BLM2041 Signals and Systems

The Instructors: Prof. Dr. Nizamettin Aydın <u>naydin@yildiz.edu.tr</u> http://www.yildiz.edu.tr/~naydin

> Asist. Prof. Dr. Ferkan Yilmaz ferkan@yildiz.edu.tr

Digital Signal Processing

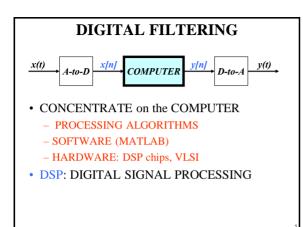
FIR Filtering and Frequency Response

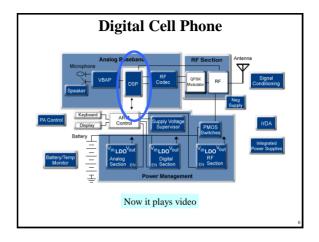
LECTURE OBJECTIVES

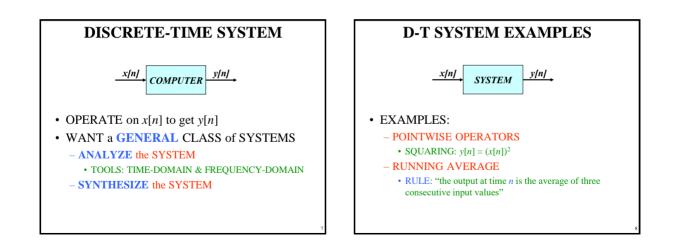
- INTRODUCE FILTERING IDEA
 - Weighted Average
 - Running Average
- FINITE IMPULSE RESPONSE FILTERS
 - -**FIR** Filters
 - Show how to **<u>compute</u>** the output y[n] from the input signal, x[n]

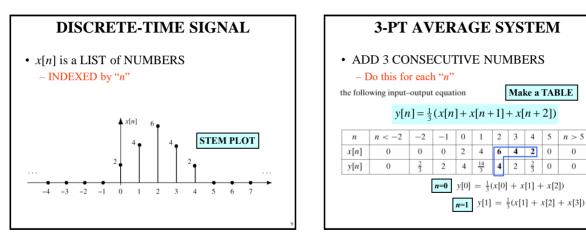
LECTURE OBJECTIVES

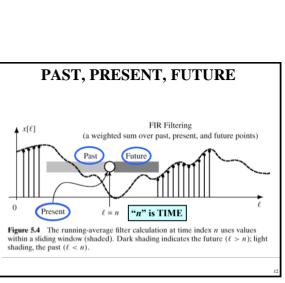
- SINUSOIDAL INPUT SIGNAL – DETERMINE the FIR FILTER OUTPUT
- FREQUENCY RESPONSE of FIR – PLOTTING vs. Frequency – MAGNITUDE vs. Freq
 - PHASE vs. Freq $H(e^{j\hat{\omega}}) = |H(e^{j\hat{\omega}})|e^{j\angle H(e^{j\hat{\omega}})}$











Make a TABLE

0 0

n > 5

0

2 3 4 5

4 2 $\frac{2}{3}$ 0

6 4 2

Copyright 2000 N. AYDIN. All rights reserved.

INPUT SIGNAL

-2 - 1

 $y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])$

-1 0 1 2 3

-1

1 2 3 4

Figure 5.3 Output of running average, y[n]

3-PT AVERAGE SYSTEM

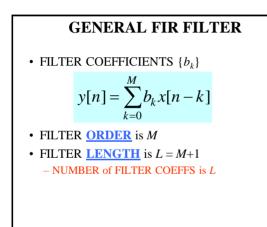
eth input signal x[n]

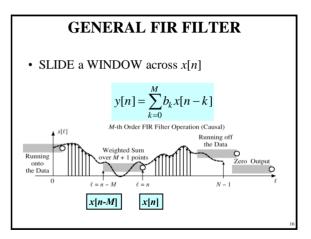
OUTPUT SIGNAL

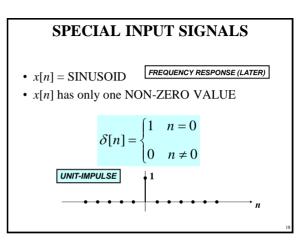
	ANC) TH	IER	23	-p	t A	VI	ER	A	GE	CR	
 Uses "PAST" VALUES of x[n] – IMPORTANT IF "n" represents REAL TIME • WHEN x[n] & y[n] ARE STREAMS 												
$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$												
n	n < -2	-2	-1	0	1	2	3	4	5	6	7	<i>n</i> > 7
x[n]	0	0	0	2	4	6	4	2	D	0	0	0
y[n]	0	0	0	$\frac{2}{3}$	2	4	$\frac{14}{3}$	4	2	$\frac{2}{3}$	0	0

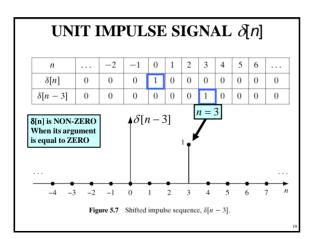
GENERAL FIR FILTER

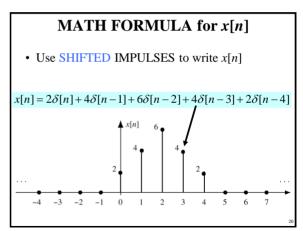
• FILTER COEFFICIENTS $\{b_k\}$ - DEFINE THE FILTER $y[n] = \sum_{k=0}^{M} b_k x[n-k]$ - For example, $b_k = \{3, -1, 2, 1\}$ $y[n] = \sum_{k=0}^{3} b_k x[n-k]$ = 3x[n] - x[n-1] + 2x[n-2] + x[n-3]



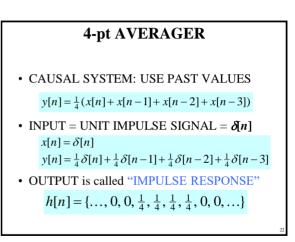


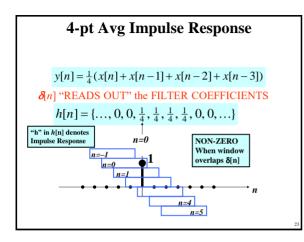


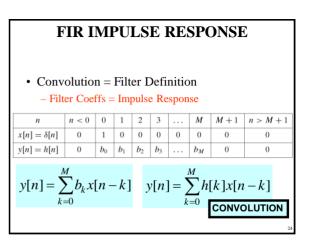


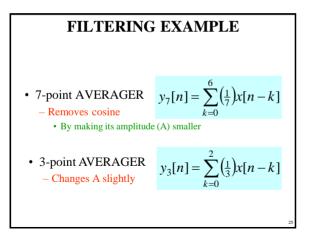


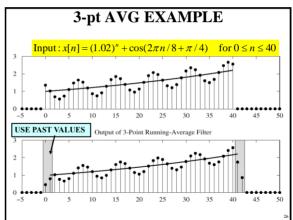
п		-2	-1	0	1	2	3	4	5	6	
$2\delta[n]$	0	0	0	2	0	0	0	0	0	0	0
$4\delta[n-1]$	0	0	0	0	4	0	0	0	0	0	0
$6\delta[n-2]$	0	0	0	0	0	6	0	0	0	0	0
$4\delta[n-3]$	0	0	0	0	0	0	4	0	0	0	0
$2\delta[n-4]$	0	0	0	0	0	0	0	2	0	0	0
x[n]	0	0	0	2	4	6	4	2	0	0	0
$[n] = \sum x$											

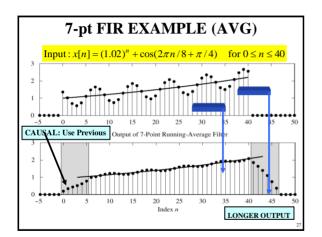


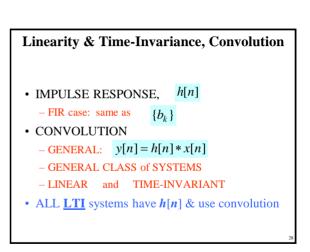


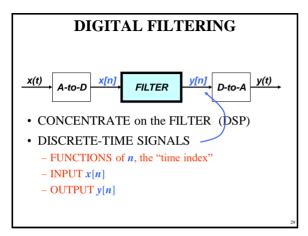


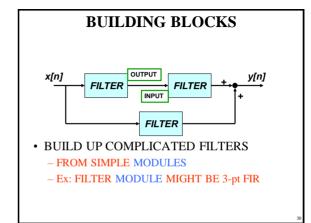


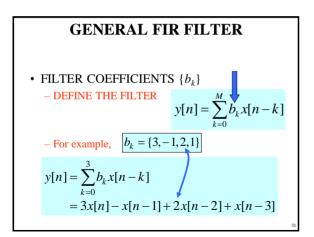


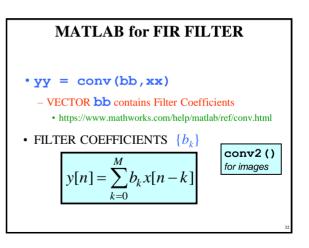


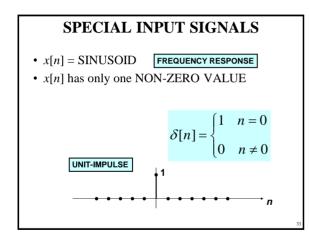


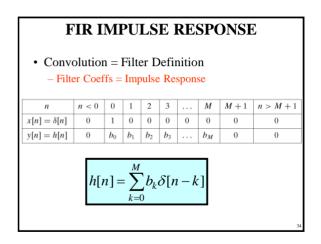


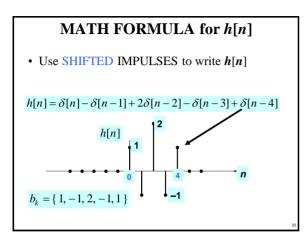


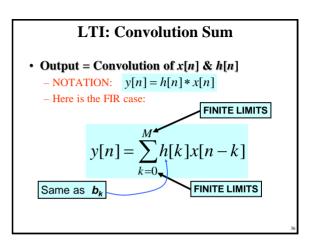


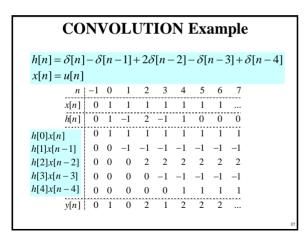


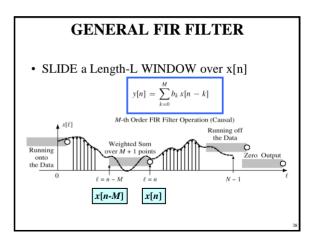


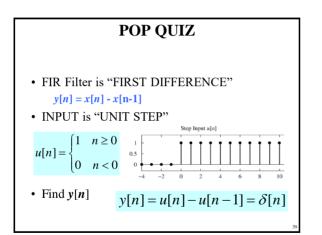


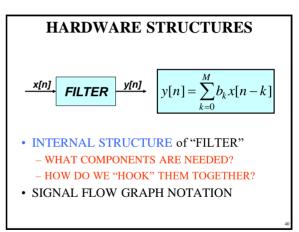


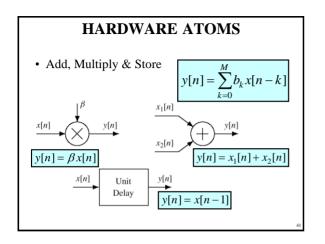


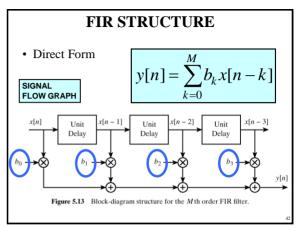


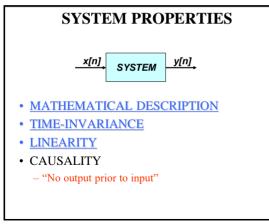












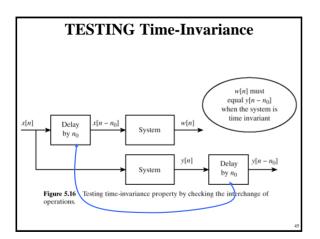
TIME-INVARIANCE

• IDEA:

- "Time-Shifting the input will cause the same timeshift in the output"

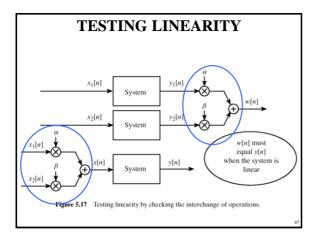
• EQUIVALENTLY,

- We can prove that
 The time origin (n=0) is picked arbitrary



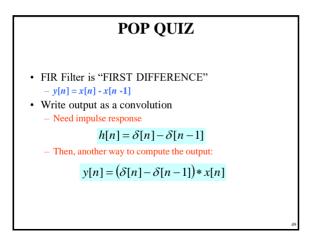
LINEAR SYSTEM

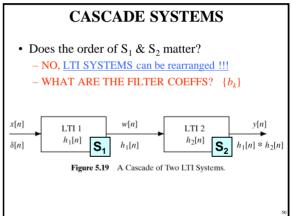
- LINEARITY = Two Properties
- SCALING
 "Doubling x[n] will double y[n]"
- SUPERPOSITION:
 - "Adding two inputs gives an output that is the sum of the individual outputs"

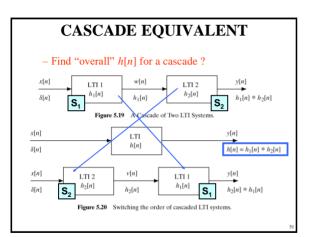


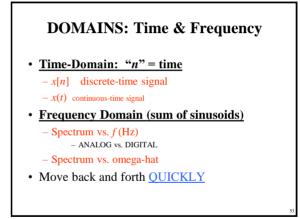
LTI SYSTEMS LTI: Linear & Time-Invariant COMPLETELY CHARACTERIZED by: – <u>IMPULSE RESPONSE</u> h[n]

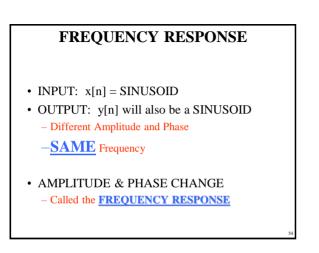
- $\underline{\text{CONVOLUTION}} \quad y[n] = x[n]*h[n]$
 - The "rule" defining the system can ALWAYS be rewritten as convolution
- FIR Example: h[n] is same as b_k

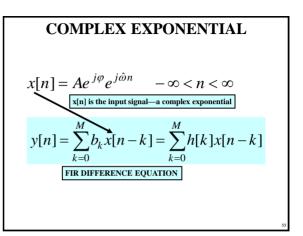








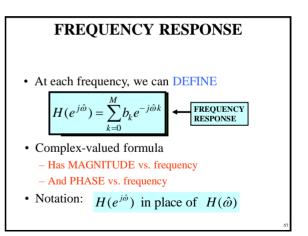


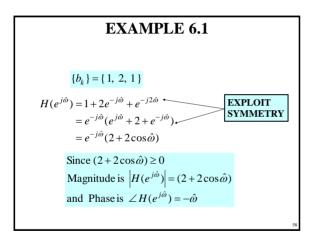


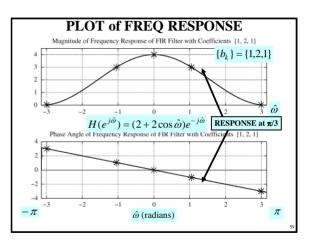
COMPLEX EXP OUTPUT

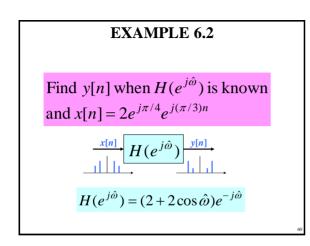
• Use the FIR "Difference Equation"

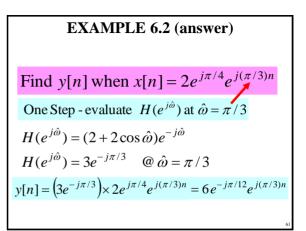
$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} b_k A e^{j\varphi} e^{j\hat{\omega}(n-k)}$$
$$= \left(\sum_{k=0}^{M} b_k e^{j\hat{\omega}(-k)}\right) A e^{j\varphi} e^{j\hat{\omega}n}$$
$$= H(\hat{\omega}) A e^{j\varphi} e^{j\hat{\omega}n}$$

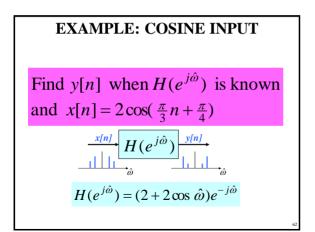












EX: COSINE INPUT

Find
$$y[n]$$
 when $x[n] = 2\cos(\frac{\pi}{3}n + \frac{\pi}{4})$
 $2\cos(\frac{\pi}{3}n + \frac{\pi}{4}) = e^{j(\pi n/3 + \pi/4)} + e^{-j(\pi n/3 + \pi/4)}$
 $\Rightarrow x[n] = x_1[n] + x_2[n]$
Use
Linearity $y_1[n] = H(e^{j\pi/3})e^{j(\pi n/3 + \pi/4)}$
 $y_2[n] = H(e^{-j\pi/3})e^{-j(\pi n/3 + \pi/4)}$
 $\Rightarrow y[n] = y_1[n] + y_2[n]$

