BLM2041 Signals and Systems

Week 1

The Instructors:
Prof. Dr. Nizamettin Aydın
naydin@yildiz.edu.tr

Asist. Prof. Dr. Ferkan Yilmaz
ferkan@yildiz.edu.tr

Informatics

- The term informatics broadly describes the study and practice of
- creating,
- storing,
- finding,
- manipulating
- sharing
information.

Information Systems:

Fundamentals

Informatics - Etymology

- In 1956 the German computer scientist Karl Steinbuch coined the word Informatik
- [Informatik: Automatische Informationsverarbeitung ("Informatics: Automatic Information Processing")]
- The French term informatique was coined in 1962 by Philippe Dreyfus
- [Dreyfus, Phillipe. L'informatique. Gestion, Paris, June 1962, pp. 240-41]
- The term was coined as a combination of information and automatic to describe the science of automating information interactions

Informatics - Etymology

- The morphology-informat-ion + -ics-uses
- the accepted form for names of sciences,
- as conics, linguistics, optics,
- or matters of practice,
- as economics, politics, tactics
- linguistically, the meaning extends easily
- to encompass both
- the science of information
- the practice of information processing.

Data - Information - Knowledge

- Data
- unprocessed facts and figures without any added interpretation or analysis.
- \{The price of crude oil is $\$ 80$ per barrel.\}
- Information
- data that has been interpreted so that it has meaning for the user.
- \{The price of crude oil has risen from $\$ 70$ to $\$ 80$ per barrel\}
- [gives meaning to the data and so is said to be information to someone who tracks oil prices.]

Data - Information - Knowledge

- Knowledge
- a combination of information, experience and insight that may benefit the individual or the organisation.
- \{When crude oil prices go up by $\$ 10$ per barrel, it's
likely that petrol prices will rise by $2 p$ per litre.\}
- [This is knowledge]
- [insight: the capacity to gain an accurate and deep understanding of someone or something; an accurate and deep understanding]

Converting data into information

- Collecting data is expensive
- you need to be very clear about why you need it and how you plan to use it.
- One of the main reasons that organisations collect data is to monitor and improve performance.
- if you are to have the information you need for control and performance improvement, you need to:
- collect data on the indicators that really do affect performance
- collect data reliably and regularly
- be able to convert data into the information you need.

Converting data into information

- Data becomes information when it is applied to some purpose and adds value for the recipient.
- For example a set of raw sales figures is data.
- For the Sales Manager tasked with solving a problem of poor sales in one region, or deciding the future focus of a sales drive, the raw data needs to be processed into a sales report.
- It is the sales report that provides information.

Converting data into information

- To be useful, data must satisfy a number of conditions. It must be:
- relevant to the specific purpose
- complete
- accurate
- timely
- data that arrives after you have made your decision is of no value

Converting data into information

- in the right format
- information can only be analysed using a spreadsheet if all the data can be entered into the computer system
- available at a suitable price
- the benefits of the data must merit the cost of collecting or buying it.
- The same criteria apply to information.
- It is important
- to get the right information
- to get the information right

Converting information to knowledge

- Ultimately the tremendous amount of information that is generated is only useful if it can be applied to create knowledge within the organisation.
- There is considerable blurring and confusion between the terms information and knowledge.

Converting information to knowledge

- think of knowledge as being of two types:
- Formal, explicit or generally available knowledge.
- This is knowledge that has been captured and used to develop policies and operating procedures for example.
- Instinctive, subconscious, tacit or hidden
knowledge.
- Within the organisation there are certain people who hold specific knowledge or have the 'know how'
- \{"I did something very similar to that last year and this happened....."\}

Converting information to knowledge

- Clearly, both types of knowledge are essential for the organisation.
- Information on its own will not create a knowledge-based organisation
- but it is a key building block.
- The right information fuels the development of intellectual capital
- which in turns drives innovation and performance improvement.

Definition(s) of system

A system can be broadly defined as an integrated set of elements that accomplish a defined objective.
People from different engineering disciplines have different perspectives of what a "system" is.
For example,
software engineers often refer to an integrated set of computer programs as a "system"
electrical engineers might refer to complex integrated circuits or an integrated set of electrical units as a "system"
As can be seen, "system" depends on one's perspective, and the "integrated set of elements that accomplish a defined objective" is an appropriate definition.

Definition(s) of system

- A system is an assembly of parts where:
- The parts or components are connected together in an organized way.
- The parts or components are affected by being in the system (and are changed by leaving it).
- The assembly does something.
- The assembly has been identified by a person as being of special interest.
- Any arrangement which involves the handling, processing or manipulation of resources of whatever type can be represented as a system.
- Some definitions on online dictionaries
- http://en.wikipedia.org/wiki/System
- http://dictionary.reference.com/browse/systems
- http://www.businessdictionary.com/definition/system.html

Definition(s) of system

- A system is defined as multiple parts working together for a common purpose or goal.
- Systems can be large and complex
- such as the air traffic control system or our global telecommunication network.
- Small devices can also be considered as systems
- such as a pocket calculator, alarm clock, or 10speed bicycle.

Definition(s) of system

- Systems have inputs, processes, and outputs.
- When feedback (direct or indirect) is involved, that component is also important to the operation of the system.
- To explain all this, systems are usually explained using a model.
- A model helps to illustrate the major elements and their relationship, as illustrated in the next slide

Information Systems

- The ways that organizations
- Store
- Move
- Organize
- Process
their information

Information Technology

- Components that implement information systems,
- Hardware
- physical tools: computer and network hardware, but also low-tech things like pens and paper
- Software
- (changeable) instructions for the hardware
- People
- Procedures
- instructions for the people
- Data/databases

Digital System

- Takes a set of discrete information (inputs) and discrete internal information (system state) and generates a set of discrete information (outputs).

Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
- Two level, or binary values are the most prevalent values in digital systems
- Binary values are represented abstractly by:

$$
\text { digits } 0 \text { and } 1
$$

words (symbols) False (F) and True (T)
words (symbols) Low (L) and High (H)
and words On and Off.

- Binary values are represented by values or ranges of values of physical quantities

Transducers

- A "transducer" is a device that converts energy from one form to another.
- In signal processing applications, the purpose of energy conversion is to transfer information, not to transform energy.
- In physiological measurement systems, transducers may be
- input transducers (or sensors)
- they convert a non-electrical energy into an electrical signal.
- for example, a microphone.
- output transducers (or actuators)
- they convert an electrical signal into a non-electrical energy.
- For example, a speaker.

Analogue signal

- The analogue signal
- a continuous variable defined with infinite precision
is converted to a discrete sequence of measured values which are represented digitally
- Information is lost in converting from analogue to digital, due to:
- inaccuracies in the measurement
- uncertainty in timing
- limits on the duration of the measurement
- These effects are called quantisation errors

Digital signal

- The continuous analogue signal has to be held before it can be sampled

- Otherwise, the signal would be changing during the measurement
- Only after it has been held can the signal be measured, and the measurement converted to a digital value
|.||||||||||||||||||||||||||1. ."I||||||||||||||||||||||1". ...and then sampled

Signal Encoding: Analog-to Digital Conversion

Continuous (analog) signal \leftrightarrow Discrete signal
$x(\mathrm{t})=f(\mathrm{t}) \leftrightarrow$ Analog to digital conversion $\leftrightarrow x[\mathrm{n}]=x[1], x[2], x[3], \ldots x[\mathrm{n}]$

Analog-to Digital Conversion

- ADC consists of four steps to digitize an analog signal:

1. Filtering
2. Sampling
3. Quantization
4. Binary encoding

- Before we sample, we have to filter the signal to limit the maximum frequency of the signal as it affects the sampling rate.
- Filtering should ensure that we do not distort the signal, ie remove high frequency components that affect the signal shape.

Sampling

- The sampling results in a discrete set of digital numbers that represent measurements of the signal - usually taken at equal intervals of time
- Sampling takes place after the hold
- The hold circuit must be fast enough that the signal is not changing during the time the circuit is acquiring the signal value
- We don't know what we don't measure
- In the process of measuring the signal, some information is lost

Sampling

- Analog signal is sampled every T_{S} secs.
- T_{s} is referred to as the sampling interval.
- $\mathrm{f}_{\mathrm{s}}=1 / \mathrm{T}_{\mathrm{s}}$ is called the sampling rate or sampling frequency.
- There are 3 sampling methods:
- Ideal - an impulse at each sampling instant
- Natural - a pulse of short width with varying amplitude
- Flattop - sample and hold, like natural but with single amplitude value
- The process is referred to as pulse amplitude modulation PAM and the outcome is a signal with analog (non integer) values

Recovery of a sampled sine wave for different sampling rates

${ }_{3}$

Sampling Theorem
$F_{s} \geq 2 f_{m}$

According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal.

Quantization

- Sampling results in a series of pulses of varying amplitude values ranging between two limits: a min and a max.
- The amplitude values are infinite between the two limits.
- We need to map the infinite amplitude values onto a finite set of known values.
- This is achieved by dividing the distance between \min and max into L zones, each of height Δ.

$$
\Delta=(\max -\min) / \mathrm{L}
$$

Quantization Levels

- The midpoint of each zone is assigned a value from 0 to $\mathrm{L}-1$ (resulting in L values)
- Each sample falling in a zone is then approximated to the value of the midpoint.

Quantization Zones

- Assume we have a voltage signal with amplitutes $\mathrm{V}_{\text {min }}=-20 \mathrm{~V}$ and $\mathrm{V}_{\text {max }}=+20 \mathrm{~V}$.
- We want to use $\mathrm{L}=8$ quantization levels.
- Zone width $\Delta=(20-20) / 8=5$
- The 8 zones are: -20 to $-15,-15$ to $-10,-10$ to $-5,-5$ to 0,0 to $+5,+5$ to $+10,+10$ to $+15,+15$ to +20
- The midpoints are: $-17.5,-12.5,-7.5,-2.5$, $2.5,7.5,12.5,17.5$

Assigning Codes to Zones

- Each zone is then assigned a binary code.
- The number of bits required to encode the zones, or the number of bits per sample as it is commonly referred to, is obtained as follows:

$$
\mathrm{n}_{\mathrm{b}}=\log _{2} \mathrm{~L}
$$

- Given our example, $\mathrm{n}_{\mathrm{b}}=3$
- The 8 zone (or level) codes are therefore: 000, $001,010,011,100,101,110$, and 111
- Assigning codes to zones:
- 000 will refer to zone -20 to -15
- 001 to zone -15 to -10 , etc.

Quantization and encoding of a sampled signal

Quantization Error

- When a signal is quantized, we introduce an error
- the coded signal is an approximation of the actual amplitude value.
- The difference between actual and coded value (midpoint) is referred to as the quantization error.
- The more zones, the smaller Δ
- which results in smaller errors.
- BUT, the more zones the more bits required to encode the samples
- higher bit rate

Analog-to-digital Conversion

Example An 12-bit analog-to-digital converter (ADC) advertises an accuracy of \pm the least significant bit (LSB). If the input range of the ADC is 0 to 10 volts, what is the accuracy of the ADC in analog volts?

Solution:

If the input range is 10 volts then the analog voltage represented by the LSB would be:

$$
V_{L S B}=\frac{V_{\max }}{2^{\mathrm{Nu} \text { bits }}}=\frac{10}{2^{12}}=\frac{10}{4096}=.0024 \text { volts }
$$

Hence the accuracy would be ± 0.0024 volts.

Sampling related concepts

- Over/exact/under sampling
- Regular/irregular sampling
- Linear/Logarithmic sampling
- Aliasing
- Anti-aliasing filter
- Image
- Anti-image filter

Steps for digitization/reconstruction of a signal

- Band limiting (LPF)	- D/A converter
- Sampling / Holding	- Sampling / Holding
- Quantization	- Image rejection
- Coding	
These are basic steps for These are basic steps for A/D conversion reconstructing a sampled digital signal	

Digital data: end product of A/D conversion and related concepts

- Bit: least digital information, binary 1 or 0
- Nibble: 4 bits
- Byte: 8 bits, 2 nibbles
- Word: 16 bits, 2 bytes, 4 nibbles
- Some jargon:
- integer, signed integer, long integer, 2s complement, hexadecimal, octal, floating point, etc.

${ }_{51}$

Example

- Hertz = clock cycles per second (frequency)
$-1 \mathrm{MHz}=1,000,000 \mathrm{~Hz}$
- Processor speeds are measured in MHz or GHz.
- Byte = a unit of storage
$-1 \mathrm{~KB}=2^{10}=1024$ Bytes
$-1 \mathrm{MB}=2^{20}=1,048,576$ Bytes
- Main memory (RAM) is measured in MB
- Disk storage is measured in GB for small systems, TB for large systems.

Measures of time and space

- Milli- (m) = 1 thousandth $=10^{-3}$
- Micro- $(\mu)=1$ millionth $=10^{-6}$
- Nano- (n) = 1 billionth $=10^{-9}$
- Pico- (p) = 1 trillionth $=10^{-12}$
- Femto- (f) $=1$ quadrillionth $=10^{-15}$

Data types

- Our first requirement is to find a way to represent information (data) in a form that is mutually comprehensible by human and machine.
- Ultimately, we need to develop schemes for representing all conceivable types of information - language, images, actions, etc.
- Specifically, the devices that make up a computer are switches that can be on or off, i.e. at high or low voltage.
- Thus they naturally provide us with two symbols to work with:
- we can call them on and off, or 0 and 1

What kinds of data do we need to represent?

```
Numbers
    signed, unsigned, integers, floating point, complex, rational, irrational, .
Text
    characters, strings, ...
Images
    pixels, colors, shapes,..
Sound
Logical
    true, false
Instructions
Data type:
representation and operations within the computer
```


Number Systems - Representation

- Positive radix, positional number systems
- A number with radix \boldsymbol{r} is represented by a string of digits:

$$
A_{\mathrm{n}-1} A_{\mathrm{n-2}} \ldots A_{1} A_{0} \cdot A_{-1} A_{-2} \ldots A_{-m+1} A_{-m}
$$

in which $\mathbf{0} \leq \boldsymbol{A}_{\mathbf{i}}<\boldsymbol{r}$ and . is the radix point.

- The string of digits represents the power series:

$$
\begin{aligned}
&\text { (Number) })_{\mathrm{r}}=\left(\sum_{i=0}^{\mathrm{i}=\mathrm{n}-1} A_{\mathrm{i}} \cdot r^{\mathrm{i}}\right)+\left(\sum_{\substack{\mathrm{j}=-\mathrm{m} \\
(\text { Integer Portion })}}^{\mathrm{j}=-1} A_{\mathrm{j}} \cdot r^{\mathrm{j}}\right) \\
&\text { Fraction Portion })
\end{aligned}
$$

Decimal Numbers

- "decimal" means that we have ten digits to use in our representation
- the symbols 0 through 9
- What is 3546 ?
- it is three thousands plus five hundreds plus four tens plus six ones.
- i.e. $3546=3 \times 10^{3}+5 \times 10^{2}+4 \times 10^{1}+6 \times 10^{0}$
- How about negative numbers?
- we use two more symbols to distinguish positive and negative: + and -

Decimal Numbers

- "decimal" means that we have ten digits to use in our representation (the symbols 0 through 9)
- What is 3546 ?
- it is three thousands plus five hundreds plus four tens plus six ones.
- i.e. $3546=3.10^{3}+5.10^{2}+4.10^{1}+6.10^{0}$
- How about negative numbers?
- we use two more symbols to distinguish positive and negative:
+ and $=$

Unsigned Binary Integers

```
\(Y=" a b c\) " \(=a .2^{2}+b .2^{1}+c .2^{0}\)
```

(where the digits a, b, c can each take on the values of $\mathbf{0}$ or $\mathbf{1}$ only)

$N=$ number of bits		3-bits	5-bits	8-bits
Range is:$0 \leq i<2^{N}-1$	0	000	00000	00000000
	1	001	00001	00000001
Problem:	2	010	00010	00000010
- How do we represent negative numbers?	3	011	00011	00000011
	4	100	00100	00000100

Signed Binary Integers -2s Complement representation-

- Transformation
- To transform a into -a, invert all bits in a and add 1 to the result

```
Range is:
\(-2^{N-1}<\mathrm{i}<2^{\mathrm{N}-1}-1\)
```


Advantages:

- Operations need not check the
sign
- Only one representation for zero
- Efficient use of all the bits

-16	10000
\ldots	\ldots
-3	11101
-2	11110
-1	11111
0	00000
+1	00001
+2	00010
+3	00011
\ldots	\ldots
+15	01111

Limitations of integer representations

- Most numbers are not integer!
- Even with integers, there are two other considerations:
- Range:
- The magnitude of the numbers we can represent is determined by how many bits we use:
- e.g. with 32 bits the largest number we can represent is about $+/-2$ billion, far too small for many purposes.
- Precision:
- The exactness with which we can specify a number: - e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 figure precision in decimal repesentation.
- We need another data type!

Real numbers

- Our decimal system handles non-integer real numbers by adding yet another symbol - the decimal point (.) to make a fixed point notation:
- e.g. $3456.78=3.10^{3}+4.10^{2}+5.10^{1}+6.10^{0}+7.10^{-1}+8.10^{-2}$
- The floating point, or scientific, notation allows us to represent very large and very small numbers (integer or real), with as much or as little precision as needed:
- Unit of electric charge $e=1.602176462 \times 10^{-19}$ Coulomb
- Volume of universe $=1 \times 10^{85} \mathrm{~cm}^{3}$
- the two components of these numbers are called the mantissa and the exponent

Real numbers in binary

- We mimic the decimal floating point notation to create a "hybrid" binary floating point number:
- We first use a "binary point" to separate whole numbers from
fractional numbers to make a fixed point notation:
- e.g. $00011001.110=1.2^{4}+1.10^{3}+1.10^{1}+1.2^{-1}+1.2^{-2} \Rightarrow 25.75$
($2^{-1}=0.5$ and $2^{-2}=0.25$, etc.)
- We then "float" the binary point:
- $00011001.110=>1.1001110 \times 2^{4}$ mantissa $=1.1001110$, exponent $=4$
- Now we have to express this without the extra symbols ($\mathrm{x}, 2$, .) - by convention, we divide the available bits into three fields:
sign, mantissa, exponent

IEEE-754 fp numbers - 1

| \mathbf{s} | biased exp. |
| :--- | :--- | fraction

32 bits: $1 \quad 8$ bits
23 bits
$N=(-1)^{s} \times 1$. fraction $\times 2^{\text {(biased exp. }-127)}$

- Sign: 1 bit
- Mantissa: 23 bits
- We "normalize" the mantissa by dropping the leading 1 and recording only its fractional part (why?)
- Exponent: 8 bits
- In order to handle both +ve and -ve exponents, we add 127
to the actual exponent to create a "biased exponent":
- $2^{-127} \Rightarrow$ biased exponent $=00000000(=0)$
- $2^{0}=>$ biased exponent $=01111111(=127)$
- $2^{+127} \Rightarrow$ biased exponent $=11111110(=254)$

IEEE-754 fp numbers - 2

- Example: Find the corresponding fp representation of 25.75
- 25.75 => 00011001.110 => 1.1001110×2^{4}
- sign bit $=0(+v e)$
- normalized mantissa (fraction) $=10011100000000000000000$
- biased exponent $=4+127=131 \Rightarrow 10000011$
- so 25.75 => 01000001110011100000000000000000 => x41CE0000
- Values represented by convention:

Infinity (+ and -): exponent $=255(11111111)$ and fraction $=0$

- NaN (not a number): exponent $=255$ and fraction $\neq 0$

Zero (0): exponent $=0$ and fraction $=0$

- note: exponent $=0 \Rightarrow$ fraction is de-normalized, i.e no hidden 1

IEEE-754 fp numbers - 3

- Double precision (64 bit) floating point

$N=(-1)^{\text {s }} \times 1$.fraction $\times 2^{\text {(biased exp. - 1023) }}$
- Range \& Precision:
- 32 bit:
- mantissa of 23 bits +1 => approx. 7 digits decimal
- $2^{+/-127}=>$ approx. $10^{+/-38}$
- 64 bit:
- mantissa of 52 bits +1 => approx. 15 digits decimal
- $2^{+/-1023}=>$ approx. $10^{+/-306}$

Binary Numbers and Binary Coding

- Flexibility of representation
- Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded.
- Information Types
- Numeric
- Must represent range of data needed
- Very desirable to represent data such that simple, straightforward computation for common arithmetic operations permitted
- Tight relation to binary numbers
- Non-numeric
- Greater flexibility since arithmetic operations not applied.
- Not tied to binary numbers

Non-numeric Binary Codes

- Given n binary digits (called bits), a binary code is a mapping from a set of represented elements to a subset of the 2^{n} binary numbers.
- Example: A binary code for the seven colors of the rainbow
- Code 100 is not used

Color	Binary Number
Red	$\mathbf{0 0 0}$
Orange	$\mathbf{0 0 1}$
Yellow	$\mathbf{0 1 0}$
Green	$\mathbf{0 1 1}$
Blue	$\mathbf{1 0 1}$
Indigo	$\mathbf{1 1 0}$
Violet	$\mathbf{1 1 1}$

Number of Bits Required

- Given M elements to be represented by a binary code, the minimum number of bits, n, needed, satisfies the following relationships:

$$
2^{n}>M>2^{(n-1)}
$$

$n=\left\lceil\log _{2} M\right\rceil$ where $\lceil x\rceil$, called the ceiling function, is the integer greater than or equal to x

- Example: How many bits are required to represent decimal digits with a binary code?
-4 bits are required $\left(n=\left\lceil\log _{2} 9\right\rceil=4\right)$

Number of Elements Represented

- Given n digits in radix r, there are r^{n} distinct elements that can be represented.
- But, you can represent m elements, $m<r^{n}$
- Examples:
- You can represent 4 elements in radix $r=2$ with n $=2$ digits: $(00,01,10,11)$.
- You can represent 4 elements in radix $r=2$ with n $=4$ digits: $(0001,0010,0100,1000)$.

Binary Coded Decimal (BCD)

- In the 8421 Binary Coded Decimal (BCD)
representation each decimal digit is converted to its 4bit pure binary equivalent
- This code is the simplest, most intuitive binary code for decimal digits and uses the same powers of 2 as a binary number,
- but only encodes the first ten values from 0 to 9 .
- For example: (57) ${ }_{\mathrm{dec}} \rightarrow$ (?) bcd
($5 \quad 7$) dec
$=(01010111) \mathrm{bcd}$

Error-Detection Codes

- Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is parity, an extra bit appended onto the code word to make the number of 1's odd or even.
- Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has even parity if the number of 1 's in the code word is even.
- A code word has odd parity if the number of 1 's in the code word is odd.

4-Bit Parity Code Example

- Fill in the even and odd parity bits:

Even Parity Message- Parity	Odd Parity Message . Parity
000 -	000 .
001 .	001.
010.	010 .
011.	011 .
100.	100 .
101.	101.
110 .	110.
111 -	111.

- The codeword "1111" has even parity and the codeword "1110" has odd parity. Both can be used to represent 3 -bit data.

ASCII Character Codes

- American Standard Code for Information Interchange
- This code is a popular code used to represent information sent as character-based data.
- It uses 7- bits to represent
- 94 Graphic printing characters
- 34 Non-printing characters
- Some non-printing characters are used for text format - e.g. $\mathrm{BS}=$ Backspace, $\mathrm{CR}=$ carriage return
- Other non-printing characters are used for record marking and flow control
- e.g. STX $=$ start text areas, ETX $=$ end text areas.

ASCII Properties

- ASCII has some interesting properties:
- Digits 0 to 9 span Hexadecimal values 30_{16} to 39_{16}
- Upper case A-Z span 41_{16} to $5 \mathrm{~A}_{16}$
- Lower case a-z span 61_{16} to $7 \mathrm{~A}_{16}$
- Lower to upper case translation (and vice versa) occurs by flipping bit 6
- Delete (DEL) is all bits set,
- a carryover from when punched paper tape was used to store messages

UNICODE

- UNICODE extends ASCII to 65,536
universal characters codes
- For encoding characters in world languages
- Available in many modern applications
-2 byte (16-bit) code words

Warning: Conversion or Coding?

- Do NOT mix up "conversion of a decimal number to a binary number" with "coding a decimal number with a binary code".
- $13_{10}=1101_{2}$
-This is conversion
- $13 \Leftrightarrow 00010011_{\text {BCD }}$
- This is coding

Another use for bits: Logic

- Beyond numbers
- logical variables can be true or false, on or off, etc., and so are readily represented by the binary system.
- A logical variable A can take the values false $=0$ or true $=1$ only.
- The manipulation of logical variables is known as Boolean

Algebra, and has its own set of operations

- which are not to be confused with the arithmetical operations.
- Some basic operations: NOT, AND, OR, XOR

Basic Logic Operations

-Truth Tables of Basic Operations

NOT	AND	OR
$\underline{\text { A }} \underline{\text { A }}^{\prime}$	$\underline{\text { A B A.B }}$	A B A+B
1	$\begin{array}{llll}0 & 0 & 0\end{array}$	0 0 0
10	$\begin{array}{lll}0 & 1 & 0\end{array}$	01
	100	10
	$\begin{array}{lll}1 & 1 & 1\end{array}$	11

- Equivalent Notations
$-\operatorname{not} \mathrm{A}=\mathrm{A}^{\prime}=\overline{\mathrm{A}}$
-A and $\mathrm{B}=\mathrm{A} \cdot \mathrm{B}=\mathrm{A} \wedge \mathrm{B}=\mathrm{A}$ intersection B
-A or $\mathrm{B}=\mathrm{A}+\mathrm{B}=\mathrm{A} \vee \mathrm{B}=\mathrm{A}$ union B

More Logic Operations

XOR			XNOR		
A	B	$\underline{\mathrm{A} \oplus \mathrm{B}}$	$\underline{\text { A }}$	B	$\underline{(\mathrm{A} \oplus \mathrm{B})^{\prime}}$
0	0	0	0	0	1
0	1	1	0	1	0
1	0	1	1	0	0
1	1	0	1	1	1

- Exclusive OR (XOR): either A or B is 1, not both
$-\mathrm{A} \oplus \mathrm{B}=\mathrm{A} \cdot \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \cdot \mathrm{B}$

