BLM2041 Signals and Systems

The Instructors:

Prof. Dr. Nizamettin Aydın naydin@yildiz.edu.tr

Asist. Prof. Dr. Ferkan Yilmaz
ferkan@yildiz.edu.tr

Example 1

- Given the following continuous-time signal $x(t)$;
- sketch and label each of the following signals.

(a) $x(t-2)$;
(b) $x(2 t)$;
(c) $x(t / 2)$;
(d) $x(-t)$

Example 2

- Given the following discrete-time signal $x[\mathrm{n}]$;
- sketch and label each of the following signals.

(a) $x[n-2]$;
(b) $x[2 n]$;
(c) $x[-n]$;
(d) $x[-n+2]$

Example 3

- Given the following continuous-time signal $x(t)$;
- sketch and label each of the following signals.
(a) $x(t) u(1-t)$;

(b) $x(t)[u(t)-u(t-1)]$;
(c) $x(t / 2) \delta(t-1.5)$;

Answer 4

- 1st, compute the square

$$
|x(t)|^{2}=\left(e^{-2 t}\right)^{2}=e^{-4 t}
$$

- Considering that the signal is zero for $\mathrm{t}<0$,

$$
\begin{gathered}
E=\int_{0}^{\infty}|x(t)|^{2} d t=\int_{0}^{\infty} e^{-4 t} d t=-\left.\frac{1}{4} e^{-4 t}\right|_{0} ^{\infty} \\
E=-\left.\frac{1}{4} e^{-4 t}\right|_{0} ^{\infty}=\left[-\frac{1}{4} e^{-4 \times \infty}+\frac{1}{4} e^{-4 \times 0}\right] \\
E=\left[-\frac{1}{4} \times 0+\frac{1}{4} \times 1\right]=\frac{1}{4}
\end{gathered}
$$

- The energy is finite,
- so this is an energy signal.

Example 4

- Find the energy content of the exponentially decreasing signal $x(t)$

$$
x(t)=\left\{\begin{array}{cc}
e^{-2 t} & t \geq 0 \\
0 & t<0
\end{array}\right.
$$

Example 5

- Let $x(t)=\mathrm{A} \cos \omega t$, where A is a positive real constant.
- Find
(a) the signal energy over one period
(b) the average power of the signal

Answer 5

(a) The period of this signal: $\quad T_{0}=\frac{2 \pi}{\omega}$

Square of signal:

$$
\cos ^{2} x=\frac{1+\cos 2 x}{2}
$$

The energy over one period is

$$
\begin{aligned}
& E_{0}=\int_{-T_{0 / 2}}^{T_{0 / 2}}|x(t)|^{2} d t=\int_{-T_{0 / 2}}^{T_{0 / 2}}|A \cos \omega t|^{2} d t=A^{2} \int_{-T_{0 / 2} / 2}^{T_{0} / 2} \cos ^{2} \omega t \mathrm{dt} \\
& E_{0}=A^{2} \int_{-T_{0 / 2}}^{T_{0 / 2}} \frac{1+\cos 2 \omega t}{2} \mathrm{~d} t \frac{A^{2}}{2} \int_{-T_{0} / 2}^{T_{0} / 2}+\frac{A^{2}}{2} \int_{-T_{0 / 2} / 2}^{T_{0} \cos 2 \omega t \mathrm{~d} t}
\end{aligned}
$$

Answer 5

$\frac{A^{2}}{2} \int_{-T_{0} / 2}^{T_{0} / 2} \mathrm{~d} t=\left.\frac{A^{2}}{2} t\right|_{-T_{0} / 2} ^{T_{0} / 2}=\frac{A^{2}}{2}\left(\frac{T_{0}}{2}+\frac{T_{0}}{2}\right)=\frac{A^{2}}{2} T_{0}$
$\int_{-T_{0} / 2}^{T_{0} / 2} \cos 2 \omega t \mathrm{~d} t=\left.\frac{1}{2 \omega} \sin 2 \omega t\right|_{-T_{0} / 2} ^{T_{0} / 2}$
$=\frac{1}{2 \omega}\left[\sin \left(\omega T_{0}\right)-\sin \left(-\omega T_{0}\right)\right]=\frac{\sin \left(\omega T_{0}\right)}{\omega}$
$\int_{-T_{0} / 2}^{T_{0} / 2} \cos 2 \omega t \mathrm{~d} t=\frac{\sin \left(\omega T_{0}\right)}{\omega}=\frac{\sin (2 \pi)}{\omega}=0 \quad E_{0}=\frac{A^{2}}{2} T_{0}$
(b) Average power:

$$
P=\frac{E_{0}}{T_{0}}=\frac{A^{2} T_{0} / 2}{T_{0}}=\frac{A^{2}}{2}
$$

Example 6

- Consider a signal $x(t)=e^{-|t|}$.

Determine the energy and power content of this signal.

Answer 6

- To find average power, compute
$\frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} \mathrm{~d}=\frac{1}{T} \int_{-T / 2}^{T / 2} e^{-2|t|} \mathrm{d} t=\frac{2}{T} \int_{0}^{T / 2} e^{-2 t} \mathrm{~d} t=\frac{1}{T}\left(1-e^{-T}\right)$
- Take the limit:
$P=\lim _{T \rightarrow \infty} \frac{1}{T}\left(1-e^{-T}\right)=\lim _{T \rightarrow \infty} \frac{1}{T}-\lim _{T \rightarrow \infty} \frac{e^{-T}}{T}$
- The first term vanishes.
- For the second term, notice that as $T \rightarrow \infty, e^{-T} \rightarrow 0$.
- Therefore the second term vanishes as well, and we have $P=0$ as expected for an energy signal.

Answer 6

- Compute the squared modulus of the function

$$
|x(t)|^{2}=e^{-2|t|} \quad|x(t)|^{2}=\left\{\begin{array}{cc}
e^{2 t} & \text { for } t<0 \\
e^{-2 t} & \text { for } t>0
\end{array}\right.
$$

- Split the integral into two parts, and perform the calculation

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} \mathrm{~d} t=\int_{-\infty}^{0} e^{2 t} \mathrm{~d} t+\int_{0}^{\infty} e^{-2 t} \mathrm{~d} t=2 \int_{0}^{\infty} e^{-2 t} \mathrm{~d} t=1
$$

- The energy is finite (energy signal)

Example 7

- Find the even and odd components of

$$
x(t)=2 \cos t-\sin t+3 \sin t \cos t
$$

- Reminder:

$$
x_{\mathrm{e}}(t)=\frac{x(t)+x(-t)}{2} \quad x_{0}(t)=\frac{x(t)-x(-t)}{2}
$$

Answer 7

- 1st, find $x(-t)$
$x(-t)=2 \cos (-t)-\sin (-t)+3 \sin (-t) \cos (-t)$

$$
x(-t)=2 \cos t+\sin t-3 \sin t \cos t
$$

- Even component

$$
x_{\mathrm{e}}(t)=\frac{x(t)+x(-t)}{2}=\frac{4 \cos t}{2}=2 \cos t
$$

- Odd component
$x_{0}(t)=\frac{x(t)-x(-t)}{2}=\frac{-2 \sin t+6 \sin t \cos t}{2}=-\sin t+3 \sin t \cos t$

