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Data Exploration

2

Data Visualization and Summary Statistics

• Preliminary steps before analysis:

– defining the scientific question we try to answer,

– selecting a set of representative members from the

population of interest

– collecting data (either through observational

studies or randomized experiments),

• Analysis usually begins with data exploration.

– We start by focusing on data exploration

techniques for one variable at a time.

3

Data Visualization and Summary Statistics

• Objective is

– to develop a high-level understanding of the data,

– learn about the possible values for each characteristic,

– find out how a characteristic varies among individuals
in our sample.

• Basicaly, we want to learn about the distribution of
variables.

– Recall that for a variable, the distribution shows

• the possible values,

• the chance of observing those values,

• how often we expect to see them in a random sample from
the population.
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Data Visualization and Summary Statistics

• Example of an ECG recording
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• R-R interval is 

defined as the 

time interval 

between

successive R 

waves of the 

QRS complex, 

Data Visualization and Summary Statistics

• A normally functioning heart exhibits considerable 

variability in beat-to-beat intervals. 

– variability reflects the body’s continual effort to maintain

homeostasis 

• so that the body may continue to perform its most essential 

functions and supply the body with the oxygen and nutrients 

required to function normally. 

• It has been demonstrated through biomedical research 

that there is a loss of heart rate variability associated 

with some diseases, 

– such as diabetes and ischemic heart disease. 

6

mailto:naydin@yildiz.edu.tr


Copyright 2000 N. AYDIN. All rights 

reserved. 2

Data Visualization and Summary Statistics

• Researchers seek to determine 

– if this difference in variability between normal subjects and 

subjects with heart disease is significant 

• meaning, it is due to some underlying change in biology and not 

simply a result of chance 

– whether it might be used to predict the progression of the 

disease. 

• One will note that the probability model changes as a

consequence of changes in the underlying biological 

function or process.
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Data Visualization and Summary Statistics

• To make sound decisions in the context of the 
uncertainty with some level of confidence,

– we need to assume some probability models for the 
populations from which the samples have been
collected. 

• Once we have assumed an underlying model, 

– we can select the appropriate statistical tests for 
comparing two or more populations

– then we can use these tests to draw conclusions 
about our hypotheses for which we collected the 
data in the first place
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Data Visualization and Summary Statistics

• The data exploration methods allow us to reduce
the amount of information so that we can focus
on the key aspects of the data.

• We do this by using data visualization
techniques and summary statistics.

• The visualization techniques and summary
statistics we use for a variable depend on its type
– Recall that we can classify them into two general groups:

• Numerical (quantitative) variables
– discrete, continuous

• Categorical variables
– nominal, ordinal
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Graphical summarization of data

• Before blindly applying the statistical analysis, 

it is always good to look at the raw data,

– usually in a graphical form, 

and then use graphical methods to summarize 

the data in an easy to interpret format.

– A Picture is worth a thousand word

• The types of graphical displays that are most 

frequently used by engineers 

– scatterplots, time series, box-and-whisker plots, 

and histograms.
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Data Visualization and Summary Statistics

• As a computational tool, R will be used.
– RStudio is an IDE for R.

• It is available in two formats:
– RStudio Desktop is a regular desktop application

– RStudio Server runs on a remote server and allows accessing
RStudio using a web browser.

– R-Commander can also be used
• It allows us to do basic statistical analysis without necessarily

learning the programing language of R.

• First, you must download and install R
– Go to http://www.r-project.org/

– Click on the download R link

– Then select a location closest to you.

– Click on your operating system

11

Data Visualization and Summary Statistics

• You can download R-Commander from the command line
by following these steps:
– Once you have installed R, open it by double-clicking on the

icon.

– A window called “R Console” will open.

– Make sure you have a working internet connection. Then, at the
prompt (the > symbol), type the following command exactly and
then press enter :

• > install.packages("Rcmdr", dependencies = TRUE)

– R may respond by asking you to select a mirror site and listing
them in a pop-up box. Choose a nearby location.

– Depending on your connection speed, the installation may take
awhile.

• If R is not already open, open it by clicking on its icon.

• To open R-Commander, at the prompt enter the following command

– > library(Rcmdr)
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What is R?

• a language and environment for statistical 
computing and graphics

• provides a wide variety of statistical (linear and 
non linear modeling, classical statistical tests, 
time-series analysis, classification, clustering, ...) 
and graphical techniques, and is highly extensible

• available as Free Software under the terms of the 
Free Software Foundation's GNU General Public 
License in source code form. 

• compiles and runs on a wide variety of UNIX 
platforms and similar systems, Windows and
MacOS.
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The R environment

• R is an integrated suite of software facilities for data 
manipulation, calculation and graphical display. 

• It includes

– an effective data handling and storage facility,

– a suite of operators for calculations on arrays, in particular 
matrices,

– a large, coherent, integrated collection of intermediate tools 
for data analysis,

– graphical facilities for data analysis and display either on-
screen or on hardcopy,

– a well-developed, simple and effective programming 
language which includes conditionals, loops, user-defined
recursive functions and input and output facilities.
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Data Visualization and Summary Statistics

• You can download R-Commander from the command line
by following these steps:
– Once you have installed R, open it by double-clicking on the

icon.

– A window called “R Console” will open.

– Make sure you have a working internet connection. Then, at the
prompt (the > symbol), type the following command exactly and
then press enter :

• > install.packages("Rcmdr", dependencies = TRUE)

– R may respond by asking you to select a mirror site and listing
them in a pop-up box. Choose a nearby location.

– Depending on your connection speed, the installation may take
awhile.

• If R is not already open, open it by clicking on its icon.

• To open R-Commander, at the prompt enter the following command

– > library(Rcmdr)
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Data Visualization and Summary Statistics

• Example Data set : Pima.tr
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Data Visualization and Summary Statistics

• Example Data set : Pima.tr
– Pima Indians Diabetes Data Set

– Attribute Information:
• npreg: Number of times pregnant.

• glu: Plasma glucose concentration a 2 hours in an oral
glucose tolerance test.

• bp: Diastolic blood pressure (mm Hg) .

• skin: Triceps skin fold thickness (mm).

• bmi: Body mass index (weight in kg/(height in m)^2).

• ped: Diabetes pedigree function.

• age: Age in years.

• type: Class variable (disease status)
– Yes for diabetic, No for nondiabetic
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Data Visualization and Summary Statistics

• Categorical variables are either nominal or
ordinal, depending on the extent of information
the numerical coding provides.

• For nominal variables, the numbers are simply
labels, which are chosen arbitrarily.
– Therefore, they do not provide any information.

• The type variable in Pima.tr is nominal.

• For ordinal variables, although the numbers do
not have their usual meaning, they preserve a
rank ordering.
– Therefore, they provide information about the ordering of

categories.

18
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Data Visualization and Summary Statistics

• Example Data set : birthwt

19

Data Visualization and Summary Statistics

• Example Data set : birthwt
– the birth weight of 189 newborn babies along with some

characteristics

– Attribute Information:
• low: indicator of birth weight less than 2.5 kg (0 = normal birth

weight, 1 = low birth weight).

• age: mother’s age in years.

• lwt: mother’s weight in pounds at last menstrual period.

• race: mother’s race (1 = white, 2 = African-American, 3 = other).

• smoke: smoking status during pregnancy (0 = not smoking, 1 =
smoking).

• ptl: number of previous premature labors.

• ht: history of hypertension (0 = no, 1 = yes).

• ui: presence of uterine irritability (0 = no, 1 = yes).

• ftv: number of physician visits during the first trimester.

• bwt: birth weight in grams.
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Data Visualization and Summary Statistics

• In the birthwt data set, variables age, lwt, ptl, ftv, and bwt
are numerical variables.
– Among these variables, ptl and ftv are count variables.

– The variables low, race, smoke, ht, and ui are all categorical.

• Note that all categorical variables are coded with numerical
values.

• In these situations, R and R-Commander cannot
automatically recognize them as categorical variables.
– In fact, they are considered as numerical variables by default.

• Therefore, we need to convert them to categorical variables.
– To do this, make sure birthwt is the active data set, then

– click on
• Data→ Manage variables in active data set → Convert numeric

variables to factors

21

Data Visualization and Summary Statistics

• Many data set can be downloaded from the

following site:

• https://vincentarelbundock.github.io/Rdatasets/

datasets.html
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Exploring Categorical Variables

• Consider the type variable in Pima.tr data set.

• A simple way for summarizing the data is to
create a table that shows the number of times each
category has been observed.

• The number of times a specific category is
observed is called frequency.
– We denote the frequency for category c by nc.

• The sum of the frequencies for all catagories is
equal to the total sample size

 

𝑐

𝑛𝑐 = 𝑛
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Exploring Categorical Variables

• In R-Commander, to obtain the frequencies for

the type variable,

– click Statistics → Summaries → Frequency

distributions and select type as the Variable.

• Frequency table for the type variable in the

Pima.tr data set:

For the type variable we have

 

𝑐

𝑛𝑐 = 𝑛1 + 𝑛2 = 132 + 68 = 200

24

Type Frequency

No

Yes

Total

132

68

200

https://vincentarelbundock.github.io/Rdatasets/datasets.html
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Relative Frequency and Percentage

• The relative frequency is the sample proportion

for each possible category.

• It is obtained by dividing the frequencies nc by

the total number of observations n:

pc =
nc

n

• Relative frequencies are sometimes presented

as percentages after multiplying proportions pc

by 100.

25

Relative Frequency and Percentage

• Consider the race variable in the birthwt data set.
– The frequencies are n1 = 96, n2 = 26, and n3 = 67 for

“White”, “African-American”, and “Other” categories,
respectively.

– The sum of these frequencies is equal to the sample size n =
189.

• The relative frequencies and percentages for the race
variable in birthwt data set are
– p1 = 96/189 = 0.508 = 50.8%,

– p2 = 26/189 = 0.138 = 13.8%,

– p3 = 67/189 = 0.354 = 35.4%.

• Therefore, 50.8% of the women in the sample were
white, 13.8% were African-American, and the
remaining 35.4% were from other races.
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Relative Frequency and Percentage

• In R-Commander, make sure birthwt is the active data set,

– then click
• Statistics → Summaries → Frequency distributions, and select race as the Variable.

• The frequencies and percentages

are given in the Output window.

• For race, the category “1” (i.e.,

white women) has the highest

frequency.

• In this case, we say that the mode of the variable race is “1”.

• For a categorical variable, the mode is the most common

value,

– i.e., the value with the highest frequency.
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Relative Frequency and Percentage

• Since the relative frequencies are proportions of
the sample size, their sum is 1,

 

𝑐

𝑝𝑐 = 1

where pc is the relative frequency of category c.

• For the race variable, we have

 

𝑐

𝑝𝑐 = 0.508+0.138+ 0.354 = 1

• Similarly, the sum of the percentages for different
categories is 100%.
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Bar Graph

• For categorical variables, bar graphs are one of
the simplest ways of visualizing the data.

• Using a bar graph, we can visualize the possible
values (categories) a categorical variable can take,

– as well as the number of times each category has been
observed in our sample.

• The height of each bar in this graph shows the
number of times the corresponding category has
been observed.

– {Create a bar graph for type by clicking Graphs→Bar
graph and then selecting type as the Variable.}

29

Bar graphs and frequencies

• Frequency table for the type variable in the Pima.tr data set

30

Type Frequency

No

Yes

Total

132

68

200

• Bar graph for the type
variable

• Overall, bar graphs show us
how the observed values of a
categorical variable in our
sample are distributed
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Bar graphs and frequencies

• Frequency table for the race variable in the birthwt data set

31

• Bar graph for mother’s race in the
birthwt data set,

• where 1, 2, and 3 represent the
categories “white”, “African-
American”, and “other”, respectively

Race Frequency Relative

frequency

White 96 0.508

African-

American

26 0.138

Other 67 0.354

Total 189 1

Bar Graph

• Checklist for evaluating bar graphs:

– Check the units on the y-axis.

• Make sure they are evenly spaced.

– Be aware of the scale of the bar graph (the units in
which bar heights are represented).

• Using a smaller scale you can make differences look more
dramatic.

– (for example, each half inch of height representing 10 units versus
50)

– In the case where the bars represent percents and not
counts, make sure to ask for the total number of
individuals summarized by the bar graph if it is not
listed.
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Pie chart

• A pie chart takes categorical data and shows 

the percentage of individuals that fall into each 

category. 

• The sum of all the slices of the pie should be 

100% or close to it (with a bit of round-off 

error). 

• Because a pie chart is a circle, categories can 

easily be compared and contrasted to one 

another.

33

Pie chart

• An example: 

– The Florida lottery uses a pie chart to report where 

the money goes when a lottery ticket is purchased.

34

Pie chart

• We can use a pie chart to visualize the relative frequencies of
different categories for a categorical variable.

• In a pie chart, the area of a circle is divided into sectors, each
representing one of the possible categories of the variable.

• The area of each sector c is proportional to its frequency.

• To create pie charts in R-Commander, click Graphs→Pie chart.

35

• Pie charts for the type variable
from Pima.tr and the race variable
from birthwt, where 1, 2, and 3
represent the categories “white”,
“African-American”, and “other”,
respectively

Pie chart

• To evaluate a pie chart for statistical correctness:

– Check to be sure the percentages add up to 100% or 

close to it 

• any round-off error should be very small

– Beware of slices of the pie called “other” that are larger 

than many of the other slices. 

• This shows a lack of detail in the information gathered.

– A pie chart only shows the percentage in each group, 

not the number in each group. 

• Always ask for or look for a report of the total size of the data 

set.

36
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Time Charts (line graphs)

• a data display whose main point is to examine 

trends over time. 

• Typically a time chart has 

– some unit of time on the horizontal axis 

• (year, day, month, and so on) 

– a measured quantity on the vertical axis 

• (average income, birth rate, total sales, etc.). 

• At each time period, the amount is shown as a 

dot, and the dots connect to form the time 

chart.
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Time Charts (line graphs)

• Average hourly wage for production workers, 

1947–1998
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Time Charts (line graphs)

• A time chart can present information in a 

misleading way, for example

– charting the number of crimes over time, rather 

than the crime rate (crimes per capita). 

• Because the population size of a city changes over time, 

crime rate is the appropriate measure. 

• Make sure you understand what statistics are 

being presented and examine them for fairness 

and appropriateness.
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Time Charts (line graphs)

• Checklist for evaluating time charts:

– Examine the scale on the vertical (quantity) axis as 

well as the horizontal (timeline) axis; 

• results can be made to look more or less dramatic than 

they actually are simply by changing the scale.

– Take into account the units used in the chart and be 

sure they are appropriate for comparison over time 

• (for example, are dollar amounts adjusted for inflation?).

– Watch for gaps in the timeline on a time chart. 

• Connecting the dots across a short period of time is 

better than connecting across a long time.

40

• Further reading on visualization of categorical
data

– http://www.sciencedirect.com/science/book/97801
22990458

– http://www.datavis.ca/books/vcd/vcdstory.pdf

– http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.140.599&rep=rep1&type=pdf

– https://www.jstatsoft.org/article/view/v053i07/v53i
07.pdf

– http://vis.berkeley.edu/courses/cs294-10-
fa08/wiki/images/9/99/Seth-FinalPaper.pdf
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Exploring Numerical Variables

• For numerical variables, we are especially

interested in two key aspects of the

distribution:

– its location

• refers to the central tendency of values, that is, the point

around which most values are gathered.

– its spread

• refers to the dispersion of possible values, that is, how

scattered the values are around the location.

42

http://www.sciencedirect.com/science/book/9780122990458
http://www.datavis.ca/books/vcd/vcdstory.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.599&rep=rep1&type=pdf
https://www.jstatsoft.org/article/view/v053i07/v53i07.pdf
http://vis.berkeley.edu/courses/cs294-10-fa08/wiki/images/9/99/Seth-FinalPaper.pdf
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Histograms

• defined as a frequency distribution commonly used to 
visualize numerical variables. 

• A histogram is similar to a bar graph after the values of 
the variable are grouped (binned) into a finite number of 
nonoverlapping intervals (bins), usually of equal width. 

• Given N samples or measurements, xi ranging from Xmin
to Xmax, the samples are binned into bins

• Typically, the number of bins is on the order of 7–14, 
depending on the nature of the data. 
– In addition, we typically expect to have at least three 

samples per bin. 
• Sturgess’rule may also be used to estimate the number of bins and is 

given by k = 1 + 3.3 log(n).
– where k is the number of bins and n is the number of samples.

43

Histograms

• One bin of a 

histogram plot 

• The bin is 

defined by 

– a lower bound, 

– a midpoint, 

– an upper bound

44

Histograms

• constructed by plotting the number of samples 

in each bin. 

– horizontal axis, 

• the sample value, 

– the vertical axis, 

• the number of occurrences of samples falling within a bin

• Next slide illustrates a histogram for 1000 

samples drawn from a normal distribution with 

mean (μ) = 0 and standard deviation (σ) = 1.0. 

45

Histograms

46

Histograms

• Two useful measures in describing a 

histogram:

– the absolute frequency in one or more bins

• fi = absolute frequency in ith bin

– the relative frequency in one or more bins 

• fi /n = relative frequency in ith bin, 

– where n is the total number of samples being summarized in the 

histogram

• The histogram can exhibit several shapes 

– symmetric, skewed, or bimodal.

47

Histograms - example

• As a running example, consider a numerical variable, X, for

which three sets (samples) of observations denoted as Sample

1, Sample 2, and Sample 3 have been collected.

• Dot plots for these three sets of observations:

48

Observations in Sample 1
are gathered around 2,

Observations in Sample 2
and Sample 3 are gathered
around 4.

Observations in Sample 3
are more dispersed
compared to those in
Sample 1 and Sample 2
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Histograms - example

• Histograms of the three samples.

49

Histograms - example

• The following table shows the number of live 
births in Colorado by age of mother for selected 
years from 1975–2000. 

• The numerical variable age is broken down into 
categories of 5-year groupings.

50

Histograms - example

• Relative frequency histograms comparing 1975 
and 2000 

• You can see more older mothers in 2000 than 
in 1975.

51

Histograms

• The bar height for each interval could be set to its relative frequency

pc = nc/n, or the percentage pc x100, of observations that fall into that

interval.

• For histograms, however, it is more common to use the density

instead of the relative frequency or percentage.

– The density is the relative frequency for a unit interval.

• It is obtained by dividing the relative frequency by the interval width:

fc = pc/wc

– Here, pc = nc/n is the relative frequency with nc as the frequency of interval c and n as the total

sample size.

– The width of interval c is denoted wc .

• To create the density histogram in R-Commander, click Graphs →

Histogram, select a variable, and choose Densities for the Axis

Scaling.

52

Histograms

• The frequency histogram for the numerical

variable bmi in the Pima.tr data set.

• The height of the rectangles represent the

frequency of the interval and sum to the

total sample size n.

• Here, the values of the variable are divided

into seven bins

53

• The density histogram for bmi from the

Pima.tr data set.

• Here, the scale on the y-axis is density

(not frequency).

• Once again, the values of bmi are divided

into seven bins of width w = 5

Histograms

• Assuming the frequency histogram for variable bmi,

let us calculate the density of the interval [30, 35],

which is the 4th interval.

– There are n4 = 67 observations in this interval.

– Therefore, the relative frequency is p4 = 67/200 = 0.335.

– The interval width is w4 = 5.

– The density for this interval is therefore f4 = 0.335/5 = 0.067

• To create the density histogram for bmi in R-

Commander, click

– Graphs → Histogram, select bmi as the Variable, and

choose Densities for the Axis Scaling

54
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Histograms

• The height of each bar in density histogram shows the

density of the corresponding interval (as opposed to

its frequency).

• For each interval c, the area of the corresponding bar

in the density histogram is calculated as follows

(hight×width):

ac = fc × wc = (pc / wc) × wc = pc

• Therefore, the area of each bar (rectangle) is the

relative frequency for the corresponding interval.

– Since the sum of relative frequencies is 1, the total area of

bars in a density histogram is 1.

55

Histograms

• When creating a histogram, it is
important to choose an appropriate
value for w (Number of Bins) .

• Besides the location and spread of a
distribution, the shape of a
histogram also shows us how the
observed values spread around the
location.

• We say the following histogram is
symmetric around its location (here,
zero) since the densities are the
[almost] same for any two intervals
that are equally distant from the
center.

56

Histograms

• In many situations, we find that a histogram is stretched to
the left or right.

• We call such histograms skewed.
– More specifically, we call them left-skewed if they are stretched

to the left, or right-skewed if they are stretched to the right.

57

Histograms

• As an example, histogram of variable lwt in

the birthwt data set is right-skewed

58

Histograms

• The histograms in previous slides, whether
symmetric or skewed, have one thing in common
– they all have one peak (or mode).

• We call such histograms (and their corresponding
distributions) unimodal.

• Sometimes histograms have multiple modes.
– The bimodal histogram appears to be a combination of

two unimodal histograms.
• Indeed, in many situations bimodal histograms (and

multimodal histograms in general) indicate that the
underlying population is not homogeneous and may include
two (or more in case of multimodal histograms)
subpopulations.

59

Histograms

• Histogram of a bimodal distribution

• A smooth curve is superimposed so that 

the two peaks are more evident

60

• Histogram of protein consumption in 25

European countries for white meat in

Protein data set.

• The histogram is bimodal, which

indicates that the sample might be

comprised of two subgroups
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Histograms

• The histogram is important because it serves as 

– a rough estimate of the true probability density
function or

– probability distribution of the underlying random 
process from which the samples are being collected.

• The probability density function or probability 
distribution is a function that quantifies the
probability of a random event, x, occurring. 

– When the underlying random event is discrete in 
nature, we refer to the probability density function as 
the probability mass function

61

Histograms

• The probability density function for a discrete random variable (probability 

mass function).

• In this case, the random 

variable is the value of a 

toss of a single dice. 

– Note that each of the six 

possible outcomes has a 

probability of occurrence of 1 

of 6. 

• This probability density 

function is also known as a 

uniform probability 

distribution.

62

Histograms

• Histograms representing the outcomes of experiments in which 

a single dice is tossed 50 and 2000 times, respectively 

– Note that as the sample size increases, the histogram approaches the 

true probability distribution (uniform probability distribution)

63

Histograms

• Engineers are trying to make decisions about populations

or processes to which they have limited access.

• Thus, they design experiments and collect samples that

they think will fairly represent the underlying population

or process.

• Regardless of what type of statistical analysis will result

from the investigation or study, all statistical analysis

should follow the same general approach:

– Measure a limited number of representative samples from a

larger population.

– Estimate the true statistics of larger population from the sample

statistics.

64

Histograms

• Once the researcher has estimated the sample 

statistics from the sample population, 

– he or she will try to draw conclusions about the 

larger (true) population. 

• The most important question to ask when 

reviewing the statistics and conclusions drawn 

from the sample population is 

– how well the sample population represents the 

larger, underlying population.

65

Histograms

• Checklist for evaluating a histogram:
– Examine the scale used for the vertical axis and beware 

of results that appear exaggerated or played down 
through the use of inappropriate scales.

– Check out the units on the vertical axis to see whether 
the histogram reports frequencies (numbers) or relative 
frequencies (percentages), and then take this into 
account when evaluating the information.

– Look at the scale used for the groupings of the 
numerical variable (on the horizontal axis). 

• If the range for each group is very small, the data may look 
overly volatile. 

• If the ranges are very large, the data may appear to be 
smoother than they really are.

66
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Measures of Central Tendency

• Histograms are useful for visualizing

numerical data and identifying their location

and spread.

• However, we typically use descriptive

or summary statistics for more precise

specification of the

– central tendency

– dispersion

of observed values.

67

Measures of Central Tendency

• A central tendency is a central or typical value 

for a probability distribution. 

– also called a center or location of the distribution. 

• Measures of central tendency are often called 

averages.

• There are several measures that reflect the 

central tendency

– sample mean, 

– sample median, 

– sample mode.

68

Mean

• In mathematics, mean has several different
definitions depending on contex.

• In probability and statistics

– mean and expected value are synonymous

• In case of a discrete probability distribution of
random variable x,

– the mean is equal to the sum over every possible
value weighted by the probability of that value

𝜇 =  𝑥𝑃(𝑥)

69

Mean

• For a data set, the terms 

– arithmetic mean, 

– mathematical expectation, 

– sometimes average

are used synonymously to refer to a central value of a 
discrete set of numbers

– specifically, the sum of the values divided by the number of 
values. 

• If the data set were based on a series of observations 
obtained by sampling from a statistical population, 

– the arithmetic mean is termed as the sample mean to 
distinguish it from the population mean
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Mean

• Outside of probability and statistics, a wide range of other 

notions of mean are often used in geometry and analysis:

– Pythagorean means

• Arithmetic mean, Geometric mean, Harmonic mean

– Generalized means

• Power mean, 

– a.k.a generalized mean, Hölder mean, mean of degree (or order or power) p

• ƒ-mean

– Weighted arithmetic mean

– Truncated mean

– Interquartile mean

– Fréchet mean

– … 
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Mean

• Arithmetic mean (or simply mean) of a sample 𝑥1, 

𝑥2…, 𝑥n, usually denoted by  𝑥

 𝑥 =
𝑥1 + 𝑥2 + ⋯+𝑥n

𝑛
• It is used when the spread of the data is fairly 

similar on each side of the mid point

72

– when the data are 

“normally distributed”.
• If a value is a lot smaller or larger 

than the others, “skewing” the 

data, the mean will then not give a 

good picture of the typical value.
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Mean

• Geometric mean is an average that is useful for sets of 

positive numbers that are interpreted according to their

product, e.g.  rates of growth

 𝑥 = 𝑛 𝑥1𝑥2…𝑥n

• Harmonic mean is an average which is useful for sets

of numbers that are defined in relation to some unit, 

for example speed

 𝑥 =
𝑛

1
𝑥1

+
1
𝑥2

+ ⋯+
1
𝑥n

73

Mean

• The relationship between Arithmetic mean, Geometric mean, 
and Harmonic mean:

Arithmetic mean × Harmonic mean = Geometric mean2

• Arithmetic mean, Geometric mean, and Harmonic mean satisfy
the following inequalities:

Arithmetic mean ≥ Geometric mean ≥ Harmonic mean
• Equality holds if and only if all the elements of the given sample are equal

• The arithmetic mean is best used in situations where:
– the data are not skewed (no extreme outliers)

– the individual data points are not dependent on each other

• The geometric mean should be used whenever the data are 
inter-related

• The harmonic mean is best to use when there is:
– A large population where the majority of the values are distributed 

uniformly but where there are a few outliers with significantly higher 
values
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Mean

• Weighted arithmetic mean is used if one wants to

combine average values from samples of the same

population with different sample sizes

 𝑥 =
 𝑖=1

𝑛 𝑤𝑖 × 𝑥𝑖

 𝑖=1
𝑛 𝑤𝑖

– The weights 𝑤𝑖 represent the sizes of the different samples.

– In other applications, they represent a measure for the

reliability of the influence upon the mean by respective

values.
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Mean

• A power mean is a mean of the form

𝑀𝑝 =
1

𝑛
 

𝑘=1

𝑛

𝑥𝑘
𝑝

 1 𝑝

𝑀−∞ minimum

𝑀−1 harmonic mean

𝑀0 geometric mean

𝑀1 arithmetic mean

𝑀2 root-mean-square

𝑀∞ maximum
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Mean

77

Sample Mean

• Plotting the

three samples 

along with their

means (short

vertical lines)

• For Sample 1, 

Sample 2, and 

Sample 3, the 

means are 2.1, 

3.9, and 4.1, 

respectively.

78
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Sample Mean

• Sample mean is sensitive to very large or very small values,
which might be outliers (unusual values).

• For instance, suppose that we have measured the resting 
heart rate (in beats per minute) for five people.

• In this case, the sample mean is 79.8, which seems to be a
good representative of the data.

• Now suppose that the heart rate for the first individual is
recorded as 47 instead of 74.

• Now, the sample mean does not capture the central 
tendency.
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Median

• Sometimes known as the mid-point.

– It is used to represent the average when the data are 

not symmetrical (skewed distribution)

• The median value of a group of 

observations or samples, xi, is the 

middle observation when samples, 

xi, are listed in descending order.

• Note that if the number of samples, n, is odd, the median will be the middle 

observation. 

• If the sample size, n, is even, then the median equals the average of two 

middle observations. 

• Compared with the sample mean, the sample median is less susceptible to 

outliers. 
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Median

• Compared with the sample mean, the sample 

median is less susceptible to outliers. 

• For instance, consider the resting heart rate 

mentioned in slide 61;

• The sample medians (denoted  𝑥) are

• So, the median is more robust against outliers.
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Median

• The median may be given with its inter-

quartile range (IQR). 

• The 1st quartile point has the 1⁄4 of the data 

below it 

• The 3rd quartile point has the 3⁄4 of the sample 

below it 

• The IQR contains the middle 1⁄2 of the sample 

• This can be shown in a “box and whisker” plot.
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Median (example)

• A dietician measured the energy intake over 24 hours of 50 patients on a

variety of wards. One ward had two patients that were “nil by mouth”. The

median was 12.2 megajoules, IQR 9.9 to 13.6. The lowest intake was 0, the 

highest was 16.7. 

• This distribution is represented by the box and whisker plot below.

• Box and whisker plot of energy 

intake of 50 patients over 24 hours. 

• The ends of the whiskers represent 

the maximum and minimum values, 

excluding extreme results like those 

of the two “nil by mouth” patients.
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Sample Mean and Median

84

Histogram of bmi. 

in the Pima.tr data set. 

Histogram of lwt. 

in the birthwt data set. 

Histogram of WhiteMeat

in the Protein data set. 

Neither mean nor median 
is a good measurement
for central tendency since 
the histogram is bimodal.

The mean is shifted to 

the right of the median. 

Because the histogram is 

skewed to the right. 

The mean and median are 

nearly equal since the 

histogram is Symmetric.
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Mode

• the most common of a set of events

– used when we need a label for the most frequently 

occurring event

• Example: An eye clinic sister noted the eye colour of 

100 consecutive patients. The results are shown below

• Graph of eye colour of 

patients attending an 

eye clinic.

• In this case the mode is 

brown, the commonest 

eye colour.
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Mode

• You may see reference to a bi-modal distribution.

– Generally when this is mentioned in papers it is as a concept 

rather than from calculating the actual values, 

• e.g. “The data appear to follow a bi-modal distribution”. 

• Graph of ages of patients with 

asthma in a practice

– The arrows point to the modes at 

ages 10–19 and 60–69.

• Bi-modal data may suggest that 

two populations are present 

that are mixed together, 

– so an average is not a suitable 

measure for the distribution.
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Mean, Median, Mode

• Comparison of the arithmetic mean, 

median and mode of two skewed (log-

normal) distributions.
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• Geometric visualisation of the 

mode, median and mean of an 

arbitrary probability density 

function.
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An applicaton of mean: moving AVERAGE filter

• Highlights trends in a signal (smoothing)

k: pozitif integer, wj: weights,  wj =1

• Algorithm for the 1st order MA filter
for n=1:N

y(n)=0.5*(x(n)+x(n+1));

end

• Example (2 point moving AVERAGE filter)

x=(x1, x2 , x3 , x4 , x5 , x6 , x7 , x8 , …)

y=([x1+x2]/2, [x2+x3]/2, [x3+x4 ]/2, …)




 



k

kj

jnjn

n

kNknxwy

Nnx

,,...,1:

,...,1:
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Complementary procedure: moving DIFFERENCE filter

• Removes trends from a signal (sharpening)

• 1st order differencing

Dyt = yt - yt-1

• Higher order differences (2nd order)

D2yt = D(Dyt) = Dyt - Dyt-1= yt - 2yt-1 + yt-2

• Example (1st order moving DIFFERENCE filter)

x=(x1, x2 , x3 , x4 , x5 , x6 , x7 , x8 , …)

y=([x2-x1], [x3-x2], [x4-x3 ], …)
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Moving median filtering

• Useful in impulsive noise removal (image 

processing, sliding median filtering)

• Example: 

– 3 point moving median filtering

x=(x1, x2 , x3 , x4 , x5 , x6 , x7 , x8 , …)

y=(med[x1,x2,x3], med[x2,x3,x4], med[x3,x4,x5], …)

– If a window with even number of samples are selected

median is average of two mid-point samples
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Measures of Variability

• When summarizing the variability of a 

population or process, we typically ask, 

– “How far from the center (sample mean) do the 

samples (data) lie?” 

• To answer this question, we typically use the

following estimates that represent the spread of 

the sample data: 

– sample variance,

– sample standard deviation. 

– interquartile ranges, 

91

Variance and standard deviation

• Consider Sample 2 and 

Sample 3. 

• The two samples have

similar locations, but 

Sample 3 is more dispersed 

than Sample 2. 

• The deviations (differences) 

of observations from the 

center (e.g., mean) tend to 

be larger in Sample 3 

compared to Sample 2.
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Variance and standard deviation

• Two common summary statistics for

measuring dispersion are the sample variance

and sample standard deviation.

• These two summary statistics are based on the

deviation of observed values from the mean as

the center of the distribution.

• For each observation, the deviation from the

mean is calculated as

𝑥𝑖 −  𝑥
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Variance and standard deviation

• The sample variance is a common measure of 

dispersion based on the squared deviations.

• The square root of the variance is called the 

sample standard deviation.
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Measures of Variability

• Standard deviation (SD) is used for data which 

are “normally distributed”, 

– to provide information on how much the data vary 

around their mean.

• SD indicates how much a set of values is 

spread around the average.

• A range of one SD above and below the mean

(abbreviated to ± 1 SD) includes 68.2% of the values.

• ± 2 SD includes 95.4% of the data.

• ± 3 SD includes 99.7%.
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Measures of Variability

• Example 1:
• Let us say that a group of patients enrolling for a trial had a normal

distribution for weight. The mean weight of the patients was 80 kg. For this 

group, the SD was calculated to be 5 kg.

• normal distribution of weights of patients enrolling in a trial with mean 80 kg, SD 5 kg.

• 1 SD below the average is 80 – 5 = 75 kg.

• 1 SD above the average is 80 + 5 = 85 kg.

• ± 1 SD will include 68.2% of the subjects, 

so 68.2% of patients will weigh between 

75 and 85 kg.

• 95.4% will weigh between 70 and 90 kg 

(± 2 SD).

• 99.7% of patients will weigh between 65 

and 95 kg (± 3 SD)

96
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Variance and standard deviation

• Example 2
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Variance and standard deviation

• some properties that can help you when 
interpreting a standard deviation:

– The standard deviation can never be a negative 
number.

– The smallest possible value for the standard deviation 
is 0 

• (when every number in the data set is exactly the same).

– Standard deviation is affected by outliers, as it’s based 
on distance from the mean, which is affected by 
outliers.

– The standard deviation has the same units as the 
original data, while variance is in square units.
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Measures of Variability

• It is important to note that for normal 

distributions (symmetrical histograms), 

– sample mean and sample deviation are the only 

parameters needed to describe the statistics of the 

underlying phenomenon. 

• Thus, if one were to compare two or more 

normally distributed populations, 

– one only needs to test the equivalence of the means 

and variances of those populations.

99

Quantile

• comes from the word quantity

• A quantile is where a sample is divided into equal-sized, 
adjacent, subgroups 
– (quantile is also called a fractile)

• It can also refer to dividing a probability distribution 
into areas of equal probability

• Quartiles are also quantiles; 
– they divide the distribution into four equal parts. 

• Percentiles are quantiles;
– they divide a distribution into 100 equal parts 

• Deciles are quantiles;
– they divide a distribution into 10 equal parts.
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Percentiles

• the most common way to report relative 
standing of a number within a data set 

• A percentile is the percentage of individuals in 
the data set who are below where your 
particular number is located. 

– For example, 

– if your exam score is at the 90th percentile, that 
means 

• 90% of the people taking the exam with you scored 
lower than you did 

• 10 percent scored higher than you did
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Percentiles

• Steps to calculate the kth percentile (where k is 
any number between 1 and one 100):

1.  Order all the numbers in the data set from smallest 
to largest.

2. Multiply k percent times the total number of 
numbers, n.

3a.If your result from Step 2 is a whole number, go 
to Step 4. 

If the result from Step 2 is not a whole number, 
round it up to the nearest whole number and go to 
Step 3b. 

102
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Percentiles

3b.Count the numbers in your data set from left to 

right (from the smallest to the largest number) 

until you reach the value from Step 3a. 

This corresponding number in your data set is the 

kth percentile.

4.  Count the numbers in your data set from left to 

right until you reach that whole number. 

The kth percentile is the average of that 

corresponding number in your data set and the 

next number in your data set.
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Percentiles - example

• Suppose 25 test scores, in order from lowest to 

highest: 

43, 54, 56, 61, 62, 66, 68, 69, 69, 70, 71, 72, 77, 78, 

79, 85, 87, 88, 89, 93, 95, 96, 98, 99, 99. 

• To find the 90th percentile for these scores

– multiply 90% by the total number of scores, 

• 90% × 25 = 0.90 × 25 = 22.5 (step 2). 

• This is not a whole number; 

– Step 3a says round up to the nearest whole number, 

23, then go to step 3b
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Percentiles - example

– Counting from left to right 
• you go until you find the 23rd number in the data set. 

– That number is 98, 
• which is the 90th percentile for this data set.

• To find the 20th percentile, 
– take 0.20 ∗ 25 = 5; 

• this is a whole number so proceed to Step 4, which tells us the 
20th percentile is the average of the 5th and 6th numbers in 
the ordered data set (62 and 66). 

– 20th percentile then becomes (66 + 62) / 2 = 64

• The median is the 50th percentile, 
– the point in the data where 50% of the data fall below 

that point and 50% fall above it. 
• The median for the test scores example is the 13th number, 77.
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Percentiles

• A percentile is not a percent; 

– a percentile is a number that is a certain percentage 
of the way through the data set, 

• when the data set is ordered. 

• Suppose your score on the GRE was reported 
to be the 80th percentile. 

– This does not mean you scored 80% of the 
questions correctly. 

– It means that 80% of the students’ scores were 
lower than yours, and 20% of the students’ scores 
were higher than yours.
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Quartile

• For sampled data, the median is also known as 

– the 2nd quartile, Q2. 

• Given Q2, we can find the 1st quartile, Q1, 

– by simply taking the median value of those samples that lie 
below the 2nd quartile. 

• We can find the 3d quartile, Q3, 

– by taking the median value of those samples that lie above the 
2nd quartile. 

• Quartiles can also be found in terms of percentiles:

– 1st quartile is 25th percentile

– 2nd quartile is 50th percentile

– 3rd quartile is 75th percentile
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Quartile

• Considering the following (25) test scores

43, 54, 56, 61, 62, 66, 68, 69, 69, 70, 71, 72, 77, 78, 

79, 85, 87, 88, 89, 93, 95, 96, 98, 99, 99 

• Q1 (25th percentile)

0.25 * 25 = 6.25  (round up)  7 Q1 = 68

• Q2 (50th percentile)

0.50 * 25 = 12.5  (round up)  13 Q2 = 77

• Q1 (75th percentile)

0.75 * 25 = 18.75  (round up)  19 Q3 = 89

108
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Measures of Variability

109

Five-number summary

• The minimum (min), which is the smallest value of the
variable in our sample, is in fact the 0 quantile.

• On the other hand, the maximum (max), which is the 
largest value of the variable in our sample, is the 1 
quantile.

• The minimum and maximum along with quartiles (Q1, 
Q2, and Q3) are known as five-number summary.

• These are usually presented in the increasing order: 

– min, 1st quartile, median, 3rd quartile, max

– min, 25th percentile, median, 75th percentile, max

• This way, the five-number summary provides 

– 0, 0.25, 0.50, 0.75, and 1 quantiles
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Five-number summary

• The five-number summary can be used to 

derive two measures of dispersion: 

– the range

• the difference between the maximum observed value 

and the minimum observed value.

– the interquartile range (IQR) 

• the difference between the third quartile (Q3) and the 

first quartile (Q1).

IQR = Q3 - Q1
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Measures of Variability – example 1

• As an illustration, we have the following samples:
99, 99, 56, 61, 62, 66, 68, 98, 69, 70, 71, 72, 77, 78, 79, 85, 87, 88, 89, 93, 95, 96, 
69, 54, 43

• list these samples in ascending order,
43, 54, 56, 61, 62, 66, 68, 69, 69, 70, 71, 72, 77, 78, 79, 85, 87, 88, 89, 93, 95, 96, 98, 
99, 99 

• the median value (Q2) for these samples is 77 (13th sample). 

• The 1st quartile, Q1, can be found by taking the median of the following 
samples,

43, 54, 56, 61, 62, 66, 68, 69, 69, 70, 71, 72, 77

– which is 68

• The 3rd quartile, Q3, may be found by taking the median value of the
following samples:

77, 78, 79, 85, 87, 88, 89, 93, 95, 96, 98, 99, 99

– which is 89. 

• Thus, the interquartile range, (Q1 = 68; Q2 = 77; Q3 = 89)

Q3 − Q1 = 89 − 68 = 21
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Measures of Variability – example 1

• Using percentiles;
– list the samples in ascending order,

43, 54, 56, 61, 62, 66, 68, 69, 69, 70, 71, 72, 77, 78, 79, 85, 87, 88, 89, 
93, 95, 96, 98, 99, 99

• Q1 (25th percentile)
0.25 * 25 = 6.25  (round up)  7 Q1 = 68

• Q2 (50th percentile)
0.50 * 25 = 12.5  (round up)  13 Q2 = 77

• Q1 (75th percentile)
0.75 * 25 = 18.75  (round up)  19 Q3 = 89

• In this case, the interquartile range, (Q1 = 68; Q2 = 77; Q3 = 89)

Q3 − Q1 = 89 − 68 = 21
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Measures of Variability – example 1

• Alternative calculation;
– Use the following formula to estimate the ith observation:

ith observation = q (n + 1)

– where q is the quantile, n is the number of items in a data set

• list the samples in ascending order; 
43, 54, 56, 61, 62, 66, 68, 69, 69, 70, 71, 72, 77, 78, 79, 85, 87, 88, 89, 
93, 95, 96, 98, 99, 9

• Q1 (25th percentile)
0.25 * (25 +1) = 6. 5  (round down)  6 Q1 = 66

• Q2 (50th percentile)
0.50 * (25 +1) = 13  13 Q2 = 77

• Q1 (75th percentile)
0.75 * (25 +1) = 19.5  (round down)  19 Q3 = 89

• In this case, the interquartile range, (Q1 = 66; Q2 = 77; Q3 = 89)

Q3 − Q1 = 89 − 66 = 23
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Measures of Variability – example 2

• As an illustration, we have the following samples:
1, 3, 3, 2, 5, 1, 1, 4, 3, 2.

• list these samples in descending order,
5, 4, 3, 3, 3, 2, 2, 1, 1, 1

• the median value (Q2) for these samples is 2.5

• The 1st quartile, Q1, can be found by taking the median of the 
following samples,

2.5, 2, 2, 1, 1, 1

– which is 1.5 

• The 3rd quartile, Q3, may be found by taking the median value of the
following samples:

5, 4, 3, 3, 3, 2.5

– which is 3. 

• Thus, the interquartile range, (Q1 = 1.5; Q2 = 2.5; Q3 = 3)

Q3 − Q1 = 3 − 1.5 = 1.5
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Measures of Variability – example 2

• Using percentiles;
– list the samples in ascending order,

1, 1, 1, 2, 2, 3, 3, 3, 4, 5

• Q1 (25th percentile)
0.25 *10 = 2.5  (round up)  3 Q1 = 1

• Q2 (50th percentile)
0.50 *10 = 5  5 Q2 = (2+3)/2 = 2.5

• Q1 (75th percentile)
0.75 *10 = 7.5  (round up)  8 Q3 = 3

• In this case, the interquartile range, (Q1 = 1; Q2 = 2.5; Q3 = 3)

Q3 − Q1 = 3 − 1 = 2
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Measures of Variability – example 2

• Alternative calculation;
– Use the following formula to estimate the ith observation:

ith observation = q (n + 1)

– where q is the quantile, n is the number of items in a data set

• list the samples in ascending order; 1, 1, 1, 2, 2, 3, 3, 3, 4, 5

• Q1 (25th percentile)
0.25 * (10 +1) = 2.75  (round down)  2 Q1 = 1

• Q2 (50th percentile)
0.50 * (10 +1) = 5.5  (round down)  5 Q2 = 2

• Q1 (75th percentile)
0.75 * (10 +1) = 8.25  (round down)  8 Q3 = 3

• In this case, the interquartile range, (Q1 = 1; Q2 = 2; Q3 = 3)

Q3 − Q1 = 3 − 1 = 2
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Five-number summary

• We can use R-Commander to 
obtain the five-number summary 
along with mean and standard 
deviation. 

• Make sure birthwt is the active 
data set.
– Click Statistics → Summaries → 

Numerical summaries. 

– Now select bwt. 
• Make sure Mean, Standard Deviation,

Interquantile and Quantiles are 
checked. 

– The resulting summary statistics are:
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Boxplot

• To visualize the five-number summary, the range and the IQR,
– we often use a boxplot

• a.k.a. box and whisker plot

• Very often, boxplots are drawn vertically.

• To create a boxplot for bwt in R-Commander, 
– make sure birthwt is the active dataset, 

– click Graphs → Boxplot, and select bwt.
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Boxplot

• This simplest possible box plot displays 
the full range of variation (from min to 
max), the likely range of variation (the 
IQR), and a typical value (the median). 

• Not uncommonly real datasets will 
display surprisingly high maximums or 
surprisingly low minimums called 
outliers. 

• John Tukey has provided a precise 
definition for two types of outliers:

– Outliers are either 3×IQR or more above 
the third quartile or 3×IQR or more below 
the first quartile.

– Suspected outliers are slightly more central versions of outliers: 
• either 1.5×IQR or more above the third quartile 

– (Q3 + 1.5 x IQR)

• or 1.5×IQR or more below the first quartile 
– (Q1-1.5 x IQR)
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Boxplot

• If either type of outlier is 
present 
– the whisker on the 

appropriate side is taken to 
1.5×IQR from the quartile 
(the "inner fence") rather 
than the max or min, 

• individual outlying data 
points are displayed as 
– unfilled circles for suspected 

outliers 

– or filled circles for outliers. 

• The "outer fence" is 3×IQR
from the quartile.
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Boxplot

• Vertical boxplot
of lwt. 

• This plot reveals 
that the variable
lwt is right-
skewed and there
are several
possible outliers, 
– whose values are

beyond the
whisker on the 
top of the box
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Data Preprocessing

• We refer to data in their original form (i.e., 

collected by researchers) as the raw data.

• Before using the original data for analysis, we

should thoroughly check them for missing 

values and possible outliers.

• We refer to the process of preparing the raw 

data for analysis as data preprocessing.

• The data set we have been using so far 

(Pima.tr) was obtained after removing these

observations from Pima.tr2.
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Missing Data

• Here, missing values are denoted 

NA (Not Available)

• In general, it is up to the 

researcher to decide whether to 

remove the observations with 

missing values or impute (guess) 

the missing values in order to 

keep the observations. 

• To remove all observations with missing values 

– click Data → Active data set → Remove cases with missing data. 

• To remove individual observations, 

– click Data→Active data set → Remove row(s) from active data 

and enter the row numbers for observations you want to remove.
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Outliers

• Sometimes, an observed value of a variable is suspicious 
since it does not follow the overall patterns presented by the 
rest of the data. 
– We refer to such observations as outliers.

• For analyzing such data, we could use statistical methods 
that are more robust against outliers (e.g., median, IQR).

• Frequency table for gender from the AsthmaLOS data set. 

• The value of gender 
for two observations
are entered as “4”, 
while gender can 
only take 0 or 1
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Data Set AsthmaLOS

• los: length of stay in hospital (in days).

• hospital.id: hospital ID.

• insurer: the insurer, which is either 0 or 1.

• age: the age of the patient.

• gender: the gender of the patient; 1 for female, and 0 for male.

• race: the race of the patient; 1 for white, 2 for Hispanic, 3 for 

African-American, 4 for Asian/Pacific Islander, 5 for others.

• bed.size: the number of beds in the hospital; 1 means 1 to 99, 2 means 

100 to 249, 3 means 250 to 400, 4 means 401 to 650.

• owner.type: the hospital owner; 1 for public, 2 for private.

• complication: if there were any treatment complication; 0 means 

there were no complications, 1 means there were some 

complications.
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• The boxplot of 

los with two 

extremely 

large values
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Data Transformation

• We rely on data transformation techniques (i.e., 
applying a function to the variable) 

– to reduce the influence of extreme values in our analysis. 

• Two of the most commonly used transformation 
functions for this purpose are 

– logarithm

– square root.

• To use log-transformation, 

– click Data→ Manage variables in active data set → 
Compute new variable.

– Under New variable name, enter log.lwt, and under 
Expression to compute, enter log(lwt)
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Data Transformation

• Left panel: Histogram of variable lwt in the 

birthwt data set. 

• Right panel: Histogram of log-transformation 

of variable lwt
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Data Transformation

• The reasons for data transformation:

– to make the distribution of the data normal, 

• this fulfills one of the assumptions of conducting a

parametric means comparison. 

– to create more informative graphs of the data, 

– better outlier identification (or getting outliers in 

line) 

– increasing the sensitivity of statistical tests 
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Data Transformation

• A data transformation is defined to be a 

process in which the measurements on the 

original scale are systematically converted to a 

new scale of measurement.

• Transformations involve applying a 

mathematical function to each data point. 

• A transformation is needed when the data is 

excessively skewed positively or negatively. 
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Some data transformations
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Data Transformation

• The figure below suggests the type of transformation that can

be applied depending upon the degree of skewness. 
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Positively skewed data Negatively skewed data

Data Transformation

• Logarithms: 

– Growth rates are often exponential and log 

transforms will often normalize them. 

– Log transforms are particularly appropriate if the

variance increases with the mean.

• Reciprocal: 

– If a log transform does not normalize your data you 

could try a reciprocal (1/x) transformation. 

• This is often used for enzyme reaction rate data.
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Data Transformation

• Square root: 

– used when the data are counts, e.g. blood cells on a 

haemocytometer or woodlice in a garden. 

• Carrying out a square root transform will convert data 

with a Poisson distribution to a normal distribution.

• Arcsine: 

– a.k.a. the angular transformation

– especially useful for percentages and proportions 

which are not normally distributed. 
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Data Transformation

• Tabachnick and Fidell (2007) and Howell (2007) suggest to
use the following guidelines when transforming data:

If your data distribution is… Try this transformation method

Moderately positive skewness Square-Root

NEWX = SQRT(X)

Substantially positive skewness Logarithmic (Log 10)

NEWX = LG10(X)

Substantially positive skewness Logarithmic (Log 10)

(with zero values) NEWX = LG10(X + C)

Moderately negative skewness Square-Root

NEWX = SQRT(K – X)

Substantially negative skewness Logarithmic (Log 10)

NEWX = LG10(K – X)
• C = a constant added to each score so that the smallest score is 1.

• K = a constant from which each score is subtracted
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Howell, D. C. (2007). Statistical methods for psychology (6th ed.). Belmont, CA: Thomson Wadsworth.

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Allyn and Bacon

Creating New Variable

• We can create a new variable based on two or 
more existing variables.

• Consider the bodyfat data set, which includes 
weight and height.

• To create BMI, 

– click Data → Manage variables in active data set 
→ Compute new variable. 

– Under New variable name, enter BMI, and under 
Expression to compute, enter 

• (weight * 703)/(height^2)
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• Creating a new variable BMI based on weight and 

height for each person in the bodyfat data set
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Creating New Variable

• This will create a new variable called BMI. 

• We can now investigate the linear relationship

between this variable and percent body fat by 

calculating their sample correlation coefficient. 

• Pearson’s correlation coefficient between siri

and BMI is 0.72, 

– which indicates a strong positive linear relationship 

as expected.
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Creating Catagories for Numerical Variables

• This could help us to see the patterns more clearly and

identify relationships more easily. 

• Histograms are created by dividing the range of a 

numerical variable into intervals. 

• Instead of using arbitrary intervals, we might prefer to 

group the values in a meaningful way.
• Standard weight status

based on BMI

according to CDC 

(Centers for Disease Control and 

Prevention)
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Creating Catagories for Numerical Variables

• In R-Commander, let us divide subjects based on their bmi (from the 

Pima.tr) into four groups: 

Underweight, Normal, Overweight, and Obese. 

– Click Data → Manage variables in active data set → Recode variables.

• To specify the order of categories in R-Commander,

– click Data → Manage variables in active data set → Reorder factor levels. 

Then select weight.status.
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Creating Catagories for Numerical Variables

• The bar graph for

bmi after 

converting the

numerical 

variable to a

categorical 

variable
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Creating Catagories for Numerical Variables

• Summary statistics for 

bwt and lwt from the

birthwt data set

• Creating a new variable

bwt.lb (birth weight in 

pounds) and obtaining its

summary statistics

• Creating a new variable

bwt.lb (birth weight in 

pounds) and obtaining its

summary statistics
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Coefficient of Variation

• In general, the coefficient of variation is used to 
compare variables in terms of their dispersion
when the means are substantially different 

– possibly as the result of having different measurement
units.

• To quantify dispersion independently from units, 
we use the coefficient of variation, 

– which is the standard deviation divided by the sample 
mean 

• assuming that the mean is a positive number:

𝐶𝑉 =
𝑠

 𝑥
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Coefficient of Variation

• The coefficient of variation 

– for bwt (birth weight in grams) is 

• 729.2/ 2944.6 = 0.25 

– for bwt.lb (birth weight in pounds) is 

• 1.6/6.5 = 0.25. 

– for lwt (weight in pounds) is 

• 30.6/129.8 = 0.24

• Comparing this coefficient of variation 

suggests that the two variables have roughly 

the same dispersion in terms of CV.

145

Scaling and Shifting Variables

• In general, when we multiply the observed values of a 

variable by a constant a, its mean, standard deviation, 

and variance are multiplied by a, |a|, and a2, 

respectively.

– That is, if y = ax, then

•  𝑦=a  𝑥, 𝑠𝑦= 𝑎 𝑠𝑥, 𝑠𝑦
2=𝑎2𝑠𝑥

2

• The coefficient of variation is not affected. 
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Scaling and Shifting Variables

• If we shift the observed values by b, i.e., y = x + b, then

 𝑦=  𝑥 + 𝑏, 𝑠𝑦=𝑠𝑥 , 𝑠𝑦
2=𝑠𝑥

2

• If we multiply the observed values by the constant a and then 

add the constant b to the result, i.e., y = ax +b, then

 𝑦=a  𝑥 + 𝑏, 𝑠𝑦= 𝑎 𝑠𝑥, 𝑠𝑦
2=𝑎2𝑠𝑥

2

• the coefficient of variation will change. If y = ax +b (assuming 

a >0 and b = 0), then
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Variable Standardization

• Variable standardization is a common linear transformation, 
– where we subtract the sample mean  𝑥 from the observed values 

and divide the result by the sample standard deviation s, 
• in order to shift the mean to zero and make the standard deviation 1:

• Using such transformation is especially common in 
regression analysis and clustering.

• Subtracting  𝑥 from the observations shifts the sample mean 
to zero. 
– This, however, does not change the standard deviation. 

• Dividing by s, on the other hand, changes the sample
standard deviation to 1
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Data Exploration with R Programming

• Load Pima.tr data set, which is available from MASS package
> library(MASS)

> data(Pima.tr)

> data("Pima.tr")     is also valid

• The head() function shows only the first part of the data set. 
> head(Pima.tr) 

• Use the help() function to view description on the data available in 
the package
> help(Pima.tr)

• Use table() function to obtain the frequencies for the catagorical 
variable
> type.freq <- table(Pima.tr$type)

> type.freq
No    Yes

132 68

Note that the $ symbol is being used to access the type variable in the 
Pima.tr data set.
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Data Exploration with R Programming

• Now, use the type.freq table to create the bar 

graph.

> barplot(type.freq, xlab = "Type", ylab = "Frequency", main 

= "Frequency Bar Graph of Type")

The first parameter to the barplot() function is the frequency table. 

The options xlab and ylab label the x and n axes, respectively. 

Likewise, the main option puts a title on the plot.

• The relative frequency can be calculated as

> n <- sum(type.freq)

> type.rel.freq <- type.freq/n

> round(type.rel.freq, 2)

> round(type.rel.freq, 2) * 100
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Data Exploration with R Programming

• If the levels of a categorical variable in the data set is 
coded as numbers, we need to convert the type of 
variable to factor using the factor() function, so that R
recognizes it as categorical. 

• You can use the function is.factor() to examine whether a 
variable is a factor.
> data(birthwt)

> is.factor(birthwt$smoke)

[1] FALSE

> birthwt$smoke <- factor(birthwt$smoke)

> is.factor(birthwt$smoke)

[1] TRUE

> table(birthwt$smoke)

0       1

115   74
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Data Exploration with R Programming

• To create a frequency histogram for age, use 

the hist() function with the freq option set to 

“TRUE” (which is the default):

> hist(Pima.tr$age, freq = TRUE, xlab = "Age", ylab = 

"Frequency", col = "grey", main = "Frequency Histogram of 

Age")

• Then create a density histogram of age by 

setting the freq option to “FALSE”:

> hist(Pima.tr$age, freq = FALSE,xlab = "Age", ylab = 

"Density", col = "grey", main = "Density Histogram of Age")
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Data Exploration with R Programming

• We can obtain the mean and median of numerical data with the mean() and 
median() functions. 

• Find these statistics for numerical variables in Pima.tr:
> mean(Pima.tr$npreg)

[1] 3.57

> median(Pima.tr$bmi)

[1] 32.8

• The quantile() function with the probs option returns the specified quantiles:
> quantile(Pima.tr$bmi, probs = c(0.1, 0.25, 0.5, 0.9))

10% 25% 50% 90%

24.200  27.575  32.800    39.400

• The five-number summary along with the mean can simply be obtained 
with the summary() function:
> summary(Pima.tr$bmi)

Min. 1st Qu. Median Mean 3rd Qu. Max.

18.20   27.58     32.80     32.31    36.50      47.90
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Data Exploration with R Programming

• We can present the five-number summary visually with a 
boxplot:
> boxplot(Pima.tr$bmi, ylab = "BMI")

• While the default is to create vertical boxplots, we can also 
create horizontal boxplots by specifying the horizontal option 
to true:
> boxplot(Pima.tr$bmi, ylab = "BMI", horizontal = TRUE)

• Find the interquartile range (IQR) with the IQR() function:
> IQR(Pima.tr$bmi)

[1] 8.925

• The smallest and largest observations can be obtained with 
the range() function

• the functions min() and max() could also be applied):

> minMax <- range(Pima.tr$bmi)

> minMax

[1] 18.2 47.9
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Data Exploration with R Programming

• The variance and standard deviation are also 

easily calculated with var() and sd():

> var(Pima.tr$bmi)

[1] 37.5795

> sd(Pima.tr$bmi)

[1] 6.130212
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Data Exploration with R Programming

• Creating Categories for Numerical Variables:

– To create a categorical variable weight.status based on 
the bmi variable in Pima.tr, we can go through each 
observation one by one and assign each observation to 
one of the four categories: 

• “Underweight”, 

• “Normal”, 

• “Overweight”,

• “Obese”. 

– To do this, we can use loops and conditional statements

– First, we start by creating an empty vector of size 200 
within the Pima.tr data frame:

> Pima.tr$weight.status <- rep(NA, 200)
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Data Exploration with R Programming

– Next, we set the values of weight.status for all observations by using 
ifelse() statements within a for() loop:

> for (i in 1:200) {

if (Pima.tr$bmi[i] < 18.5) {

Pima.tr$weight.status[i] <- "Underweight"

}

else if (Pima.tr$bmi[i] >= 18.5 &

Pima.tr$bmi[i] < 24.9) {

Pima.tr$weight.status[i] <- "Normal"

}

else if (Pima.tr$bmi[i] >= 24.9 &

Pima.tr$bmi[i] < 29.9) {

Pima.tr$weight.status[i] <- "Overweight"

}

else {

Pima.tr$weight.status[i] <- "Obese"

}

}
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Data Exploration with R Programming

– Here, the loop counter goes from 1 to 200. 

– Use the head() function to view the result:

> head(Pima.tr)
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Data Exploration with R Programming

• Before using the newly created variable 
weight.status in statistical analysis, its type should 
be converted to factor.
> Pima.tr$weight.status <- factor(Pima.tr$weight.status)

• While the above code makes weight.status a factor 
variable, it does not take into account the ordering 
of levels. 

• The levels are ordered alphabetically and can be
examined using the levels() function:
> levels(Pima.tr$weight.status)

[1] "Normal" "Obese"

[3] "Overweight" "Underweight"
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Data Exploration with R Programming

• The right ordering can be provided when the 

factor() function is used to convert the 

variable:

> Pima.tr$weight.status <-

factor(Pima.tr$weight.status,  levels = 

c("Underweight", "Normal",  "Overweight", 

"Obese"))

> levels(Pima.tr$weight.status)

[1] "Underweight" "Normal"

[3] "Overweight" "Obese"
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Handling Missing Data in R

• To find missing values of a variable, 
– the is.na() function can be used

• It returns “TRUE” when the value is missing and “FALSE”
otherwise,

– Consider the Pima.tr2 data set from the MASS library 
• the Pima.tr data set is obtained from Pima.tr2 by removing 

observations with missing values):
> data(Pima.tr2)

> is.na(Pima.tr2$bp)

• To obtain the indices of observations whose 
values are missing, we can use the which() 
function along with the is.na() function.
> which(is.na(Pima.tr2$bp))
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Handling Missing Data in R

• The complete.cases() function returns a logical 

vector indicating which cases (observations) in 

the data set are complete

> complete.cases(Pima.tr2)

• To remove cases with missing values, the 

na.omit() function can be used:

> Pima.complete <- na.omit(Pima.tr2)
• Here, the newly created Pima.complete data set includes only 

the complete cases from Pima.tr2.
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