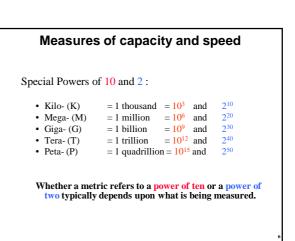


Information Systems:


Fundamentals

Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
- Two level, or binary values are the most prevalent values in digital systems.
- Binary values are represented abstractly by:
 digits 0 and 1
 - words (symbols) False (F) and True (T)
 - words (symbols) Low (L) and High (H)
 - and words On and Off.
- Binary values are represented by values or ranges of values of physical quantities

Example

- Hertz = clock cycles per second (frequency) - 1MHz = 1,000,000Hz
 - Processor speeds are measured in MHz or GHz.
- Byte = a unit of storage
 - $-1KB = 2^{10} = 1024$ Bytes
 - $-1MB = 2^{20} = 1,048,576$ Bytes
 - Main memory (RAM) is measured in MB
 - Disk storage is measured in GB for small systems, TB for large systems.

Measures of time and space

 $= 10^{-6}$

• Milli- (m) = 1 thousandth $= 10^{-3}$

- Micro- (μ) = 1 millionth • Nano- (n) = 1 billionth $= 10^{-9}$
- $= 10^{-12}$ • Pico- (p) = 1 trillionth
- = 1 quadrillionth = 10^{-15} • Femto- (f)

Data types

· Our first requirement is to find a way to represent information (data) in a form that is mutually comprehensible by human and machine.

- Ultimately, we will have to develop schemes for representing all conceivable types of information language, images, actions, etc.
- We will start by examining different ways of representing integers, and look for a form that suits the computer.
- Specifically, the devices that make up a computer are switches that can be on or off, i.e. at high or low voltage.
- Thus they naturally provide us with two symbols to work with:
 - we can call them on and off, or 0 and 1.

What kinds of data do we need to represent?

Numbers

signed, unsigned, integers, floating point, complex, rational, irrational, ...

Text characters, strings, ...

Images

pixels, colors, shapes, ...

Sound

Logical

true, false Instructions

Data type:

- representation and operations within the computer

Number Systems – Representation

- · Positive radix, positional number systems
- A number with *radix* **r** is represented by a string of digits:

 $A_{n-1}A_{n-2} \dots A_{1}A_{0} \cdot A_{-1}A_{-2} \dots A_{-m+1}A_{-m}$ in which $0 \le A_i < r$ and \cdot is the *radix point*.

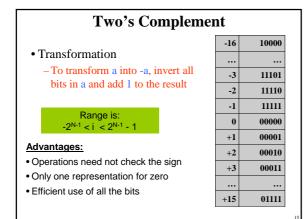
• The string of digits represents the power series:

$$(\text{Number})_{\mathbf{r}} = \left(\sum_{i=0}^{j=n-1} A_i \cdot r^i\right) + \left(\sum_{j=-m}^{j=-1} A_j \cdot r^j\right)$$

(Integer Portion) + (Fraction Portion)

Decimal Numbers

· "decimal" means that we have ten digits to use in our representation


the symbols 0 through 9

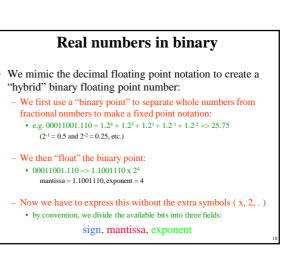
What is 3546?

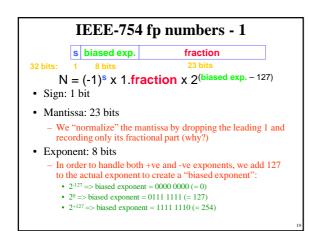
- it is three thousands plus five hundreds plus four tens plus six ones.
- i.e. $3546 = 3 \times 10^3 + 5 \times 10^2 + 4 \times 10^1 + 6 \times 10^0$
- · How about negative numbers?
 - we use two more <u>symbols</u> to distinguish positive and negative: + and -

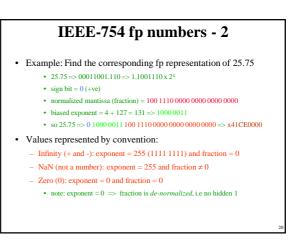
Decimal Numbers "decimal" means that we have ten digits to use in our representation (the symbols 0 through 9) What is 3546? it is three thousands plus five hundreds plus four tens plus six ones. i.e. 3546 = 3.10³ + 5.10² + 4.10¹ + 6.10⁰ How about negative numbers? we use two more symbols to distinguish positive and negative: and -

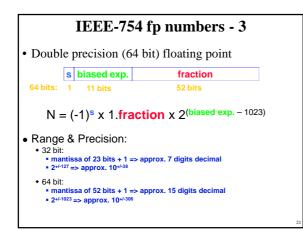
Unsigned	l Bir	nary I	nteger	'S
Y = "abc" (where the digits a, b, c c				or 1 only)
N = number of bits		3-bits	5-bits	8-bits
Range is: 0 ≤ i < 2 ^N - 1	0	000	00000	00000000
	1	001	00001	00000001
Problem: • How do we represent negative numbers?	2	010	00010	00000010
	3	011	00011	00000011
	4	100	00100	00000100
				14

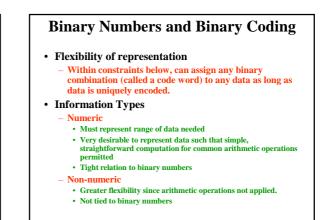
Limitations of integer representations

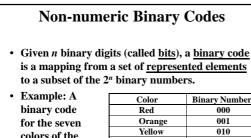

- Most numbers are not integer! – Even with integers, there are two other considerations:
- Range:
 The magnitude of the numbers we can represent is determined by how many bits we use:
 e.g. with 32 bits the largest number we can represent is about +/- 2 billion, far too small for many purposes.

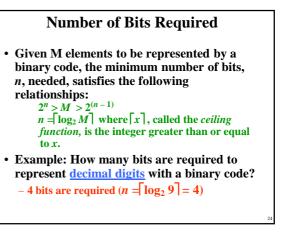

• Precision:


- The exactness with which we can specify a number:
 e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 figure precision in decimal repesentation.
- We need another data type!


Real numbers


- Our decimal system handles non-integer *real* numbers by adding yet another symbol - the decimal point (.) to make a *fixed point* notation:
 - $\text{ e.g. } 3456.78 = 3.10^3 + 4.10^2 + 5.10^1 + 6.10^0 + 7.10^{-1} + 8.10^{-2}$
- The *floating point*, or scientific, notation allows us to represent very large and very small numbers (integer or real), with as much or as little precision as needed:
 - Unit of electric charge $e = 1.602 \ 176 \ 462 \ x \ 10^{-19}$ Coulomb
 - Volume of universe = $1 \times 10^{85} \text{ cm}^3$
 - the two components of these numbers are called the mantissa and the
 exponent





- is a mapping from a set of represented elements
- colors of the rainbow • Code 100 is

not used

Color	Binary Number		
Red	000		
Orange	001		
Yellow	010		
Green	011		
Blue	101		
Indigo	110		
Violet	111		

Number of Elements Represented

- Given *n* digits in radix *r*, there are *rⁿ* distinct elements that can be represented.
- But, you can represent *m* elements, *m < rⁿ*Examples:
- Examples:
 - You can represent 4 elements in radix r = 2 with n = 2 digits: (00, 01, 10, 11).
 - You can represent 4 elements in radix r = 2 with n = 4 digits: (0001, 0010, 0100, 1000).