Statistical Data Analysis

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Course Details

Course Code: BLM3590

Course Name: Statistical Data Analysis

Credit: 3

· Nature of the course: Lecture

· Course web page:

http://www3.yildiz.edu.tr/~naydin/na_SdA.htm

· Instructors: Nizamettin AYDIN

Email: naydin@yildiz.edu.tr

Rules of the Conduct

- No eating /drinking in class
 - except water
- Cell phones must be kept outside of class or switched-off during class
 - If your cell-phone rings during class or you use it in any way, you will be asked to leave and counted as unexcused absent.
- No web surfing and/or unrelated use of computers,
 - when computers are used in class or lab.

Rules of the Conduct

- You are responsible for checking the class web page often for announcements.
 - http://www3.yildiz.edu.tr/~naydin/na SdA.htm
- · Academic dishonesty and cheating
 - will not be tolerated
 - will be dealt with according to university rules and regulations
 - http://www.yok.gov.tr/content/view/475/
 - Presenting any work that does not belong to you is also considered academic dishonesty.

Attendance Policy

- The requirement for attendance is 70%
 - Hospital reports are not accepted to fulfill the requirement for attendance.
 - The students, who fail to fulfill the attendance requirement, will be excluded from the final exams and the grade of F0 will be given.

Assesment

Quiz : 10%
 Midterm : 25%
 Homework : 20%
 Final : 40%
 Attendance & participation : 05%

(The requirement for attendance is 70%)

Objective

- Overall
 - Reinforce your understanding of statistical data analysis
- Specific
 - Concepts of data analysis
 - Some data analysis techniques
 - Some tips for data analysis
- Try to cover every bit and pieces of statistical data analysis techniques

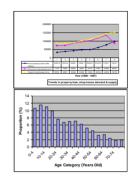
Data analysis - "The Concept"

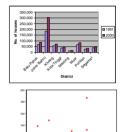
- Approach to de-synthesizing data, informational, and/or factual elements to answer research questions
- Method of putting together facts and figures to solve research problems
- Systematic process of utilizing data to address research questions
- Breaking down research issues through utilizing controlled data and factual information

Categories of data analysis

- Narrative (e.g. laws, arts)
- Descriptive (e.g. social sciences)
- Statistical/mathematical (pure/applied sciences)
- Audio-Optical (e.g. telecommunication)
- Others
- Most research analyses adopt the first three
- The second and third are most popular in pure, applied, and social sciences

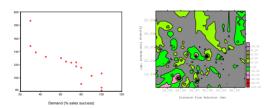
Statistical Methods


- · Something to do with "statistics"
 - Statistics
 - meaningful quantities about a sample of objects, things, persons, events, phenomena, etc.
 - Widely used in many fields (social sciences, engineering, etc.)
 - Simple to complex issues. E.g.


 correlation
 - anova
 - anovamanova
 - regression
 - econometric modelling
- · Two main categories:
 - Descriptive statistics
 - Inferential statistics

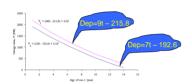
Descriptive statistics

- Use sample information to explain/make abstraction of population "phenomena"
- Common "phenomena":
 - Association (e.g. $\sigma 1, 2.3 = 0.75$)
 - Tendency (left-skew, right-skew)
 - Causal relationship (e.g. if X, then, Y)
 - Trend, pattern, dispersion, range
- Used in non-parametric analysis
 - e.g. chi-square, t-test, 2-way anova)


Examples of "abstraction" of phenomena


60 00 100 120 (% sales success)

Examples of "abstraction" of phenomena



Inferential statistics

- Using sample statistics to infer some "phenomena" of population parameters
- Common "phenomena": cause-and-effect
- One-way relationship
- Multi-directional relationship
- Recursive Y1= f(X, e1)

Examples of relationship

Coefficients

			dardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1993.108	239.632		8.317	.000
	Tanah	-4.472	1.199	190	-3.728	.000
	Bangunan	6.938	.619	.705	11.209	.000
l	Ansilari	4.393	1.807	.139	2.431	.017
l	Umur	-27.893	6.108	241	-4.567	.000
l	Flo_go	34.895	89.440	.020	.390	.697

Which one to use?

- · Nature of research
 - Descriptive in nature?
 - Attempts to infer, predict, find cause-and-effect, influence, relationship?
 - Is it both?
- Research design (including variables involved)
- E.g. outputs/results expected
 - research issue
 - research questions
 - research hypotheses

Common mistakes in data analysis

Wrong techniques. E.g.

wrong techniques. E.g.					
Issue	Data analysis techniques				
	Wrong technique	Correct technique			
To study factors that "influence" visitors to come to a recreation site	Likert scaling based on interviews	Data tabulation based on open-ended questionnaire survey			
"Effects" of KLIA on the development of Sepang	Likert scaling based on interviews	Descriptive analysis based on ex-ante post-ante experimental investigation			

Note: Likert scaling cannot show "cause-and-effect" phenomena

- Infeasible techniques. E.g.
 - How to design ex-ante effects of KLIA?
 - ex ante: based on forecasts rather than actual results
 - Development occurs "before" and "after"!
 - What is the control treatment?

Common mistakes-"Abuse of statistics"

Issue	Data analysis techniques		
	Example of abuse	Correct technique	
Measure the "influence" of a variable on another	Using partial correlation (e.g. Spearman coeff.)	Using a regression parameter	
Finding the "relationship" between one variable with another	Multi-dimensional scaling, Likert scaling	Simple regression coefficient	
To evaluate whether a model fits data better than the other	Using R ²	Many – a.o.t. Box-Cox χ² test for model equivalence	
To evaluate accuracy of "prediction"	Using R ² and/or F-value of a model	Hold-out sample's MAPE	
"Compare" whether a group is different from another	Multi-dimensional scaling, Likert scaling	Many – a.o.t. two-way anova, χ², Z test	
To determine whether a group of factors "significantly influence" the observed phenomenon	Multi-dimensional scaling, Likert scaling	Many – a.o.t. manova, regression	

How to avoid mistakes - Useful tips

- Crystalize the research problem
 - operability of it!
- Read literature on data analysis techniques
- Evaluate various techniques that can do similar things w.r.t. research problem
- Know what a technique does and what it doesn't
- Consult people, esp. supervisor
- Pilot-run the data and evaluate results

Principles of analysis...

- Goal of an analysis:
 - To explain cause-and-effect phenomena
 - To relate research with real-world event
 - To predict/forecast the real-world phenomena based on research
 - Finding answers to a particular problem
 - Making conclusions about real-world event based on the problem
 - Learning a lesson from the problem

... Principles of analysis...

- Data cannot talk
- An analysis contains some aspects of scientific reasoning/argument:
 - Define
 - Interpret
 - Evaluate
 - IllustrateDiscuss
 - Explain
 - Clarify
 - Compare
 - Contrast

... Principles of analysis

- An analysis must have four elements:
 - Data/information (what)
 - Scientific reasoning/argument
 - what? who? where? how? what happens?
 - Finding
 - what results?
 - $\ Lesson/conclusion$
 - so what? so how? therefore, ...

Principles of data analysis...

- Basic guide to data analysis:
 - Analyze, not narrate
 - Go back to research flowchart
 - Break down into research objectives and research questions
 - Identify phenomena to be investigated
 - Visualize the expected answers
 - Validate the answers with data
 - Do not tell something not supported by data

... Principles of data analysis...

Shoppers	Number	
Male		
Old	6	
Young	4	
Female		
Old	10	
Young	15	

- · More female shoppers than male shoppers
- · More young female shoppers than young male shoppers

23

...Principles of data analysis

- When analyzing:
 - Be objective
 - Be accurate
 - Be true
- Separate facts and opinion
- Avoid "wrong" reasoning/argument.
 - E.g. mistakes in interpretation.

5 26