certain conditions are satisfied:
– Events occur one at a time; two or more events do not occur 

precisely at the same time or in the same space.

– The occurrence of an event in a given period of time or 
region of space is independent of the occurrence of the event 
in a nonoverlapping time period or region of space; 

• that is, the occurrence (or nonoccurrence) of an event during one 
period or in one region does not affect the probability of an event 
occurring at some other time or in some other region.

– The expected number of events during one period or in one 
region, m, is the same as the expected number of events in 
any other period or region.

43

Poisson Distribution

• Assuming that the above conditions hold, the 

Poisson probability of observing y events in a 

unit of time or space is given by the formula

𝑃 𝑦 =
𝜇𝑦e−𝜇

𝑦!

where e is a naturally occurring constant 

approximately equal to 2.71828 and m is the 

average value of y.

44

Poisson Distribution - Example

• A large industrial plant is being planned in a rural area. 
As a part of the environmental impact statement, a team 
of wildlife scientists is surveying the number and types 
of small mammals in the region. 

• Let y denote the number of field mice captured in a trap 
over a 24-hour period. 

• Suppose that y has a Poisson distribution with m= 2.3; 
that is, the average number of field mice captured per 
trap is 2.3. 
– What is the probability of finding exactly four field mice in 

a randomly selected trap? 

– What is the probability of finding at most four field mice in 
a randomly selected trap? 

– What is the probability of finding more than four field mice 
in a randomly selected trap?

45

Poisson Distribution - Example

• The probability that a trap contains exactly four 
field mice is computed to be

𝑃 𝑦 = 4 =
𝜇𝑦e−𝜇

𝑦!
=

(2.3)4e−2.3

4!
=

(27.9841)(0.10002588)

24
= 0.1169

• The probability of finding at most four field mice 
in a randomly selected trap is, 
P(y ≤ 4) = P(y = 0) + P(y = 1) + P(y = 2) + P(y = 3) + P(y = 4)

P(y ≤ 4) =0.1003 + 0.2306 + 0.2652 + 0.2033 + 0.1169 = 0.9163

• The probability of finding more than four field 
mice in a randomly selected trap, using the idea of 
complementary events, is
P(y > 4) = 1 - P(y ≤ 4) = 1 – 0.9163 = 0.0837

Thus, it is a very unlikely event to find five or more field mice in a trap.

46

Poisson Distribution - Example

• The Poisson probabilities can be computed using 
the following R commands.
P(y = 4) = dpois(4, 2.3) = 0.1169022

P(y ≤ 3) = ppois(3, 2.3) = 0.7993471

P(y > 4) = 1 - P(y ≤ 4) = 1 - ppois(4, 2.3) = 0.08375072

• When n is large and θ is small in a binomial 
experiment, n ≥100, θ ≤ 0.01, and nθ ≤ 20, 

– the Poisson distribution provides a reasonable 
approximation to the binomial distribution. 

• In applying the Poisson approximation to the 
binomial distribution, use m = nθ.  

47

Continuous probability distributions

• For discrete random variables, the pmf

provides the probability of each possible value.

• For continuous random variables, the number 

of possible values is uncountable, and the 

probability of any specific value is zero.

• For these variables, we are interested in the 

probability that the value of the random 

variable is within a specific interval from x1 to 

x2; 

– we show this probability as P(x1 < X ≤ x2).

48
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Continuous probability distributions

• Probability 

distribution 

for a 

continuous 

random 

variable
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Continuous probability distributions

• For continuous random variables, we use probability 
density functions (pdf) to specify the distribution. 

• Using the pdf, we can obtain the probability of any 
interval.

• The assumed probability 
distribution for BMI (Body 

Mass Index), which is denoted 
as X, along with random 
sample of 100 values, 
which are shown as circles 
along the horizontal axis

50

Continuous probability distributions

• The total area under the probability density curve is 1.

• The curve (and its corresponding function) gives the
probability of the random variable falling within an interval.

• This probability is equal to 
the area under the 
probability density curve 
over the interval.

• The shaded area is the 
probability that a person’s
BMI is between 25 and 30.

• People whose BMI is in this
range are considered as
overweight. 

• Therefore, the shaded area 
gives the probability of 
being overweight

51

Lower tail probability

• The probability of observing values less than or equal to 
a specific value x, is called the lower tail probability and 
is denoted as P(X ≤ x)

• This probability is found 
by measuring the area 
under the curve to the left 
of x. 

• For example, the shaded 
area in the left panel of the
figure is the lower tail 
probability of having a 
BMI less than or equal to 
18.5 (i.e., being 
underweight), P(X ≤ 18.5).

52

Upper tail probability

• The probability of observing values greater than x, is 
called the upper tail probability and is denoted as P(X > x)

• This probability is found 
by measuring the area 
under the curve to the 
right of x. 

• For example, the shaded 
area in the right panel of 
the figure is the upper tail 
probability of having a 
BMI greater than 30 (i.e., 
being obese), P(X > 30).

53

Probability of intervals

• The probability of any interval from x1 to x2, 
where x1 < x2, can be obtained using the 
corresponding lower tail probabilities for these 
two points as follows: 

P(x1 < X ≤ x2) = P(X ≤ x2) - P(X ≤ x1).

• For example, suppose that we wanted to know 
the probability of a BMI between 25 and 30.

• This probability P(25 < X ≤ 30) is obtained by 
subtracting the lower tail probability of 25 from 
the lower tail probability of 30:

P(25 < X ≤ 30) = P(X ≤ 30) - P(X ≤ 25).

54
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Probability Density Curves and Density Histograms

• Left panel: Histogram of BMI for 1000 observations. 
– The dashed line connects the height of each bar at the midpoint of the corresponding interval 

– The smooth solid curve is the density curve for the probability distribution of BMI 

• Right panel: Histogram of BMI for 5000 observations. 
– The histogram and its corresponding dashed line provide better approximations to the density curve 

• Recall that the height of each bar is the density for the corresponding interval, and the area
of each bar is the relative frequency for that interval.

• The density histogram and the dashed line, which shows the density for each interval based on the observed data, provide 
reasonable approximations to the density curve. 

• Also, the area of each bar, which is equal to the relative frequency for the corresponding interval, is approximately equal to the 
area under the curve over that interval.
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Normal distribution

• A normal distribution and its corresponding pdf 
are fully specified by the mean μ and variance σ2. 

• A random variable X with normal distribution is
denoted X ∼ N(μ,σ2), 

– where μ is a real number, but σ2 can take positive
values only. 

• The normal density curve is always symmetric 
about its mean μ, and its spread is determined by 
the variance σ2. 

• A normal distribution with a mean of 0 and a 
standard deviation (or variance) of 1 is called the 
standard normal distribution and denoted N(0,1). 
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The 68-95-99.7% rule

• The 68–95–99.7% rule for normal distributions 

specifies that

– 68% of values fall within 1 standard deviation of 

the mean:

P(μ - σ < X ≤ μ + σ) = 0.68

– 95% of values fall within 2 standard deviations of 

the mean:

P(μ - 2σ < X ≤ μ + 2σ) = 0.95

– 99.7% of values fall within 3 standard deviations of 

the mean:

P(μ - 3σ < X ≤ μ + 3σ) = 0.997 
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The 68-95-99.7% rule
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Example

• For example, suppose we know that the

population mean and standard deviation for 

SBP are μ = 125 and σ = 15, respectively.

– That is, X ∼ N(125,152), 

• where X is the random variable representing SBP. 

• Therefore, the probability of observing an SBP 

in the range μ ± σ is 0.68:
P(125 - 15 < X ≤ 125 + 15) = P(110 < X ≤ 140) = 0.68.

• This probability corresponds to the central area 

shown in the Fig. b in the previous slide.
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Example

• The probability of observing an SBP in the range μ 

± 2σ is 0.95:
P(125 - 2 × 15 < X ≤ 125 + 2 × 15) = P(95 < X ≤ 145) = 0.95.

• This probability is shown in the Fig. c in the

previous slide. 

• Lastly, the probability of observing an SBP is in 

the range μ ± 3σ is 0.997:
P(125 - 3 × 15 < X ≤ 125 + 3 × 15) = P(80 < X ≤ 170) = 0.997.

• Therefore, we rarely (probability of 0.003) expect 

to see SBP values less than 80 or greater than 170.
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Student’s t-distribution

• Another continuous probability distribution that is used very
often in statistics is the Student’s t-distribution or simply the 
t-distribution.

• Comparing the pdf of a 
standard normal distribution 
to t-distributions with 1 
degree of freedom and then 
with 4 degrees of freedom.

• The t-distribution has 
heavier tails than the
standard normal; 
– however, as the degrees of 

freedom increase, the t-
distribution approaches the 
standard normal 
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Student’s t-distribution

• A t-distribution is specified by only one 

parameter called the degrees of freedom, df.

• The t-distribution with df degrees of freedom is 

usually denoted as t(df ) or tdf , where df is a 

positive real number (df > 0). 

• The mean of this distribution is μ = 0, 

• The variance is determined by the degrees of 

freedom parameter, σ2 = df/(df - 2), 

– which is of course defined when df > 2. 
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Cumulative distribution function

• We saw that by using lower tail probabilities, 

we can find the probability of any given 

interval.

• Indeed, all we need to find the probabilities of 

any interval is a function that returns the lower 

tail probability at any given value of the 

random variable: P(X ≤ x).

• This function is called the cumulative 

distribution function (cdf) or simply the 

distribution function.
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Quantiles

• We can use the cdf plot in the reverse direction 

to find the value of the random variable for a 

given lower tail probability.
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Quantiles

• In previous slide:

– Left panel: 

• Plot of the cdf for the standard normal distribution, 

N(0,1). 

– The cdf plot of the cdf can be used to find the lower tail 

probability. 

• For instance, following the arrow from x = 0 (on the 

horizontal axis) to the cumulative probability (on the 

vertical axis) gives us the probability P(X ≤ 0) = 0.5. 

– Right panel: 

• Given the lower tail probability of 0.5 on the vertical

axis, we obtain the corresponding quantile x = 0 on the 

horizontal axis 
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Scaling and shifting random variables

• If Y = aX + b, then
µY = aµX + b
σY

2 = a2σX
2

σY = |a|σX

• The process of shifting and scaling a random 
variable to create a new random variable with 
mean zero and variance one is called 
standardization.

– For this, we first subtract the mean µ and then divide 
the result by the standard deviation σ.

Z = (X - µ)/σ

• If X ∼ N(µ, σ2), then Z ∼ N(0, 1). 
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Adding/subtracting random variables

• If W = X + Y , then
µW = µX + µY

• If the random variables X and Y are 
independent, then we can find the variance of 
W as follows:

σW
2 = σX

2 + σY
2

– If X ∼ N(µX, σX
2), and Y ∼ N(µY, σY

2), then 
assuming that the two random variables are 
independent, we have 

W = X + Y ∼ N (µX + µY , σX
2 + σY

2)
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Adding/subtracting random variables

• If we subtract Y from X, then
µW = µX - µY

• If the random variables X and Y are 
independent, then we can find the variance of 
W as follows:

σW
2 = σX

2 + σY
2

– If X ∼ N(µX, σX
2), and Y ∼ N(µY, σY

2), then 
assuming that the two random variables are 
independent, we have 

W = X - Y ∼ N (µX - µY , σX
2 + σY

2)
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