BLM2041 Signals and Systems

Week 6
The Instructors:
Prof. Dr. Nizamettin Aydin
naydin@yildiz.edu.tr

Asist. Prof. Dr. Ferkan Yilmaz
ferkan@yildiz.edu.tr

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between
the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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System Modeling
To do engineering design, we must be able to accurately predict the
quantitative behavior of a circuit or other system.
This requires math models:
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Differential Equation

Similar ideas hold for hydraulic, chemical, etc. systems. ..
—) ( “differential equations rule the world” J

Simple Circuit Example

Sending info over ¢ cable between two computers

- ~
Two conductors separated by an insulator
= capacitance )

Two practical examples of the cable

“Twisted Pair” of Insulated coaxial cable
Wires

Typical values: 100 C¥km
50 nF/km

conductors separated by insulator

Recall: resistance increases with wire length

Simple Model

Driver's Thevenin  Caple Model  Receiver's Thevenin
Equivalent Circuit \
(Computer #1)

(Computer #2)

Effective Operation:

x(r) b . .
LU . M0
- -

Simple Model

R
A e
x(/
" el e
|
- -

Use Loop Equation & Device Rules:
(1) = vy (1) + y(r)
v () = Ri(r)

dv (1)
dt

it=0C

Thas 1s the Differential Equation to be “Solved”

Given: Input (1) Find: Solution (1)

P -, = N

Recall: A “Solution” of the D.E. means. Differential Equation & System
The function that when put into the left > . the solution is the output
| side causes it to reduce to the right side 1§ S

/
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Simple Model

Now... because this is a linear system (it only has R, L. (" components!) we

can analyze it by superposition.

Decompose the input..
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Simple Model
Output Components (Blue)

Standard Exponential Response
Learned in “Circuits™:

Input Components
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Simple Model

Output Components
e i s, o . b
~ \ {* Output is a “smoothed” version
of the input... it is harder to

Sv
e t ‘ distinguish “ones” and “zeros™...
. ) it will be even harder if there is
o noise added onto the signal!
- + ~ ~ .

Progression of Ideas an Engineer Might Use for this

Physical System:

1

Schematic Svstem: A L . c B0
1 T . .
. dav(n) | 1 1

athel cal Svstem: 2 () = ——x(t

Mathematical Svstem: = e ¥ RO x(#)
1 (s, Output)

.
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Automobile Suspension System Example
(1) = Output: Frame’s Position

M,
Auto Frame [

— —
Suspension k,
\__ spring

wheel — [0 ]

k.

L

J- Shock )

~_absorber |

x(1) = Input: Tire’s Position

Tire's spring
effect

Results in 4' order differential equation:
d‘_l'(!)+(?3d;'\’(!} Ca v adv(n)
dr' d Al dr

Road ~

+ayy(t) = Flx()]

~

The g, are functions of system’s physical parameters: ) N }
Some function
M M k. k&,

of Input x(r) |

Again... to find the output for a given input

requires solving the differential equation

Engineers could use this differential equation model to
theoretically explore:

1. How the car will respond to some typical theoretical test
inputs when different possible values of system physical
parameters are used

2. Determine what the best set of system physical
parameters are for a desired response

3. Then... maybe build a prototype and use it to fine tune
the real-world effects that are not captured by this
differential equation model




So... What we are seeing is that for an engineer to analyze or
gn a circuit (or a general physical system) there is almost

an underlying Differential Equation who

a given input tells how the system output behaves

So... engineers need both a qualitative and quantitative
understanding of Differential Equations.

The major goal of this course is to provide tools that help gain
that qualitative and quantitative understanding!!!

Differential Equations

“quations like this are Linear and Time Invariant:

Differentia

dy d"'y(r)

a, ar 1 g

d" f(t dr(r
+..+a,)=b, %+ el % +b, [ (1)

-coefficients are constants = T1

-No nonlinear terms => Linear

Examples of Nonlinear Terms:

d'viny | d?vin Y d'vin | d? v(n
fr { drt drr | F. art | drt | e

13 14
1% Order 2% Odet Nth Order
The highest order among allterms ‘s you see here, the dependent variable
becomes the order of the differential in dfferential equation is a ‘Function’, not a
equation. In this case, the highest Order is value. This is a key characteristics that
3. So we call this equation a¢ a '3 order defines ‘Differential Equation’
diflerential equation’
\ // Dependent Variable
\ +
— ) ,‘ f “Ttiependent Variable
Order (=3)  Order (=2) y(x
&\ 6\ %Iwes
Py d., 17
% d% dy
=-3 +—-2y=3
dx
}\ Homogenecus ]
- Differential Equation
+ Alltems has the derivative of y ory itself . v‘\_-,_/-—/
(depindsnt Wrlobli + There is no tem that is based on function of  itseif
L(n) Ja=1) . _
a v +a, +etay +agy=>0
15 16
lefe rentl a.l Eq UatIOFIS In the following we will BRIEFLY review the basics of solving Linear, Constant
Coeflicient Differential Equations under the Homogeneous Condition
1% Ordec 2 Order. : Nth Order " B
“Homogeneous™ means the “forcing function™ is zero
That means we are finding the “zero-input response” that occurs due to the effect
of the initial coniditions. 7 R FRT
m is the highest-order derivative
on the “input” side
We will assume: m <n . . .
n is the highest-order derivative
on the “output” side
5 55 L
Use “operational notation™: "y _ o
———=D"y(r)
dr
= Write D.E. like this:
(f) +a,.,D" +..+aD+ uo)_rll) =(b,D" +...+bD +b, ) (1)
- . 20(D) 2pD)
There are f—
vacable T et mqunon
- - Diff. Eq.= |QD)y(1)=P(D)f (1)
17 18




Due to linearity: Total Response = Zero-Input Response + Zero-State Response Put y,(r) into (A ) and use result for the derivative of an exponential: d"e* el
Z-1 Response: found assuming the input (1) = 0 but with given IC’s dr" i
(" n-1 5 A _
Z-S Response: found assuming IC's = 0 but with given f{r) applied oA +a, A7+ +ald+a)e” =0
&2 ReSPONse O R
must = 0
Finding the Zero-Input Response (Homogeneous Solution) Characteristic polynomial
Assume f7) =0 (-l,_»’:" is a solution (/) has at most 2 unique roots
D.E.-OD 0 (A) 2 (can be complex)
= DL v(n= A 1 i
AN e c,e™ is a solution = O = (A= AN A=A~ )
= (D 4a, D+ raDva, )y, (N=0 Yi>0
- “linear combination” of y_(f) & its derivatives must be = 0 At : So...any linear combination
| 7“ i€ 1S a solution is also a solution to (A)
Consider y, (1) =ce”
¢ and A are possibly complex numbers IR = = =
Z-1Solution: y. (1) =ce™ +c,e™ +...+¢c,e”
Can we find ¢ and A such that y(f) qualifies as a homogeneous solution? g i
¢ »liq omog ’ Then. choose ¢, ¢, ....¢, to satisfy the given IC’s
19 20|
{84’}:' «—— Set of characteristic modes . . S
=1 To get only real-valued solutions requires the system coefficients to be
real-valued.
RealRoot: 4, =5, + j0 = " = Complex roots of C.E. will appear in conjugate pairs:
t
real  real . . 1
L=c+jo |
= = . i Conjugate pair
Complex Root: J, =&, + jo, A =0—Jo [
Mode: e*' =™+ )
<0 ,>0 . A i : :
I/\ L P [\ ce +eet =ceTe! 1 e
. t
/\ann ! Vf\ J(\ ! I C
\/ . U V Te"“ —e For some real C
g, =0 - =
/ \ /\ [ , Use Euler! Ce” cos(ar +8) 10
21 22
Differential E ion Exampls
Repeated Roots | crentt Db quaio Ampes
Say there are  repeated roots Find the zero-input response (i.e., homogeneous solution) for
o 3 i B these three Differential Equations.
QA= (=AY (A=2) A=) (A=4) p=n-r
Example (a) )
IPLUG P (0] w/ L.C.’s
dt : di
; L s o ¥(0)=0, y'(0)=-5
We “can ver hat: ™ et e e satsfy (&) D)+ 3Dv(r) + 23(1) = DI (D)
The zero-input form is:
ZI Solution: "’7"}” +3M+2r(:)=u
e’ di :
) o D2y + 304N + 230 =0
yv.(n= [c“ +ef+..+c, 0 ™ + other modes:
— The Characteristic Equation is:
effect of r-repeated roots A e3i+2=0 = (A+1A+2)=0
23 24




The Characteristic Equation is:

A L3220 = (A+D(A+2)=0

The Characteristic Roots are:
A==l & A==2
The Characteristic “Modes™ are:

At _ -t

d Ayt
Moo & oM

The zero-input solution is: The System forces th

Y= Cre ' +Cpe

form through its Char. Eq. J

The zero-input solution is:
v =Ce ' +Che 2

and it must satisfy the ICs so:

0=y,;(0)= (-‘l‘,—o + C';z"” = ) +C;=0

The derivative of the z-s soln. must also satisfy the ICs so:

-5

(0 =-Ce ¥ 20" = (420, =5

Two Equations in Two Unknowns leads to:
C)==5 & (,=5

The “particular” zero-input solution is:

Valn= =5+ e

first mode  second mode

Plots for Example (a) " Remember RC
3 0 "'i time constant
= decay for the e term
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Because the characteristic roots are real and negative...
the modes and the Z-1 response all decay to zero w/o oscillations

Example (b):

dy(n

=
dr~

. i
+ (,—d"d(/) +9y(n) = LA 5/(1)
t

dt

w/ LC.’s

R y(0)=3,y'(0)=-7
D= y(1)+6Dy(1) +9y(1)=3Df () +5 /(1)

The zero-input form is:

450 60 L 9yn=0
dt~ 4
D2y (1) +6Dy(1) +9y(1) =0

The Characteristic Equation is:

2461+9=0 = (1+3)2=0

27 28
The Characteristic Equation is: . .
. q . Following the same procedure (do it for yourself!!) you get...
AT +6A+9=0 = (A+3)" =0 T —
e JReaI, repeated l
The Characteristic Roots are: roots
A==3 & ig=-3 The “particular” zero-input solution is:
L .. r Using the “rule” to 0
The Characteristic “Modes™ are: ‘ ' . N N N
}mndl: repeated mmi/ ya(0)= 37 4 L"’: =(3+20e
(’)J' e & ﬂe)':’ —te 3 firstmode  second mode
: N (7 Tiie ystem forces tis |
The zero-input solution is: ) form through s Char. Eg, }
YN =Cre™ £ Cye™™ < T -
S
\:;:,.— The IC’s determine the N
specific values of the C's
29 30,




Plots for Example (b)
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Because the characteristic roots are real and negative. ..
the modes and the Z-1 response all gecay to zero w/o oscillations .

Example (¢):

n’z_\‘(f)
aiP AL

dt” a

429 gy =L ry WLCS

di

dy(t) drin
it t

y(0)=2,y'(0)=16.78

D2 y(6) + 4Dy(1) +403(t) = DF (1) + 2 £ (1)
The zero-input form is:

2 "
LD 4 BO  goyiy=0
dt” dt

D2 y(6)+4Dy(1) + 40y(r) =0

The Characteristic Equation is:

P +42440=0 = (A+2-j6)(A+2+ j6)=0

32

The Characteristic Equation is:
P4+ A0=0 = (i+2- j6)(i+2+ j6)=0

L. complex conjugate
The Characteristic Roots are: __— roots
A=-24j6 & Q=25 o _J

The Characteristic “Modes™ are:

P R L A M L

The zero-input solution is: The System forces this }

form through its Char. Eq.

B S (TP T
V()= Ce et 4 Cye M Y

~

=7 The ICs determine the
specific values of the C;'s

Following the same procedure with some manipulation of
complex exponentials into a cosine...

The “particular” zero-input solution is:
Set by the ICs
vl =4de & cos(6r+7/3)

[_ Imag. part of root
controls oscillation

Real part of root
controls Decay

First Mode
o
o

Second Mode
=]
o

=

o

oo

Zero-Input Response
A

Because the characteristic roots are complex. .. have oscillations!
Because real part of root is negative. .. _decays to zero il

Big Picture. ..

The structure of the D.E. determines
the char. roots, which determine the
“character” of the response:

* Decaying vs. Exploding (controlled by real part of root)
» Oscillating or Not (controlled by imag part of root)

The D.E. structure is determined by the
physical system’s structure and
component values.




