Prof. Dr. Nizamettin AYDIN
naydin@yildiz.edu.tr
naydin@ieee.org
http://www.yildiz.edu.tr/~naydin

Digital System

- Takes a set of discrete information (inputs) and discrete internal information (system state) and generates a set of discrete information (outputs).

Information Systems:

Fundamentals

Measures of capacity and speed

Special Powers of 10 and 2 :

- Kilo- (K) $\quad=1$ thousand $=10^{3}$ and 2^{10}
- Mega- $(\mathrm{M}) \quad=1$ million $=10^{6}$ and
- Giga- $(\mathrm{G}) \quad=1$ billion $=10^{9}$ and
$\begin{array}{ll}\text { - Tera- }(\mathrm{T}) & =1 \text { trillion }=10^{12} \text { and } \\ \text { - Peta- }(\mathrm{P}) & =1 \text { quadrillion }=10^{15} \text { and } \\ 2^{50}\end{array}$

Whether a metric refers to a power of ten or a power of two typically depends upon what is being measured.

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
- Two level, or binary values are the most prevalent values in digital systems.
- Binary values are represented abstractly by:

digits 0 and 1

words (symbols) False (F) and True (T)
words (symbols) Low (L) and High (H)
and words On and Off.

- Binary values are represented by values or ranges of values of physical quantities

Signal

Example

- Hertz = clock cycles per second (frequency)
$-1 \mathrm{MHz}=1,000,000 \mathrm{~Hz}$
- Processor speeds are measured in MHz or GHz
- Byte = a unit of storage
$-1 \mathrm{~KB}=2^{10}=1024$ Bytes
$-1 \mathrm{MB}=2^{20}=1,048,576$ Bytes
- Main memory (RAM) is measured in MB
- Disk storage is measured in GB for small systems, TB for large systems.

Measures of time and space

- Milli- (m) = 1 thousandth $=10^{-3}$
- Micro- $(\mu)=1$ millionth $\quad=10^{-6}$
- Nano- (n) = 1 billionth $=10^{-9}$
- Pico- (p) $=1$ trillionth $=10^{-12}$
- Femto- (f) $=1$ quadrillionth $=10^{-15}$

Data types

- Our first requirement is to find a way to represent information (data) in a form that is mutually comprehensible by human and machine.
- Ultimately, we will have to develop schemes for representing all conceivable types of information language, images, actions, etc.
- We will start by examining different ways of representing integers, and look for a form that suits the computer.
- Specifically, the devices that make up a computer are switches that can be on or off, i.e. at high or low voltage
- Thus they naturally provide us with two symbols to work with:
- we can call them on and off, or 0 and 1

What kinds of data do we need to represent?

Numbers
signed, unsigned, integers, floating point, complex, rational, irrational, Text
characters, strings, ...
Images
pixels, colors, shapes, ..
Sound
Logical
true, false
Instructions

Data type
representation and operations within the computer

Number Systems - Representation

- Positive radix, positional number systems
- A number with radix \boldsymbol{r} is represented by a string of digits:
$A_{\mathrm{n}-1} A_{\mathrm{n}-2} \ldots A_{1} A_{0} . A_{-1} A_{-2} \ldots A_{-\mathrm{m}+1} A_{-\mathrm{m}}$ in which $\mathbf{0} \leq \boldsymbol{A}_{\mathrm{i}}<\boldsymbol{r}$ and. is the radix point.
- The string of digits represents the power series:

$$
\begin{aligned}
& \text { (Number) }_{\mathrm{r}}\left(\sum_{\substack{i=0 \\
\mathrm{i}=\mathrm{n}-1}}^{A_{\mathrm{i}}} \cdot r^{\mathrm{i}}\right)+\left(\sum_{\mathrm{j}=-\mathrm{m}}^{\mathrm{j}=-1} A_{\mathrm{j}} \cdot r^{\mathrm{j}}\right) \\
&(\text { Integer Portion })+(\text { Fraction Portion })
\end{aligned}
$$

Decimal Numbers

- "decimal" means that we have ten digits to use in our representation
- the symbols 0 through 9
- What is 3546 ?
- it is three thousands plus five hundreds plus four tens plus six ones.
- i.e. $3546=3 \times 10^{3}+5 \times 10^{2}+4 \times 10^{1}+6 \times 10^{0}$
- How about negative numbers?
- we use two more symbols to distinguish positive and negative: + and

Decimal Numbers

- "decimal" means that we have ten digits to use in our representation (the symbols 0 through 9)
- What is 3546 ?
- it is three thousands plus five hundreds plus four tens plus six ones.
- i.e. $3546=3.10^{3}+5 \cdot 10^{2}+4.10^{1}+6.10^{0}$
- How about negative numbers?
- we use two more symbols to distinguish positive and negative:
+ and -

Unsigned Binary Integers

```
Y = "abc" = a.2 2 + b. 2 + + c.20
```

(where the digits $\mathrm{a}, \mathrm{b}, \mathrm{c}$ can each take on the values of 0 or 1 only)

$N=$ number of bits		3-bits	5-bits	8-bits
Range is:	0	000	00000	00000000
$0 \leq \mathrm{i}<2^{N}-1$	1	001	00001	00000001
Problem:	2	010	00010	00000010
- How do we represent	3	011	00011	00000011
negative numbers?	4	100	00100	00000100

Limitations of integer representations

- Most numbers are not integer!
- Even with integers, there are two other considerations:
- Range:
- The magnitude of the numbers we can represent is determined by how many bits we use
e.g. with 32 bits the largest number we can represent is about +/- 2 billion, far too small for many purposes.
- Precision:
- The exactness with which we can specify a number: - e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 figure precision in decimal repesentation.
- We need another data type!

Real numbers

- Our decimal system handles non-integer real numbers by adding yet another symbol - the decimal point (.) to make a fixed point notation:
- e.g. $3456.78=3.10^{3}+4.10^{2}+5.10^{1}+6.10^{0}+7.10^{-1}+8.10^{-2}$
- The floating point, or scientific, notation allows us to represent very large and very small numbers (integer or real), with as much or as little precision as needed:
- Unit of electric charge $e=1.602176462 \times 10^{-19}$ Coulomb
- Volume of universe $=1 \times 10^{85} \mathrm{~cm}^{3}$
- the two components of these numbers are called the mantissa and the exponent

Real numbers in binary

- We mimic the decimal floating point notation to create a "hybrid" binary floating point number:
- We first use a "binary point" to separate whole numbers from fractional numbers to make a fixed point notation:
- e.g. $00011001.110=1.2^{4}+1.2^{3}+1.2^{1}+1.2^{-1}+1.2^{-2} \Rightarrow 25.75$
($2^{-1}=0.5$ and $2^{-2}=0.25$, etc.)
- We then "float" the binary point:
- $00011001.110=>1.1001110 \times 2^{4}$
mantissa $=1.1001110$, exponent $=4$
- Now we have to express this without the extra symbols ($\mathrm{x}, 2$, .)
- by convention, we divide the available bits into three fields:
sign, mantissa, exponent

IEEE-754 fp numbers - 1

s	biased exp.	fraction

32 bits: 18 bits 23 bits
$N=(-1)^{\text {s }} \times 1$. fraction $\times 2^{\text {(biased exp. }-127)}$

- Sign: 1 bit
- Mantissa: 23 bits
- We "normalize" the mantissa by dropping the leading 1 and recording only its fractional part (why?)
- Exponent: 8 bits
- In order to handle both +ve and -ve exponents, we add 127
to the actual exponent to create a "biased exponent":
- $2^{-127} \Rightarrow$ biased exponent $=00000000(=0)$
- $2^{0}=>$ biased exponent $=01111111(=127)$
- $2^{+127}=>$ biased exponent $=11111110(=254)$

IEEE-754 fp numbers - 3

- Double precision (64 bit) floating point

IEEE-754 fp numbers - 3 - Double precision (64 bit) floating point				
		biased exp.	fraction	
64 bits		11 bits	52 bits	
$\mathrm{N}=(-1)^{\text {s }} \times 1$. fraction $\times 2^{\text {(biased exp. }}$ - 1023)				
- Range \& Precision: - 32 bit: - mantissa of 23 bits + 1 => approx. 7 digits decimal - $2^{+/-127}=>$ approx. $10^{+/-38}$ - 64 bit: - mantissa of 52 bits + 1 => approx. 15 digits decimal - $2^{+-1023}=>$ approx. $10^{+/-306}$				
21				

$N=(-1)^{\text {s }} \times 1 . f r$ action $\times 2^{\text {(biased exp. }-1023)}$

- Range \& Precision:
- 32 bit:
- mantissa of 23 bits +1 => approx. 7 digits decimal
- $2^{+/-127}=>$ approx. $10^{+/-38}$
- 64 bit:
- mantissa of 52 bits + 1 => approx. 15 digits decimal
- $2^{+-1023}=>$ approx. $10^{+/-306}$

IEEE-754 fp numbers - 2

- Example: Find the corresponding fp representation of 25.75
- $25.75 \Rightarrow 00011001.110 \Rightarrow 1.1001110 \times 2^{4}$
- sign bit $=0$ (+ve)
- normalized mantissa (fraction) $=10011100000000000000000$
- biased exponent $=4+127=131 \Rightarrow 10000011$
- so 25.75 => 01000001110011100000000000000000 => x41CE0000
- Values represented by convention:
- Infinity (+ and -): exponent $=255$ (111111111) and fraction $=0$
- NaN (not a number): exponent $=255$ and fraction $\neq 0$
- Zero (0): exponent $=0$ and fraction $=0$
- note: exponent $=0 \Rightarrow$ fraction is de-normalized, i.e no hidden

Binary Numbers and Binary Coding

- Flexibility of representation
- Within constraints below, can assign any binary
combination (called a code word) to any data as long as data is uniquely encoded.
- Information Types

- Numeric

- Must represent range of data needed
- Very desirable to represent data such that simple,
straightforward computation for common arithmetic operations
permitted permitted
- Tight relation to binary numbers
- Non-numeric
- Greater flexibility since arithmetic operations not applied.
- Not tied to binary numbers

Non-numeric Binary Codes

- Given n binary digits (called bits), a binary code is a mapping from a set of represented elements to a subset of the $2^{\boldsymbol{n}}$ binary numbers.
- Example: A binary code for the seven colors of the rainbow
- Code 100 is not used

Color	Binary Number
Red	$\mathbf{0 0 0}$
Orange	$\mathbf{0 0 1}$
Yellow	$\mathbf{0 1 0}$
Green	$\mathbf{0 1 1}$
Blue	$\mathbf{1 0 1}$
Indigo	$\mathbf{1 1 0}$
Violet	$\mathbf{1 1 1}$

Number of Bits Required

- Given M elements to be represented by a binary code, the minimum number of bits, n, needed, satisfies the following relationships:
$2^{n}>M>2^{(n-1}$
$n=\left\lceil\log _{2} M\right\rceil$ where $\lceil x\rceil$, called the ceiling
function, is the integer greater than or equal to x.
- Example: How many bits are required to represent decimal digits with a binary code? -4 bits are required ($n=\left\lceil\log _{2} 9\right\rceil=4$)

Number of Elements Represented

- Given n digits in radix r, there are r^{n} distinct elements that can be represented.
- But, you can represent m elements, $m<r^{n}$
- Examples:
- You can represent 4 elements in radix $r=2$ with $n=2$ digits: $(00,01,10,11)$.
- You can represent 4 elements in radix $r=2$ with $n=4$ digits: $(0001,0010,0100,1000)$.

