
1

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

naydin@ieee.org

http://www.yildiz.edu.tr/~naydin

1

Information Systems: 

Fundamentals

2

3

Digital System

• Takes a set of discrete information (inputs) and 
discrete internal information (system state) and 
generates a set of discrete information (outputs).

System State

Discrete
Information
Processing
System

Discrete
Inputs Discrete

Outputs

4

Synchronous or 
Asynchronous?

Inputs: 
Keyboard, 
mouse, modem, 
microphone

Outputs: CRT, 
LCD, modem, 
speakers

Memory

Control
unit Datapath

Input/Output

CPU

A Digital Computer Example

5

Signal

• An information variable represented by physical 
quantity.

• For digital systems, the variable takes on discrete 
values.   

• Two level, or binary values are the most prevalent 
values in digital systems.

• Binary values are represented abstractly by:
– digits 0 and 1
– words (symbols) False (F) and True (T)
– words (symbols) Low (L) and High (H) 
– and words On and Off.

• Binary values are represented by values or ranges of 
values of physical quantities

66

Special Powers of 10and 2 :

• Kilo- (K) = 1 thousand =103 and 210

• Mega- (M) = 1 million =106 and 220

• Giga- (G) = 1 billion =109 and 230

• Tera- (T) = 1 trillion =1012 and 240

• Peta- (P) = 1 quadrillion =1015 and 250

Whether a metric refers to apower of tenor a power of 
two typically depends upon what is being measured.

Measures of capacity and speed



2

77

• Hertz = clock cycles per second (frequency)
– 1MHz = 1,000,000Hz

– Processor speeds are measured in MHz or GHz.

• Byte = a unit of storage
– 1KB = 210 = 1024 Bytes

– 1MB = 220 = 1,048,576 Bytes

– Main memory (RAM) is measured in MB

– Disk storage is measured in GB for small systems, TB 
for large systems.

Example

88

• Milli- (m) = 1 thousandth =10-3

• Micro- (µ) = 1 millionth =10-6

• Nano- (n) = 1 billionth =10-9

• Pico- (p) = 1 trillionth =10-12

• Femto- (f) = 1 quadrillionth =10-15

Measures of time and space

9

Data types

• Our first requirement is to find a way to represent information 
(data) in a form that is mutually comprehensible by human and 
machine.

– Ultimately, we will have to develop schemes for 
representing all conceivable types of information -
language, images, actions, etc.

– We will start by examining different ways of representing 
integers, and look for a form that suits the computer.

– Specifically, the devices that make up a computer are 
switches that can be on or off, i.e. at high or low voltage. 

– Thus they naturally provide us with two symbols to work 
with: 

• we can call them onand off, or 0 and 1.

10

What kinds of data do we need to represent?

Numbers
signed, unsigned, integers, floating point, complex, rational, irrational, …

Text
characters, strings, …

Images
pixels, colors, shapes, …

Sound

Logical
true, false

Instructions

…

Data type: 
– representationand operationswithin the computer

11

• Positive radix, positional number systems

• A number with radix r is represented by a 
string of digits:

An - 1An - 2 … A1A0 . A- 1 A- 2 … A- m ++++ 1 A- m

in which 0 ≤ ≤ ≤ ≤ Ai < r and . is the radix point.

• The string of digits represents the power series:

( ) ( )(Number)r = ∑∑ +
j = - m

j
j

i

i = 0
i rArA

(Integer Portion)  + (Fraction Portion)

i = n - 1 j = - 1

Number Systems – Representation

12

Decimal Numbers

• “decimal” means that we have ten digits to use in our 

representation 

– the symbols 0 through 9

• What is 3546?

– it is three thousands plus five hundreds plus four tens plus six 

ones.

– i.e. 3546 = 3×103 + 5×102 + 4×101 + 6×100

• How about negative numbers?

– we use two more symbolsto distinguish positive and negative:

+ and -



3

13

Decimal Numbers

• “decimal” means that we have tendigits to use in our 

representation (the symbols0 through 9)

• What is 3546?

– it is three thousandsplus five hundredsplus four tensplus 

six ones.

– i.e. 3546 = 3.103 + 5.102 + 4.101 + 6.100

• How about negative numbers?

– we use two more symbolsto distinguish positive and 

negative:

+ and -
14

Unsigned Binary Integers

3-bits 5-bits 8-bits

0 000 00000 00000000

1 001 00001 00000001

2 010 00010 00000010

3 011 00011 00000011

4 100 00100 00000100

Y = “abc” = a.22 + b.21 + c.20

N = number of bits

Range is:
0 ≤ i  < 2N - 1

(where the digits a, b, c can each take on the values of 0 or 1 only)

Problem:
• How do we represent 

negative numbers?

15

Two’s Complement

• Transformation
– To transform a into -a, invert all 

bits in aand add 1 to the result

-16 10000

… …

-3 11101

-2 11110

-1 11111

0 00000

+1 00001

+2 00010

+3 00011

… …

+15 01111

Range is:
-2N-1 < i  < 2N-1 - 1

Advantages:

• Operations need not check the sign

• Only one representation for zero

• Efficient use of all the bits

16

Limitations of integer representations

• Most numbers are not integer!
– Even with integers, there are two other considerations:

• Range:
– The magnitude of the numbers we can represent is 

determined by how many bits we use:
• e.g. with 32 bits the largest number we can represent is about +/- 2 

billion, far too small for many purposes.

• Precision:
– The exactness with which we can specify a number:

• e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 
figure precision in decimal repesentation.

• We need another data type!

17

Real numbers

• Our decimal system handles non-integer real numbers 
by adding yet another symbol - the decimal point (.) to 
make a fixed point notation:
– e.g. 3456.78 = 3.103 + 4.102 + 5.101 + 6.100 + 7.10-1 + 8.10-2

• The floating point, or scientific, notation allows us to 
represent very large and very small numbers (integer or 
real), with as much or as little precision as needed:
– Unit of electric charge  e =1.602 176 462 x 10-19 Coulomb

– Volume of universe = 1 x 1085 cm3

• the two components of these numbers are called the mantissa and the 
exponent

18

Real numbers in binary 

• We mimic the decimal floating point notation to create a 
“hybrid” binary floating point number:
– We first use a “binary point” to separate whole numbers from 

fractional numbers to make a fixed point notation:
• e.g. 00011001.110 = 1.24 + 1.23 + 1.21 + 1.2-1 + 1.2-2 => 25.75

(2-1 = 0.5 and 2-2 = 0.25, etc.)

– We then “float” the binary point:
• 00011001.110 => 1.1001110 x 24

mantissa = 1.1001110, exponent = 4

– Now we have to express this without the extra symbols ( x, 2, . )
• by convention, we divide the available bits into three fields:

sign, mantissa, exponent



4

19

IEEE-754 fp numbers - 1
s biased exp. fraction
1 8 bits 23 bits

N = (-1)s x 1.fraction x 2(biased exp. – 127)
32 bits:

• Sign: 1 bit

• Mantissa: 23 bits
– We “normalize” the mantissa by dropping the leading 1 and 

recording only its fractional part (why?) 

• Exponent: 8 bits
– In order to handle both +ve and -ve exponents, we add 127 

to the actual exponent to create a “biased exponent”:
• 2-127 => biased exponent = 0000 0000 (= 0)
• 20 => biased exponent = 0111 1111 (= 127)
• 2+127=> biased exponent = 1111 1110 (= 254)

20

IEEE-754 fp numbers - 2

• Example: Find the corresponding fp representation of 25.75
• 25.75 => 00011001.110 => 1.1001110 x 24

• sign bit = 0 (+ve)

• normalized mantissa (fraction) = 100 1110 0000 0000 0000 0000

• biased exponent = 4 + 127 = 131 => 1000 0011

• so 25.75 => 0 1000 0011100 1110 0000 0000 0000 0000=> x41CE0000

• Values represented by convention:

– Infinity (+ and -): exponent = 255 (1111 1111) and fraction = 0

– NaN (not a number): exponent = 255 and fraction ≠ 0

– Zero (0): exponent = 0 and fraction = 0

• note: exponent = 0  =>  fraction is de-normalized, i.e no hidden 1

21

IEEE-754 fp numbers - 3

• Double precision (64 bit) floating point

1 11 bits 52 bits

N = (-1)s x 1.fraction x 2(biased exp. – 1023)

64 bits:

� Range & Precision:
� 32 bit: 

� mantissa of 23 bits + 1 => approx. 7 digits decimal
� 2+/-127 => approx. 10+/-38

� 64 bit: 
� mantissa of 52 bits + 1 => approx. 15 digits decimal
� 2+/-1023 => approx. 10+/-306

s biased exp. fraction

22

• Flexibility of representation
– Within constraints below, can assign any binary 

combination (called a code word) to any data as long as 
data is uniquely encoded.

• Information Types
– Numeric

• Must represent range of data needed
• Very desirable to represent data such that simple, 

straightforward computation for common arithmetic operations 
permitted

• Tight relation to binary numbers

– Non-numeric
• Greater flexibility since arithmetic operations not applied.
• Not tied to binary numbers

Binary Numbers and Binary Coding

23

• Given n binary digits (called bits), a binary code
is a mapping from a set of represented elements
to a subset of the 2n binary numbers.

• Example: A
binary code
for the seven
colors of the
rainbow

• Code 100 is 
not used

Non-numeric Binary Codes

Binary Number
000
001
010
011
101
110
111

Color
Red
Orange
Yellow
Green
Blue
Indigo
Violet 

24

• Given M elements to be represented by a 
binary code, the minimum number of bits, 
n, needed, satisfies the following 
relationships:

2n > M > 2(n – 1) 

n =log2 M where x , called the ceiling
function, is the integer greater than or equal 
to x.

• Example: How many bits are required to 
represent decimal digitswith a binary code?
– 4 bits are required (n =log2 9 = 4)

Number of Bits Required



5

25

Number of Elements Represented

• Given n digits in radix r, there are rn distinct 
elements that can be represented.

• But, you can represent m elements, m < rn

• Examples:
– You can represent 4 elements in radix r = 2 with 

n = 2 digits: (00, 01, 10, 11).  
– You can represent 4 elements in radix r = 2 with 

n = 4 digits: (0001, 0010, 0100, 1000).


