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Probability
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Probability as a Measure of Uncertainty

• Plots and summary statistics are used to learn about
the distribution of variables and to investigate their
relationships.
– However, we always remain uncertain about the true

distributions and relationships in the population since
we almost never have access to all of its members.

– Furthermore, our findings based on the observed
sample can change if different samples from the
population were obtained.

• Therefore, when we generalize our findings from a
sample to the whole population, we should
explicitly specify the extent of our uncertainty.
– We use probability as a measure of uncertainty.
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Some Commonly Used Genetic Terms

• Gene 
– a segment of double-stranded DNA, which itself is made of a sequence 

of four different nucleotides: 
• adenine (A), guanine (G), thymine (T), or cytosine (C).

• Single Nucleotide Polymorphisms (SNPs)
– Genetic variation is caused by changes in the DNA sequence of a gene. 

– SNPs are the most common type of genetic variation. 

– SNPs occur when a single nucleotide is replaced by another one. 
• An example of a SNP would be replacing “G” in the sequence {TAGCAAT} by 

“T” to create {TATCAAT}.  

• Alleles 
– alternate forms of a gene

– responsible for variation in phenotypes. 
• Phenotypes, in general, are observable traits, such as eye color, disease status, 

and blood pressure, due to genetic factors and/or environmental factors

– In the above example, the alleles could be denoted as T and G. 
• We denote the genes with bold face letters (e.g., A) and the two different alleles 

as capital and small letters (e.g., A and a).
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Some Commonly Used Genetic Terms

• Genotype 
– Genetic materials are stored on chromosomes. 

– Human somatic cells have two copies of each chromosome 
• one inherited from each parent; hence, they are called diploid. 

– Each pair of similar chromosomes are called homologous 
chromosomes. 

– The genotype (i.e., genetic makeup) of an individual for the bi-allelic 
gene A can take one of the three possible forms: 

• AA, aa, or Aa. 

• Homozygous vs. heterozygous 
– The first two genotypes, AA and aa, are called homozygous, 

• which means the same version of the allele was inherited from both parents. 
– That is, both homologous chromosomes have the same allele. 

– The last genotype, Aa, is called heterozygous, 
• which means different alleles were inherited. 
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Some Commonly Used Genetic Terms

• Phenotype 
– the set of observable characteristics of an individual resulting 

from the interaction of its genotype with the environment

• Recessive vs. dominant
– The presence of a specific allele does not always result in its 

corresponding trait (a characteristic such as eye color). 

– Some alleles are recessive, 
• producing their trait only when both homologous chromosomes 

carry that specific variant. 

– On the other hand, some alleles are dominant, 
• producing their traits when they appear on at least one of the 

homologous chromosomes. 
– {For example, suppose that the allele a for gene A is responsible for a 

specific disease. 

– Furthermore, assume that a is a recessive allele. 

– Then, only a person with genotype aa will be affected by the disease. 

– Individuals with genotype AA or Aa will not have the disease.}
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Random phenomena and their sample space

• A phenomenon is called random if its outcome 
(value) cannot be determined with certainty before 
it occurs.

– For example, coin tossing and genotypes are random 
phenomena.

• The collection of all possible outcomes S is called 
the sample space. 

Coin tossing : S = {H, T}, 

Die rolling : S = {1, 2, 3, 4, 5, 6}, 

Bi-allelic gene : S = {A, a}, 

Genotype : S = {AA, Aa, aa}.
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Random phenomena and their sample space

• The sample space might include an infinite 
number of possible outcomes. 

– For example, the value of blood pressure is random 
since it cannot be determined with certainty before 
measuring it. 

• The corresponding sample space for blood pressure values is 
(theoretically) the set of positive real numbers, which is 
infinite. 

• For a complex random phenomenon that is a 
combination of two or more other random
phenomena, it might be easier to view the sample
space with tree diagrams. 
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Random phenomena and their sample space

• For example, suppose that we suspect that gene A
is related to a specific disease, but genetic 
variation alone does not determine the disease 
status. 
– Rather, it affects the risk of the disease. 

– Further, we suspect that smoking (an environmental 
factor) is also related to the disease. 

• In this case, the random phenomenon we are 
interested in is the combination of genotype and 
smoking status 

• All possible combinations (i.e., sample space) are 
identified using the following tree diagram. 
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Random phenomena and their sample space

• Genotypes (AA, Aa, 
and aa) are
represented by the 
first set of branches

• Smoking status
(Y for smokers and N
for nonsmokers) is 
represented by the 
second set of 
branches

• Following each 
branch from root to 
tip, we obtain the 
following sample 
space;

– S = {AA-Y,AA-N,Aa-Y,Aa-N,aa-Y,aa-N}.
• For example, Aa - Y represents the outcome of having heterozygous genotype and

smoking. 
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Probability Measure

• To each possible outcome in the sample space, we 
assign a probability P, 
– which represents how certain we are about the occurrence 

of the corresponding outcome.
• For an outcome o, we denote the probability as P(o), 

– where 0 ≤ P(o) ≤ 1. 

• The total probability of all outcomes in the sample 
space is always 1.
– Coin tossing : P(H) + P(T) = 1 

– Die rolling : P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1

• Therefore, if the outcomes are equally probable, 
– the probability of each outcome is 1/nS, 

• where nS is the number of possible outcomes.
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Random events

• An event is a subset of the sample space S. 
– A possible event for die rolling is 

• E = {1,3,5}. 
– This is the event of rolling an odd number.

– For the genotype example, 
• E = {AA, aa} 

– This is the event that a person is homozygous.

• An event occurs when any outcome within that 
event occurs. 

• We denote the probability of event E as P(E). 

• The probability of an event is the sum of the 
probabilities for all individual outcomes included 
in that event.

12
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Random events – Example 1

• Consider the die rolling example presented in the form 
of a Venn diagram below.

• All the possible outcomes 
are contained inside the 
sample space S, which is 
represented by the rectangle. 

• We define two events. 
– The event M (shown as a triangle) occurs when the outcome 

is less than 4. 

– The event N (shown as an oval) occurs when the outcome is 
an odd number. 

• In this example, P(M) = 1/2 and P(N) = 1/2
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Random events – Example 2

• As a running example, we consider a bi-allelic gene A
with two alleles A and a.

• We assume that allele a is recessive and causes a 
specific disease.

– Then only people with the genotype aa have the disease.
• A schematic representation for a bi-allelic gene with a recessive 

allele a that causes a specific disease. 

– The shaded area shows the disease event (D). 

– The unshaded area shows the no-disease event 
(ND). 

– The area with shaded border lines shows the 
homozygous event (HM).

– The remaining part of the sample space, which 
includes the outcome Aa only, corresponds to the
heterozygous event 
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Random events - Example

• We can define four events as follows:
– The homozygous event : HM = {AA, aa};

– The heterozygous event : HT = {Aa};

– The no-disease event : ND = {AA,Aa};

– The disease event : D = {aa}:

• Assume that the probabilities for different genotypes are
– P(AA) = 0.49, P(Aa) = 0.42, and P(aa) = 0.09.

• Then,
– P(HM) = 0.49 + 0.09 = 0.58;

– P(HT) = 0.42;

– P(ND) = 0.49 + 0.42 = 0.91;

– P(D) = 0.09.
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Complement

• For any event E, we define its complement, Ec, as 
the set of all outcomes that are in the sample space 
S but not in E.
– For the gene-disease example, the complement of the 

homozygous event HM = {AA, aa} is the heterozygous 
event {Aa}; 

• we show this as HMc = HT. 

– Likewise, the complement of the disease event, 
D = {aa}, is the no-disease event, ND = {AA, Aa}; 
• we show this as Dc = ND.

• The probability of the complement event is 
– 1 minus the probability of the event: 

P(Ec) = 1− P(E)
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Complement - example

• For the event that the outcome is an odd number, we 
have

– P(Nc) = 1−P(N) = 1− (1/2) = 1/2
• equal to the probability that the outcome is an even number. 

• In the gene disease example, the probability of the 
complement of the homozygous event is

– P(HMc) = 1 − P(HM) = 1 − 0.58 = 0.42. 
• equal to the probability of the heterozygous event P(HT ) = 0.42. 

• Likewise, the probability of the complement of the 
disease event is

– P(Dc) = 1−P(D) = 1− 0.09 = 0.91 
• equal to the probability of the no-disease event, P(ND) = 0.91.
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Complement

• The odds of an event shows how much more certain we 
are that the event occurs than we are that it does not 
occur. 

• For event E, we calculate 

the odds as follows:

• For the gene-disease example, the odds for ND (i.e., not 
having the disease) are

• Therefore, it is almost 10 times more likely that a 
person is not affected by the disease than it is for having 
the disease. 
– In this case, we say that the odds for not having the disease 

are 10 to 1. 

18
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Union

• For two events E1 and E2 in a sample space S, we 
define their union E1 ∪ E2 as the set of all 
outcomes that are at least in one of the events.

• The union E1 ∪ E2 is an event by itself, and it 
occurs when either E1 or E2 (or both) occurs.
– For example, the union of the heterozygous event, HT, 

and the disease event, D, is 
• {Aa}∪{aa} = {Aa, aa}. 

• When possible, we can identify the outcomes in 
the union of the two events and find the 
probability by adding the probabilities of those 
outcomes.
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Union

• For the die rolling example (slide 13)

• Note that in general this is not equal to the sum of the 
probabilities of the two events: 

• Only under a specific condition, we can write the probability 
of the union of two events as the sum of their probabilities. 

• For the union of the heterozygous event, HT , and the 
disease event, D, 

• In this special case, the probability of the union of the two 
events is equal to the sum of their individual probabilities. 
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Intersection

• For two events E1 and E2 in a sample space S, we define 
their intersection E1 ∩ E2 as the set of outcomes that are 
in both events.

• The intersection E1 ∩ E2 is an event by itself, and it 
occurs when both E1 and E2 occur.
– For example, the intersection of the heterozygous event and 

the no-disease event is HM ∩ ND = {AA}. 

• The intersection of M and N in the dye rolling example 
(slide 13) is

M ∩ N = {1,3} 
• In this case, the intersection of the two events includes outcomes 

that are less than 4 and odd.

• The intersection of the heterozygous event and the no-
disease event is HM ∩ ND = {AA}. 
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Intersection - Example

• For the die rolling example (slide 13)

• For the gene-disease example (slide 14)

• Now consider the intersection of the heterozygous 
event and the disease event.

– There is no common element between HT and D.

– Therefore, the intersection is the empty set 

• HT ∩ D = {}, 

– its probability is

• P(HT ∩ D) = P(∅) = 0. 
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Joint vs. marginal probability

• We refer to the probability of the intersection of two 
events, P(E1 ∩ E2), as their joint probability. 

• In contrast, we refer to probabilities P(E1) and P(E2) as 
the marginal probabilities of events E1 and E2.

• For any two events E1 and E2, we have 

– P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2). 
• That is, the probability of the union P(E1 ∩ E2) is the sum of their 

marginal probabilities minus their joint probability.

• {The union of the heterozygous and the no-disease 
events is 

– P(HM ∪ ND) = P(HM) + P(ND) − P(HM ∩ ND) 

= 0.58 + 0.91−0.49 = 1}
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Disjoint events 

• Two events are called disjoint or mutually 

exclusive if they never occur together: 

– if we know that one of them has occurred, we can 

conclude that the other event has not.

• Disjoint events have no elements (outcomes) in 

common, and their intersection is the empty set.

• {For the above example (slide 14), if a person is 

heterozygous, we know that he does not have the 

disease 

– so the two events HT and ND are disjoint.}

24
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Disjoint events 

• For two disjoint events E1 and E2, the probability 
of their intersection (i.e., their joint probability) is 
zero:
– P(E1 ∩ E2) = P(φ) = 0

• Therefore, the probability of the union of the two 
disjoint events is simply the sum of their marginal 
probabilities:
– P(E1 ∪ E2) = P(E1) + P(E2) 

• In general, if we have multiple disjoint events, E1, 
E2, ..., En, then the probability of their union is the 
sum of the marginal probabilities:
– P(E1 ∪ E2 ∪...∪ En) = P(E1) + P(E2) + ... + P(En)
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Disjoint events - Example

• The probability of the union of the heterozygous and 
disease events is 

– P(HT ∪ D) = 0.42 + 0.09 = 0.51.

• Likewise, when we roll a die, the events {1, 2}, {4}, 
and{5, 6}are disjoint. 

• The occurrence of one event prevents the occurrence of 
the others. 

• Therefore, the probability of their union is 

– P({1,2} ∪ {4} ∪ {5,6}) = 1/3 + 1/6 + 1/3 = 5/6 

• Now consider the three events{1, 2, 3},{4}, and{5, 6}. 

– These events are disjoint, and their union is the sample 
space S.
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Partition

• When two or more events are disjoint and their 

union is the sample space S, 

– we say that the events form a partition of the 

sample space.

• Two complementary events E and Ec always

form a partition of the sample space 

– since they are disjoint and their union is the sample 

space.
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Conditional Probability

• Very often, we need to discuss possible changes in the
probability of one event based on our knowledge 
regarding the occurrence of another event.

• The conditional probability, denoted P(E1|E2), is 
– the probability of event E1 given that another event E2 has

occurred.

• The conditional probability of event E1 given event E2
can be calculated as follows: (assuming P(E2) ≠ 0)

– This is the joint probability of the two events divided by the 
marginal probability of the event on which we are 
conditioning .
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Conditional Probability - Example

• Consider the die rolling example (slide 13). 

• The intersection of the two events is 

– M ∩ N = {1, 3}

with probability 

– P(E1 ∩ E2) = 2/6 = 1/3. 

• Therefore, the conditional probability of an 

outcome less than 4, given that the outcome is 

an odd number, is 
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Conditional Probability - Example

• Consider the gene-disease example (slide 14). 

• Suppose we know that a person is homozygous and are 
interested in the probability that this person has the 
disease, P(D|HM).

• The probability of the intersection of D and HM is
– P(D ∩ HM) = P({aa}) = 0.09

• Therefore, the conditional probability of having the 
disease knowing that the genotype is homozygous can 
be obtained as follows:

• In this case, the probability of the disease has increased 
from P(D) = 0.09 to P(D|HM) = 0.16. 

30
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Conditional Probability - Example

• Now let us find the conditional probability of not having 
the disease knowing that the person has a homozygous 
genotype: P(ND|HM). 

• The joint probability of ND and HM is 
– P(ND ∩ HM) = P({AA}) = 0.49. 

• The conditional probability is therefore 

• The information that the person is homozygous decreases 
the probability of no disease from its 0.91 to 0.84.

• Note that the two events ND and D are complementary, 
and the conditional probability of ND given HM is
– P(ND|HM) = 1 - P(D|HM) = 1 - 0.16 = 0.84.
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Conditional Probability

• In general, all the probability rules we discussed so far 

apply to conditional probabilities. 

• Conditioning on an event only 

reduces the sample space (e.g., 

from the large rectangle to the 

shaded oval in in the figure). 

• Within this shrunken sample space, all probability 

rules are valid. 

• For example,

32

The law of total probability 

• By rearranging the equation for conditional 
probabilities, we have 
– P(E1 ∩ E2) = P(E1|E2)P(E2). 

• Now suppose that a set of K events B1, B2, ... , BK
forms a partition of the sample space. 

• Using the above equation, we have
– P(A) = P(A|B1)P(B1) + · · · + P(A|BK)P(BK)

• This is known as the law of total probability
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The law of total probability 

• The law of total probability can be written as 

where B1, B2, ... , BK form a partition of the sample 
space, and A is an event in the sample space. 

• For die rolling example, consider the three events 
– B1 = {1, 2}, B2 = {3,4}, and B3 = {5, 6}, 

• whose probabilities are P(B1) = P(B2) = P(B3) = 1/3. 

• These events form a partition of the sample space. 

• The conditional probabilities of M (outcome less 
than four) given either of these three events are
– P(M|B1) = 1, P(M|B2) = 1/2, P(M|B3) = 0.
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The law of total probability 

• If we know that the event B1 = {1, 2} has occurred, we know 
for sure that the outcome is less than 4. 

• Given B2 = {3, 4}, the possible outcomes are now 3 and 4. 

• One of two possible outcomes corresponds to the event M, 
that is, the conditional probability of M given B2 is 1/2. 

• If we know that the event B3 = {5, 6} has occurred,
– then the probability that the number is less than 4 is zero: 

P(M|B3) = 0. 

• Using the law of total probability, we have 

which is the same as the probability we found directly based 
on the outcomes included in M. 
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Independent events

• Two events E1 and E2 are independent if our 
knowledge of the occurrence of one event does 
not change the probability of occurrence of the 
other event.

– P(E1|E2) = P(E1)

– P(E2|E1) = P(E2)

• For example, if a disease is not genetic, 
knowing a person has a specific genotype (e.g., 
AA) does not change the probability of having 
that disease. 

36
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Independent events

• When two events E1 and E2 are independent, the 
probability that E1 and E2 occur simultaneously, 
i.e., their joint probability, is the product of their 
marginal probabilities:

– P(E1 ∩ E2) = P(E1) × P(E2)

• Therefore, the probability of the union of two 
independent events is as follows:

– P(E1 ∪ E2) = P(E1) + P(E2) - P(E1) × P(E2)

• In general, if events E1, E2 , ... , En are 
independent 

– P(E1 ∩ E2 ∩ ... ∩ E2) = P(E1) × P(E2) × ... × P(En)
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Independent events - Example

• If we toss two fair coins simultaneously, then the 
probability of observing heads on both coins is 

– P(H1 ∩ H2) = 1/2 × 1/2 = 1/4.

• The probability of the union of two independent 
events as follows: 

– P(E1 ∪ E2) = P(E1) + P(E2) - P(E1) × P(E2)

• For the above coin tossing example, the 
probability that at least one of the two coins is 
heads is 

– P(H1 ∪ H2) = 1/2 + 1/2 - 1/2 × 1/2 

= 1 - 1/4 = 3/4 = 0.75
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Disjoint vs Independent events

• Events are disjoined (mutually exclusive) if the 

occurrence of one event excludes the 

occurrence of the other(s). 

– They cannot happen at the same time. 

• For example: when tossing a coin, the result can either 

be H or T but cannot be both.

• Therefore

– P(H ∩ T) = 0

– P(H ∪ T) = P(H) + P(T)

– P(H ∣ T)  = 0 

– P(H ∣ Tc) = P(H) / {1 − P(T)}
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Disjoint vs Independent events

• Events are independent if the occurrence of one 
event does not influence (and is not influenced by) 
the occurrence of the other(s). 
– They can happen at the same time. 

• For example, when tossing two coins, the result can be H1H2 , 
H1T2 , T1H2 , or T1T2.

• Considering probability of coming H1H2:
– P(H1 ∩ H2) = P(H1) P(H2) 

– P(H1 ∪ H2) = P(H1) + P(H2) - P(H1) P(H2) 

– P(H1 ∣ H2)  = P(H1)

– P(H1 ∣ H2
c) = P(H1)

• This means that disjoint events are not 
independent, and independent events cannot be 
disjoint. 
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Bayes’ theorem

• Sometimes, we know the conditional probability 
of E1 given E2, but we are interested in the 
conditional probability of E2 given E1.

• For example, suppose that the probability of 
having lung cancer is P(C) = 0.001 and that the 
probability of being a smoker is P(SM) = 0.25.

• Further, suppose we know that if a person has 
lung cancer, the probability of being a smoker 
increases to P(SM|C) = 0.40. 

• We are, however, interested in the probability of 
developing lung cancer if a person is a smoker, 
P(C|SM).
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Bayes’ theorem

• In general, for two events E1 and E2, the following 
equation shows the relationship between P(E2|E1) and 
P(E1|E2): 

• This formula is known as Bayes’ theorem or Bayes’ 
rule.

• For the above example, 

• Therefore, the probability of lung cancer for smokers 
increases from 0.001 to 0.0016. 

42
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Bayes’ theorem

• Now suppose that a set of K events B1, B2, ...,

BK forms a partition of the sample space. 

• We can write the Bayes’ theorem for each of 

the partitioning events as follows: 

• Here, Bi is one of the partitioning events, and A

is an event in the sample space.

43

Bayes’ theorem

• Using the law of total probability (slide 34), we 

have 

• Therefore, we can write the general form of 

Bayes’ theorem as 
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Application of Bayes’ Theorem

• A Venn diagram illustrating a typical medical 
diagnosis test (“sweat test” to diagnose Cystic Fibrosis )

– Here, the following abbreviations
are used 
• S : sample space, 

• H : healthy,

• D : diseased, 

• T− : negative test result,

• T+ : positive test result. 

• The true positive TP : The shaded area to the right of vertical line  

• The false positive FP : The shaded area to the left of the vertical line  

• The true negative TN : The unshaded area to the left of the vertical 
line 

• The false negative FN : The unshaded area to the right of the vertical 
line

45

Application of Bayes’ Theorem

• The sweat test is a simple procedure to detect CF by 
measuring the concentration of salt in a person’s sweat. 
– A high level of salt above a certain cutoff indicates CF.

• The conditional probability of a positive diagnosis for CF 
patient, P(T+|D), is called the sensitivity of the test.

• The conditional probability of  a negative result for a 
healthy person, P(T−|H), is called the specificity of the test.

• The probability of the CF disease for a child whose parents 
are both carriers is P(D) = 0.25. 
– Note that the gene causing CF is recessive. 

• Therefore, if we denote the allele causing CF as a and the 
normal allele as A, only people with aa genotype have CF.

• People with Aa genotype are carriers. 
– If both parents are carriers, the chance of transmitting a is 0.5 for 

each parent 
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Application of Bayes’ Theorem

• Assuming that chromosomes  from two parents are transmitted 

independently, there is the probability P(D) = 0.5×0.5 = 0.25 

that the child becomes affected (i.e., aa genotype). 

– Then, the probability of being healthy is 

• P(H) = 1 − 0.25 = 0.75.

• Assuming that the probability of false positive for the sweat 

test is P(T+|H) = 0.04 and the probability of false negative is 

P(T−|D) = 0.07

• Because T+ and T− are complementary events, we have

47

Application of Bayes’ Theorem

• Now we can calculate the updated probability of the 

disease knowing that the outcome of the test is positive. 

• Using the general form of Bayes’ theorem, the

conditional probability of the disease given a positive 

test result is 

– Therefore, the positive test result increases the probability of 

having the disease from P(D) = 0.25 to P(D|T+) = 0.89. 
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Bayesian Statistics

• In the CF diagnosis example discussed, we assigned the 
probability of 0.25 to the disease event before seeing any 
new empirical data.
– This probability is called the prior probability. 

• In this case, the prior probability of disease was P(D) = 0.25. 

• After obtaining new evidence, namely positive test
results, we updated the probability of the disease from 
P(D) to P(D|T+). 
– We call this updated probability the posterior probability. 

• In this case, the posterior probability of the disease was 

P(D|T+) = 0.89

• Therefore, based on the test result, we become more 
certain that the child is affected by the disease.
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Interpretation of Probability as the Relative Frequency

• The random phenomena we have been discussing 
so far can be observed repeatedly.

– A coin can be tossed or a die can be rolled many times. 

– We can observe the genotypes of many people. 

• These repeated experiments or observations are 
called trials. 

• For such random phenomena, the probability of an 
event can be interpreted in terms of the relative 
frequency. 

• The above view of probability is the basis of
Frequentist Statistics 
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Interpretation of Probability as the Relative Frequency

• As an example, suppose that the probability of genotype 
AA is P(AA) = 1/4.
– This probability could be interpreted as 1 out of 4 people in 

the population have genotype AA. 

• Suppose that we take a simple random sample of size n
from the population. 
– If the genotype AA is observed nAA times in the sample, the 

relative frequency of AA in the sample is nAA/n. 

• If our probability assumption is true (i.e., P(AA) = 1/4), 
this sample relative frequency would be approximately 
1/4. 
– In this case, as our sample size n increases, the sample 

relative frequency becomes closer to the probability of 1/4; 
• that is, it reaches the probability P(AA) = 1/4.
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Interpretation of Probability as the Relative Frequency

• Simulation study of the relative frequency of 

AA genotype for different sample size values.

– The plot shows how 

the sample relative 

frequency of AA

genotype approaches 

the probability P(AA) 

= 1/4 as the sample 

size increases. 
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Interpretation of Probability as the Relative Frequency

• Note that the above interpretation of 

probability requires two important 

assumptions. 

– We assume that the probability of events does not 

change from one trial to another. 

• For example, the probability of AA must remain 1/4. 

– If the population changes as we are sampling people (e.g., 

genotype AA becomes more prevalent), then the sample relative 

frequency will not converge to 1/4. 

– We also assume that the outcome of one trial does 

not affect the outcome of another trial.
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Using Tree Diagrams to Obtain Joint Probabilities

• Previously, we used tree diagrams to find the sample 
space for the combination of two random phenomena. 

• Tree diagrams can also be used for calculating their 
joint probabilities. 

• As an example, assume that the alleles on the
homologous chromosomes are independent 

– i.e., the allele inherited from the mother has no influence on 
the allele inherited from the father. 

• Also assume that for a biallelic gene A, the allele 
probabilities are P(A) = 0.7 and P(a) = 0.3. 

• Then to find the genotype probabilities, we can use the 
tree diagram (shown in next slide).
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Using Tree Diagrams to Obtain Joint Probabilities

• The first set of branches represents possible alleles for one chromosome 
(Ch1), and the second set represents possible alleles for the other 
chromosome (Ch2). 

• Since these events are independent, knowing the allele on the first 
chromosome has no influence on the probability of the allele on the second 
chromosome.
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Using Tree Diagrams to Obtain Joint Probabilities

• The sample space is obtained by following a branch 
from root to tip: 
– S = {A1A2, A1a2, a1A2, a1a2} 

• Since these events are independent, their joint
probabilities are obtained by multiplying their marginal 
probabilities: 
– P(A1A2) = 0.7 × 0.7 = 0.49

• Likewise, the probability of having a on the first 
chromosome and allele A on the second chromosome is 
– P(a1A2) = 0.3 × 0.7 = 0.21

• Following similar approach, we can find the probability 
of each possible combination of two chromosomes. 
– These probabilities are given in the column after the sample 

space in the figure (previous slide).
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Using Tree Diagrams to Obtain Joint Probabilities

• The labeling of the chromosomes is arbitrary. 

• Therefore, we can drop the indices for A1A2

and a1a2 and write them as genotypes AA and 
aa, respectively. 

• The genotype Aa can be considered as an event 
that includes two outcomes, 

– A1a2 and a1A2. 

• Therefore, P(Aa) = 0.21+0.21 = 0.42

– This probability is shown in the last column in the 
figure (slide 53).
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Using Tree Diagrams to Obtain Joint Probabilities

• The above example can be generalized. 

• Assume that the probability of observing the A allele is P(A)
= p and the probability of observing the a allele is P(a) = q.

• Then the genotype probabilities are

– Homozygous AA: P(A1A2) = p × p = p2,

– Heterozygous Aa: P(A1a2 ∪ a1A2) = p × q + q × p = 2pq,

– Homozygous aa: P(a1a2) = q × q = q2.

• Suppose, for example, that the allele probabilities for gene B 
are P(B) = 0.8 and P(b) = 0.2 and that the alleles on 
homologous chromosomes are independent (i.e., they are 
transmitted from parents independently). 

• Then the genotype probabilities are 
– P(BB) = 0.82 = 0.64, 

– P(bb) = 0.22 = 0.04, 

– P(Bb) = 2×0.8×0.2 = 0.32.
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Using Tree Diagrams to Obtain Joint Probabilities

• Tree diagrams can also be used to find 
probabilities when the outcomes are not 
independent. 

• Suppose that gene B in previous example is 
related to a specific disease, but it is not the only 
factor to determine the disease status. 

• In particular, the probability of having the disease 
is 0.2 for the bb genotype, whereas this probability
is 0.1 for the other two genotypes, BB and Bb. 

• Therefore, the probability of the disease depends 
on the genotype.
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Using Tree Diagrams to Obtain Joint Probabilities

• The first set of branches 
represents the genotype, and the 
second set represents the 
disease status. 

• The probabilities on the first set 
of branches are for different 
genotypes: P(BB) = 0.64, P(Bb)
= 0.32, and P(bb) = 0.04. 

• The probabilities on the second 
set of branches are conditional 
probabilities for the disease
status given the genotype: 
P(D|BB) = 0.1, P(D|Bb) = 0.1, 
and P(D|bb) = 0.2.

• Since the healthy (H) and disease (D) events are complementary, the 
remaining conditional probabilities are P(H|BB) = 1 − 0.1 = 0.9, 
P(H|Bb) = 1 − 0.1 = 0.9, and P(H|bb) = 1 − 0.2 = 0.8.
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Using Tree Diagrams to Obtain Joint Probabilities

• Unlike the tree for independent events, the probabilities 
on the second set of branches depend on the outcomes
on the first set of branches.

• As before, we follow the branches from the root to tip 
and obtain the sample space:
– S = {BB − D, BB − H, Bb − D, Bb − H, bb − D, bb − H}.

• To find their probabilities, which are in fact the joint 
probabilities of genotype and disease status, we 
multiply the probabilities on the corresponding 
branches. 

• For example, the probability of Bb − D is the product of 
the conditional probability P(D|Bb) and the marginal 
probability P(Bb):
– P(Bb −D) = P(Bb)P (D|Bb) = 0.32 × 0.1 = 0.032.

61 62


