BLM2041 Signals and Systems

Week 2

The Instructors:
Prof. Dr. Nizamettin Aydın
naydin@yildiz.edu.tr

Asist. Prof. Dr. Ferkan Yilmaz
ferkan@yildiz.edu.tr

Signals

- Typical think of signals in terms of communication and information
- radio signal
- broadcast or cable TV
- audio
- electric voltage or current in a circuit
- More generally, any physical or abstract quantity that can be measured, or influences one that can be measured, can be thought of as a signal.
- tension on bike brake cable
- roll rate of a spacecraft
- concentration of an enzyme in a cell
- the price of dollars in euros
- the federal deficit

Very general concept.

Systems

- Typical systems take a signal and convert it into another signal,
- radio receiver
- audio amplifier
- modem
- microphone
- cell telephone
- cellular metabolism
- national and global economies
- Internally, a system may contain many different types of signals.
- The systems perspective allows you to consider all of these together.
- In general, a system transforms input signals into output signals.

The Signals and Systems Abstraction

Describe a system (physical, mathematical, or computational) by the way it transforms an input signal into an output signal.

元

focuses on the flow of information, abstracts away everything else

Signals and Systems

Why Frequency Domain?

Idea 1: Frequency Domain Representation of Signals

- Represent signal as a combination of sinusoids

Why Frequency Domain?

- This example is mostly a sinusoid at frequency ω_{2}, with small contributions from sinusoids at frequencies ω_{1} and ω_{3}.
- Very simple representation (for this case).
- Not immediately obvious what the value is at any particular time
- Why use frequency domain representation?
- Simpler for many types of signals (AM radio signal, for example)
- Many systems are easier to analyze from this perspective (Linear Systems).
- Reveals the fundamental characteristics of a system.
- Rapidly becomes an alternate way of thinking about the world.

Why Frequency Domain?

Demonstration: Piano Chord

- You are already a high sophisticated system for performing spectral analysis!
- Listen to the piano chord. You hear several notes being struck, and fading away. This is waveform is plotted below:

Why Frequency Domain?

Idea 2: Linear Systems are Easy to Analyze for Sinusoids

Example: We want to predict what will happen when we drive a car over a curb. The curb can be modelled as a "step" input. The dynamics of the car are governed by a set of differential equations, which are hard to solve for an arbitrary input (this is a linear system).

Why Frequency Domain?

After transforming the input and the differential equations into the frequency domain,

Solving for the frequency domain output is easy. The time domain output is found by the inverse transform. We can predict what happens to the system.

Why Frequency Domain?

Idea 3: Frequency Domain Lets You Control Linear Systems

- Often we want a system to do something in particular automatically - Airplane to fly level
- Car to go at constant speed
- Room to remain at a constant temperature
- This is not as trivial as you might think!

Why Frequency Domain?

Example: Controlling a car's speed. Applying more gas causes the car to speed up

Normally you "close the loop"

How can vou do this automatically?

Why Frequency Domain?

Use feedback by comparing the measured speed to the requested speed:

This can easily do something you don't want or expect, and oscillate out of control.

Frequency domain analysis explains why, and tells you how to design the system to do what you want.

Classifications of Signals

Continuous-Time vs. Discrete-Time

- As the names suggest, this classification is determined by whether or not the time axis is discrete (countable) or continuous. - A continuous-time signal will contain a value for all real numbers along the time axis.
-In contrast to this, a discrete-time signal, often created by sampling a continuous signal, will only have values at equally spaced intervals along the time axis.

Classifications of Signals

Continuous-Time vs. Discrete-Time

- As the names suggest, this classification is determined by whether or not the time axis is discrete (countable) or continuous - A continuous-time signal will contain a value for all real numbers along the time axis.
-In contrast to this, a discrete-time signal often created by sampling a continuous signal, will only have values at equally spaced intervals along the time axis

Classifications of Signals

Periodic vs. Aperiodic

Periodic signals repeat with some period T, while aperiodic, or nonperiodic, signals do not. We can define a periodic function through the following mathematical expression, where t can be any number and T is a positive constan

$$
f(t)=f(t+T)
$$

fundamental period of our function, $f(\mathrm{t})$, is the smallest value of T that the still allows Equation to be true

Classifications of Signals

Even vs. Odd

- An even signal is any signal f such that $f(t)=f(-t)$.

Even signals can be easily spotted as they are symmetric around the
vertical axis.

- An odd signal, on the other hand, is a signal f such that $f(t)=-f(-t)$

5a: An even signa

5b: An ood signal

Even - Odd Decomposition Example

 that any signal can be written as a combination of an even and odd signal. That is, every signal has an odd-even decomposition.
To demonstrate this, we have to look no further than a single equation

$$
f(t)=\frac{1}{2}(f(t)+f(-t))+\frac{1}{2}(f(t)-f(-t))
$$

By multiplying and adding this expression out, it can be shown to be true. Also, it can be shown that $f(t)+f(-t)$ fulfills the requirement of an even function, while $f(t)-f(-t)$ fulfills the requirement of an odd function.

Even - Odd Decomposition Example

Classifications of Signals

Deterministic vs. Random
A deterministic signal is a signal in which each value of the signal is fixed, being determined by a mathematical expression, rule, or table. On the other hand, the values of a random signal are not strictly defined, but are subject to some amount of variability.

7a: Determinsicic Signal

Example		Example
Consider the signal defined for all real t described by		\% Code written for Last Example in Lecturel
$f(t)=\left\{\begin{array}{cc} \sin (2 \pi t) / t & t \geq 1 \\ 0 & t<1 \end{array}\right.$		clc clear all close all
Write down the properties of this signal		$\begin{aligned} & \mathrm{t} 1=1: 0.01: 10 ; \\ & \mathrm{t} 2=-10: 0.01: 1-0.01 ; \end{aligned}$
This signal is continuous time, analog, aperiodic, infinite length, causal, neither even nor odd, and, by definition, deterministic.		```timeAxis = [t2 t1]; MySignal = [zeros(1,length(t2)) sin(2*pi*t1)./t1]; plot(timeAxis,MySignal) ylabel('Amplitude', 'fontsize', 20) xlabel('time', 'fontsize', 20) title('My First Signal','fontsize', 20)```

