Statistical Data Analysis

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Exploring Relationships

2

Introduction

- So far, we have focused on using graphs and summary statistics to explore the distribution of individual variables.
- In this lecture we discuss using graphs and summary statistics to investigate relationships between two or more variables.
 - We want to develop a high-level understanding of the type and strength of relationships between variables.
- We start by exploring relationships between two numerical variables.
 - We then look at the relationship between two categorical variables.
- Finally, we discuss the relationships between a categorical variable and a numerical variable.

Two numerical variables

- For illustration, we use the *bodyfat* data
 - based on a study conducted by Dr. Fisher from Human
 - Performance Research Center at Brigham Young University
 - The study involved measuring percent body fat as the target variable, along with several explanatory variables such as age, weight, height, and abdomen circumference for a sample of 252 men.
 - The collected data set *bodyfat* is available online at http://lib.stat.cmu.edu/datasets/bodyfat
 - You can also obtain this data set from the mfp package in R.
 - To install this package, enter the following command in R Console:
 - install.packages("mfp", dependencies=TRUE)

Two numerical variables

- Once the package is installed, it can be loaded into R using the following command:
 - library(mfp)
- Now you can access bodyfat by clicking
- Data → Data in packages →Read data set from an attached package
- and selecting (doubleclicking) mfp under packages.
- You can learn more about this data set by looking
 - at its accompanying help file.
 - In R-Commander, click
 - Data \rightarrow Active data set \rightarrow Help on active data set.

Two numerical variables

- Suppose that we are interested in examining the relationship between percent body fat and abdomen circumference among men.
 - Load the *bodyfat* set from the mfp package. Makesure *bodyfat* becomes the active data set and then view it.
 - For now, we are focusing on two variables, *siri* and *abdomen*.
 - The siri variable shows the percent body fat measurements derived based on body density using Siri's equation (percent body fat = 495/density-450).
 - The *abdomen* variable shows the abdomen circumference in centimeters.
- Both *siri* and *abdomen* are numerical variables.
 A simple way to visualize the relationship between two numerical variables is with a scatterplot.

Copyright 2000 N. AYDIN. All rights reserved.

6

Scatterplot

- In R-Commander, click
 - Graphs \rightarrow Scatterplot and select *abdomen* for the x-variable and *siri* for the y-variable.
- Under Options, uncheck Marginal boxplots and Smooth line. • The plot suggests that the increase in percent body fat tends to coincide with the increase in abdomen circumference.
 - The two variables seem to be related with each other. - The relationship is simply an association and should not be
 - regarded as causation since the data come from an observational study.

Scatterplot

As the second example, we examine the relationship between the annual mortality rate due to malignant melanoma for US states and the latitude of their geographical centers.

- The data are collected from the population of white males in the US during 1950–1969.
- You can obtain this data set, called *USmelanoma*, from the HSAUR2 package.

 [Follow the above steps to install and load the package]

The two variables are clearly associated since the increase in latitude tends to coincide with the decrease in mortality rate.

Scatterplot

- Using scatterplots, we could detect possible relationships between two numerical variables.
 - In above examples, we can see that changes in one variable coincides with substantial systematic changes (increase or decrease) in the other variable.
- Since the overall relationship can be presented by a straight line, we say that the two variables have linear relationship.
 - We say that percent body fat and abdomen circumference have positive linear relationship.
 - In contrast, we say that annual mortality rate due to malignant melanoma and latitude have negative linear relationship.

Scatterplot

- In some cases, the two variables are related, but the relationship is not linear.
- In some cases, there is no relationship (linear or non-linear) between the two variables.

Scatterplot

- The scatterplot of percent body fat by height from the *bodyfat* data set.
 - The isolated point at the left of the graph is an outlier, which has a drastic influence on the overall pattern.
- The scatterplot of percent body fat by height after removing the outlier.
 - The two variables seem to be unrelated

11

Scatterplot

- In practice, we should never remove an outlier just simply because it does not follow the overall pattern.
- Some outliers are due to rare events, which provide important information about the distribution of the corresponding variable.
- Even when we identify a data entry mistake, we should try to correct the mistake and keep the observation if possible.

12

Scatterplot Matrix

· Obtaining and viewing a scatterplot matrix in R-Commander.

scatterplots with a trend line

Correlation

· Is a measure of similarities of two signals (cross-correlation)

$$r_{xy}(k) = \sum_{n=0}^{N-1} x(n) y(k+n)$$

• Is a way to detect a known waveform in a noisy background (matched filter)

14

A correlation example

(b)

(a)

(a) A PN code

 (b) A noisy binary signal (10101010) coded by the PN code in (a)
 (c) Result of the 13

15

17

- correlation between(a) and (b)(d) Recovered signal
- (10101010) after thresholding

Correlation

- To quantify the strength and direction of a linear relationship between two numerical variables,
 - we can use Pearson's correlation coefficient, r, as a summary statistic.
 - The values of r are always between -1 and +1.
 - The relationship is strong when r approaches -1 or +1.
 - The sign of *r* shows the direction (negative or positive) of the linear relationship.

Correlation

- Consider a set of observed pairs of values, $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, for a sample of *n* observations.
- For these observed pairs of values, Pearson's correlation coefficient is calculated as follows:

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y}$$

– For the two variable, s_x and s_y denote the sample standard deviations

Correlation

• Suppose that we have measured the height in inches and weight in pounds for five people.

Index	Height	Weight
1	62	160
2	71	198
3	65	173
4	73	182
5	60	143
Mean	66.2	171.2
Standard deviation	5.6	21.0

- We denote height as X and weight as Y

Correlation

 Calculating Pearson's correlation coefficient for height and weight

Index	x	$x - \bar{x}$	y y	$y - \bar{y}$	$(x-\bar{x})(y-\bar{y})$
1	62	-4.2	160	-11.2	47.04
2	71	4.8	198	26.8	128.64
3	65	-1.2	173	1.8	-2.16
4	73	6.8	182	10.8	73.44
5	60	-6.2	143	-28.2	174.84
					!

r	_	_1	$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$	_ 1	1 421.8	- 0.80
′ху	_	n-1	s _x s _y	_ /	4 5.6 × 21.0	- 0.09

Correlation

- We can use R-Commander to calculate the sample correlation coefficient.
- To calculate *r* for percent body fat and abdomen circumference, make sure *bodyfat* is the active data set, then click

- Statistics \rightarrow Summaries \rightarrow Correlation matrix

- Select both *abdomen* and *siri*. (You need to hold the *control* key.)
 - The output is in the form of a symmetric matrix called the *correlation matrix*, where the value in row *i* and column *j* is the correlation coefficient between the *i*th and *j* th variables.

20

22

24

Correlation

• Obtaining and viewing the correlation between percent body fat and abdomen circumference in R-Commander

Output Window	Submit
<pre>> cor(bodyfat[, c("abdomen", "siri")],</pre>	. use="complete.obs")

• Correlation matrix for most of the numerical variables in the *Protein* data set

Output Window					Submit	
> cor(Prot Cereals Eggs Pish RedMeat	tein[.c(" Cereals 1.0000000 0.7124368 0.5242308 0.4998775	Ceresls", "Eggs -0.71243682 1.00000000 0.06557136 0.58560895	gs", "Fish", " Fish -0.52423080 0.06557136 1.0000000 0.06095745	RedMest")], RedMest -0.49987746 0.58560895 0.06095745 1.00000000	use="complete.ob	
2						

Sample Covariance

• If the standard deviations are removed from the denominator in Pearson's correlation coefficient, the statistic is called the sample covariance,

$$v_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

• Therefore

21

23

Two categorical variables

- We now discuss techniques for exploring relationships between categorical variables.
- As an example, we consider the five-year study to investigate whether regular aspirin intake reduces the risk of cardiovascular disease.
 - ["Findings from the aspirin component of the ongoing Physicians health study" in *New England Journal of Medicine* in 1988].
 - In this randomized experiment, 22071 physicians were randomly divided into two groups: 11037 physicians took an aspirin every other day, while 11034 physicians took a placebo. The investigators then recorded the number of people who suffered a heart attack within the five-year follow-up period.

Two categorical variables

• We usually use contingency tables to summarize such data.

	Heart attack	No heart attack	Total
Placebo	189	10845	11034
Aspirin	104	10933	11037
Total	293	21778	22071

· Each cell shows

the frequency of one possible combination of disease status

- heart attack or no heart attack
- experiment group
 - placebo or aspirin
 - [A placebo is a substance or treatment with no active therapeutic effect. It may be given to a person in order to deceive the recipient into thinking that it is an active treatment]

Two categorical variables

- Using these frequencies, we can calculate the sample proportion of people who suffered from heart attack in each experiment group separately.
 - There were 11034 people in the placebo group, of which 189 had heart attack.
 - The proportion of people suffered from a heart attack in the placebo group is therefore

 $p_1 = 189/11034 = 0.0171.$

 The proportion of people suffered from heart attack in the aspirin group is

25

27

29

0

 $p_2 = 104/11037 = 0.0094.$

Two categorical variables

- We refer to this as the risk (here, the sample proportion is used to measure risk) of heart attack.
- Substantial difference between the sample proportion of heart attack between the two experiment groups could lead us to believe that the treatment and disease status are related.
- One way of measuring the strength of the relationship is to calculate the difference of proportions, *p*₂-*p*₁.

- Here, the difference of proportions is $p_2-p_1 = -0.0077$.

Two categorical variables

- The proportion of people suffered from heart attack reduces by 0.0077 in the aspirin group compared to the placebo group.
- We can present this difference as a percentage using the sample proportion (risk) in the placebo group as the baseline:

$$\frac{p_2 - p_1}{p_1} \times 100\% = \frac{-0.0077}{0.0171} \times 100\% = -45\%.$$

• This means that the risk of heart attack reduces by 45% in the aspirin group compared to the placebo group.

Two categorical variables

- Another common summary statistic for comparing sample proportions is the relative proportion p₂/p₁.
 - Since the sample proportions in this case are related to the risk of heart attack, we refer to the relative proportion as the relative risk.
- Here, the relative risk of sufering from heart attack is

 $p_2/p_1 = 0.0094/0.0171 = 0.55$

Two categorical variables

- This means that the risk of a heart attack in the aspirin group is 0.55 times of the risk in the placebo group.
- If the two sample proportions are equal, the relative proportion (risk) is equal to 1,
 – which is interpreted as no relationship between the two categorical variables.
- Values of the relative proportion away from 1 (either below 1 or above 1) indicate that the relationship is strong.

Two categorical variables

• It is more common to compare the sample odds, $o = \frac{p}{p}$

$$p = \frac{r}{1-p}$$

 where p is the sample proportion for the event of interest (e.g., heart attack).

• The odds of a heart attack in the placebo group, o_1 , and in the aspirin group, o_2 , are

$$p_1 = \frac{0.0171}{(1 - 0.0171)} = 0.0174, \ o_2 = \frac{0.0094}{(1 - 0.0094)} = 0.0095.$$

28

30

Two categorical variables

• We usually compare the sample odds using the sample odds ratio

$$OR_{21} = \frac{o_2}{o_1} = \frac{0.0095}{0.0174} = 0.54.$$

- The index "21" shows that we are dividing the odds in the second group (here, the aspirin group) by the odds in the first group (here, the placebo group).
 - An odds ratio equal to 1 means that the odds are equal in both groups and is interpreted as no relationship between the two categorical variables.
 - Values of the odds ratio away from 1 (either greater than or less than 1) indicate that the relationship is strong.

31

33

35

- Note that the odds ratio cannot be negative.
 - Therefore, its smallest possible value is zero.

Two categorical variables

Contingency table for *smoke* and *low* in *birthwt* data set
 For creating the contingency table for smoke and low, click
 Statistics → Contingency tables → Two-way table.

Numerical and Categorical Variables

- Very often, we are interested in the relationship between a categorical variable and a numerical random variable.
- When the sample size is small, we can visualize the relationship by simply creating dot plots of the numerical variable for different levels of the categorical variable.
- As an example, we use the *cabbages* data set available from the MASS package.

Numerical and Categorical Variables

The dot plots of *ascorbic acid* (one form of vitamin C) *content* (numerical) by *cultivar* (categorical).
 The categorical variable has

The categorical variable has two possible categories: c39 and c52.
It shows that the distribution of 32

34

- *vitamin C content* is different between the two *cultivars*. The central tendency for the observed values in the c39
- group is around 50, whereas the central tendency for the c59 group is around 65.
- In general, we say that two variables are related if the distribution of one of them changes as the other one varies.

Numerical and Categorical Variables

- In the above example, the two variables, *vitamin C content* and *cultivar*, seem to be related.
- We can use R-Commander to create a dot plot (a.k.a. strip chart) similar to the one presented in previous slide.

- Strip chart for vitamin C content (VitC) by cultivar (Cult) from the cabbages data set
- Here, multiple observations with the same value of the numerical variable are stacked toward the right.
- Overall, vitamin C content tends to be higher in the c52 group compared to the c39 group.

Numerical and Categorical Variables

- A more common way of visualizing the relationship between a numerical variable and a categorical variable is

 to create boxplots of the numerical variable for different values of the categorical variable.
- This is especially useful when the sample size is large.
 By focusing on some key aspects of the distributions, namely the five-number summaries, boxplots make the patterns easier to detect.
- In R-Commander, click
- $Graphs \rightarrow Boxplot$; select VitC as the Variable.
- Then click on
- *Plot by groups* button and in the resulting window,
- Select

 Cult as the Groups variable.

Numerical and Categorical Variables

• This plot suggests that

 vitamin C content tends to be higher in the c52 group compared to the c39 group.

• This is indicative of a possible relationship between these two variables.

37

Numerical and Categorical Variables

- In general, we say that two variables are related if the distribution of one of them changes as the other one varies.
- We can measure changes in the distribution of the numerical variable by obtaining its summary statistics for different levels of the categorical variable.
- It is common to use the difference of means when examining the relationship between a numerical variable and a categorical variable.
 - In the above example, the difference of means of vitamin C content is 64.4 -51.5 = 12.9 between the two cultivars.

38

Numerical and Categorical Variables

- When the categorical variable has multiple levels (categories), it is easier to compare the means across different levels using the plot of means.
- · For example,
 - previously we created a categorical variable called weight.status based on BMI values in the Pima.tr data set.
 - This variable had four categories:
 "Underweight", "Normal", "Overweight", and "Obese".
 - Here, we would like to investigate how blood pressure bp changes with weight.status, which is an ordinal variable

Numerical and Categorical Variables

0

Weight Status

Also, note that

 as we move toward higher levels of weight group, average blood pressure first decreases and then increases.