Q1(20)	Q2(20)	Q3(20)	Q4(15)	Q5(10)	Q6(15)	Q7(00)	Q8(00)	Q9(00)	Q10(00)	Total(100)

Q01. Determine whether the following statements are correct or not by placing \mathbf{F} (alse) or $\mathbf{T}($ rue $)$ in parenthesis.
a. The probability distribution of a discrete random variable is fully defined by the probability mass function. (T)
b. A hypothesis is a testable statement about the relationship between two or more variables.
c. The theoretical (population) mean of a random variable \boldsymbol{Y} with $\operatorname{Binomial}(n, \theta)$ distribution is $\boldsymbol{\mu}=\sqrt{\boldsymbol{n}} \boldsymbol{\theta}$. (F)
d. If $\boldsymbol{p}_{\text {obs }}$ is less than the assumed cutoff, the data provides statistically significant evidence against \boldsymbol{H}_{0}. (T)
e. In normal distribution $\mathbf{8 5 \%}$ of values fall within 2 standard deviation of the mean. (F)

Q02. Consider the problem of estimating the proportion of people who regularly smoke. We use X to denote smoking status and μ to denote the population proportion of people who smoke.
a. We hypothesize that the population proportion is less than 0.2 . Write down the null and alternative hypotheses.
b. Suppose that we interviewed 150 people and found that 27 of them smoke regularly. Find the z-score for the test statistic.
c. Evaluate the null hypothesis (find the p-value) and decide whether we can reject the null hypothesis at 0.1 confidence level or not. (Use z-table to estimate z)
a. The null hypothesis is $H_{0}: \mu_{0}=0.2$, the alternative hypothesis is $H_{\mathrm{A}}: \mu_{0}<0.2$
b. $n=150, \quad p=\frac{27}{150}=0.18, \quad z=\frac{p-\mu_{0}}{\sqrt{\mu_{0}\left(1-\mu_{0}\right) / n}}=\frac{0.18-0.2}{\sqrt{0.2(1-0.2) / 150}}=\frac{-0.02}{\sqrt{0.16 / 150}}=-0.61$
c. Using the standard normal distribution, $p_{\text {obs }}=P\left(Z \leq-0.61 \mid H_{0}\right)=0.27$

Therefore, we fail to reject H_{0} at significance level 0.1 .
Q03. Considering the following two plots (left panel is the probability mass distribution, right panel is the probability density distribution), determine the following probabilities:
a. $P(X<3)$
b. $P(1<X \leq 4)$
c. $P(Y>5)$
d. $P(Y<10)$
e. $P(5<Y) \cap P(Y<10)$

a. $\quad P(X<3)=0.80$
b. $\quad P(1<X \leq 4)=0.40$
c. $\quad P(Y>5)=0.45+0.20=0.65$
d. $\quad P(Y<10)=1-0.20=0.80$
e. $\quad P(5<Y) \cap P(Y<10)=0.45$
==12
Q4. A simple random sample of 64 men has a sample mean foot length of 27.5 cm . Assuming that the standard deviation of foot lengths for all men is 2 cm ,
a. write the 95% confidence interval for the mean foot length of all men.
$\bar{x}=27.5 \mathrm{~cm}, \quad \sigma=2 \mathrm{~cm} \quad z_{\text {crit }}$ for $95 \% \mathrm{Cl} \quad \rightarrow \quad z_{\text {crit }}=1.96$
$95 \% \mathrm{Cl}$ for the population mean is
$\left[\bar{x}-z_{\text {crit }} \times \sigma / \sqrt{n}, \bar{x}+z_{\text {crit }} \times \sigma / \sqrt{n}\right]=[\bar{x}-1.96 \times 2 / \sqrt{64}, \bar{x}+1.96 \times 2 / \sqrt{64}]=[\bar{x}-1.96 \times 2 / 8, \bar{x}+1.96 \times 2 / 8]=$
$[\bar{x}-1.96 \times 0.25, \bar{x}+1.96 \times 0.25]=[\bar{x}-0.49, \bar{x}+0.49]=[27.5-0.49,27.5+0.49]=[27.01,27.99]$
b. What is the upper limit of this interval, in centimetres?
27.99 cm

Q5. The random variable X has a Normal distribution with mean 60 and standard deviation 10. One of the following probabilities is also equal to $P(40<X \leq 48)$. Which one? Explain
a. $P(72<X \leq 80)$
b. $P(64<X \leq 72)$
c. $P(50<X \leq 58)$
d. $P(80<X \leq 88)$
e. $P(56<X \leq 64)$

The normal density curve is symmetric about the mean (60) and $(72,80)$ is the interval symmetrically opposite to $(40,48)$.
Correct answer is a.

Q6. The random variable Y has the distribution shown below:

Value	1	4
Probability	0.2	0.8

a. What is the mean of Y ?

The mean of Y is

$$
1 \times 0.2+4 \times 0.8=3.4 .
$$

b. What is the variance of Y ?

The variance of Y is

$$
0.2 \times(1-3.4)^{2}+0.8 \times(4-3.4)^{2}=1.44
$$

