
1

1

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Class and Method DesignClass and Method Design

The most important step of the design phase 
– designing the individual classes and methods.

OO systems can be quite complex, 
– analysts need to create instructions and guidelines for 

programmers that clearly describe what the system must do. 

A set of criteria, activities, and techniques used to design 
classes and methods will be presented. 

– Together they are used to ensure the object-oriented design 
communicates how the system needs to be coded.

• Become familiar with coupling, cohesion, and 
connascence.

• Be able to specify, restructure, and optimize object 
designs.

• Be able to identify the reuse of predefined classes, 
libraries, frameworks, and components.

• Be able to specify constraintsand contracts.

• Be able to create a method specification.

Objectives

3

• Class and Method design is where all of the work 
actually gets done during the design phase. 

• No matter which layer you are focusing on, the 
classes, which will be used to create the system 
objects, must be designed. 

• Some people believe that with reusable class libraries
and off-the-shelf components, this type of low-level, 
or detailed, design is a waste of time and that we 
should jump immediately into the “real” work: 
– coding the system. 

4

• However, low-level or detailed design is critical 
despite the use of libraries and components. 

• Detailed design is still very important for two reasons.
– First, 

• even preexisting classes and components needs to be understood, 
organized, and pieced together. 

– Second, 
• it is still common for the project team to have to write some code (if 

not all) and produce original classes that support the application 
logic of the system.

5

• Jumping right into coding will guarantee results that 
can be disastrous. 

• For example,
– even though the use of layers can simplify the individual 

classes, they can increase the complexity of the interactions 
between them. 

– As such, 
• if the classes are not designed carefully, the resulting system can be 

very inefficient

• the instances of the classes (i.e., the objects) will not be capable of 
communicating with each other, 

– which, of course, will cause the system not to work properly.

6



2

• in an OO system, changes can take place at different 
levels of abstraction. These levels include 
– variable, Method, Class/Object, Cluster,Library, and 

Application/System levels. 

• The changes that take place at one level can impact 
other levels 
– e.g., changes to a class can affect the cluster level, which 

can affect both the system level and the library level, 
• which in turn can cause changes back down at the class level. 

• Finally, changes can be occurring at different levels at 
the same time.

7

Levels of Abstraction in OO Systems

8

• The detailed design of the individual classes and 
methods is fairly straightforward 

• The interactions among the objects on the problem 
domain layer have been designed, in some detail, in 
the analysis phase 

• As far as the other layers go (system architecture, 
human computer interaction, and data management),
they will be highly dependent on the problem domain 
layer. 

• Therefore, if we get the problem domain classes 
designed correctly, the design of the classes on the 
other layers will fall into place.

9

REVISITING THE BASIC REVISITING THE BASIC 
CHARACTERISTICS OF CHARACTERISTICS OF 
OBJECTOBJECT--ORIENTATIONORIENTATION

Object-oriented systems can be traced back to the Simula and

Smalltalk programming languages. 

However,

until the increase in processor power and the

decrease in processor cost that occurred in the 1980s, 
– object-oriented approaches were not practical.

• The basic building block of the system:
– the object. 

• Objects 
– instancesof classes

• used as templates to define objects. 

• A class
– defines both the data and processes that each object 

contains. 

• Each object has attributes
– describing data about the object. 

Classes, Objects,Methods, and Messages

11

• Objects havestate
– defined by the value of its attributes and its relationships 

with other objects at a particular point in time. 

• each object has methods

• specifying what processes the object can perform. 

• In order to get an object to perform a method,
– a messageis sent to the object. 

• A message
– a function or procedure call from one object to another 

object.

Classes, Objects,Methods, and Messages

12



3

• Encapsulation
– the mechanism that combines the processes and data into a 

single object.

• Information hiding 
– suggests only the information required to use an object be 

available outside the object. 

– Exactly how the object stores data or performs methods is not 
relevant, as long as the object functions correctly. 

• All that is required to use an object is the set of methods
and the messages needed to be sent to trigger them. 

• The only communication between objects should be 
through an object’s methods. 

Encapsulation and Information Hiding

13

• Polymorphism
– means having the ability to take several forms. 

• By supporting polymorphism, object-oriented systems 
can send the same message to a set of objects, which 
can be interpreted differently by different classes of 
objects. 

• Based on encapsulation and information hiding, 
– an object does not have to be concerned with how 

something is done when using other objects. 

• It simply sends a message to an object and that object 
determines how to interpret the message. 
– This is accomplished through the use of dynamic binding.

Polymorphism and Dynamic Binding

14

• Dynamic binding

• refers to the ability of OO systems to defer the data 
typing of objects to run time. 

• For example, 
– imagine that you have an array of type employee that

contains instances of hourly employees and salaried 
employees. 

– Both of these types of employees implement a “compute 
pay” method. 

– An object can send the message to each instance contained 
in the array to compute the pay for that individual instance. 

Polymorphism and Dynamic Binding

15

– Depending on whether the instance is an hourly employee 
or a salaried employee, a different method would be 
executed. 

– The specific method is chosen at run time. 

– With this ability, individual classes are easier to understand.

• However, the specific level of support for 
polymorphism and dynamic binding is language 
specific.

• Most object-oriented programming languages support
dynamic binding of methods, and some support 
dynamic binding of attributes. 
– As such, it is important to know what object-oriented 

programming language is going to be used.

Polymorphism and Dynamic Binding

16

• Inheritance 
– allows developers to define classes incrementally by 

reusing classes defined previously as the basis for new 
classes. 

• Although we could define each class separately, it 
might be simpler to define one general superclass that 
contains the data and methods needed by the 
subclasses, and then have these classes inherit the 
properties of the superclass. 

• Subclasses inherit the appropriate attributes and 
methods from the superclasses “above” them.

• Inheritance makes it simpler to define classes.

Inheritance

17

• There have been many different types of inheritance 
mechanisms associated with OO systems.

• The most common inheritance mechanisms include 
different forms of single and multiple inheritance. 

• Single inheritance 
– allows a subclass to have only a single parent class.

• Currently, all OO methodologies, databases, and 
programming languages permit extending the 
definition of the superclass through single inheritance.

Inheritance

18



4

• Some OO methodologies, databases, and 
programming languages allow a subclass to redefine 
some or all of the attributes and/or methods of its 
superclass. 

• With redefinition capabilities, it is possible to 
introduce an inheritance conflict 
– an attribute [or method] of a subclass with the same name 

as an attribute [or method] of a superclass.

• For example in next figure, Doctor is a subclass of 
Employee. 
– Both have methods named computePay(). 

• This causes an inheritance conflict.

Inheritance

19

• When the definition of a superclass is 
modified, all of its subclasses are affected. 

• This may introduce additional inheritance 
conflicts in one (or more) of the 
superclass’s subclasses. 

• For example in the Figure,
– Employee could be modified to include an 

additional method, updateSchedule().

– This would add another inheritance conflict 
between Employee and Doctor. 

– Therefore, developers must be aware of the 
effects of the modification not only in the 
superclass, but also in each subclass that 
inherits the modification

Inheritance

20

• through redefinition capabilities, it is possible for a 
programmer to arbitrarily cancel the inheritance of 
methods 
– by placing stubs in the subclass that will override the

definition of the inherited method. 
• a stubis the minimal definition of a method to prevent syntax errors 

occurring

• If the cancellation of methods is necessary for the 
correct definition of the subclass, 
– then it is likely that the subclass has been misclassified 

• i.e., it is inheriting from the wrong superclass.

Inheritance

21

• inheritance conflicts and redefinition can cause all 
kinds of problems with interpreting the final design 
and implementation.

• most inheritance conflicts are due to poor 
classification of the subclass in the inheritance
hierarchy 
– i.e., the generalization A-Kind-Of semantics are violated, 

• or the actual inheritance mechanism violates the 
encapsulation principle 
– i.e., subclasses are capable of directly addressing the 

attributes or methods of a superclass.

Inheritance

22

• To address these issues, Jim Rumbaugh, and his 
colleagues, suggested the following guidelines:
– Do not redefine query operations.

– Methods that redefine inherited ones should only restrict the 
semantics of the inherited ones.

– The underlying semantics of the inherited method should 
never be changed.

– The signature (argument list) of the inherited method
should never be changed.

Inheritance

23

• Many existing OO programming languages violate 
these guidelines. 

• When it comes to implementing the design, different 
OO programming languages address inheritance 
conflicts differently. 

• Therefore, it is important at this point in the 
development of the system to know what the 
programming language that you are going to use 
supports.

Inheritance

24



5

• With multiple inheritance, a subclass may inherit from 
more than one superclass. 

• In this situation, the types of inheritance conflicts are 
multiplied. 

• In addition to the possibility of having an inheritance 
conflict between the subclass and one (or more) of its 
superclasses,
– it is now possible to have conflicts between two (or more) 

superclasses. 

• In this latter case, there are three different types of 
additional inheritance conflicts that can occur:

Inheritance

25

1. Two inherited attributes (or methods) have the same 
name and semantics.

2. Two inherited attributes (or methods) have different 
names but with identical semantics 
– i.e., they are synonyms.

3. Two inherited attributes (or methods) have the same 
name but with different semantics
– i.e., they are homonyms.

– This also violates the proper use of polymorphism.

Inheritance

26

• In the Figure, 
– Robot-Employee is a subclass 

of both Employee and Robot.

• Employee and Robot 
conflict with the attribute 
name.

• Which one should Robot-
Employee inherit? 

• It is also possible that 
Employee and Robot could 
have a semantic conflict on 
the classification and type 
attributes if they are 
synonyms.

Additional Inheritance Conflicts with Multiple Inheritance

27

Design CriteriaDesign Criteria

When considering the design of an OO system, 
there is a set of criteria that can be used to 
determine whether the design is a good one or a 
bad one. 

These criteria include 
– coupling, cohesion, and connascence.

• refers to how interdependent or interrelated the 
modules (classes, objects, and methods) are in a 
system. 
– The higher the interdependency, the more likely changes in 

part of a design can cause changes to be required in other 
parts of the design. 

• For OO systems, Coad and Yourdon* identified two 
types of coupling to consider:
– interaction 

– inheritance.

⃰ Peter Coad and Edward Yourdon, Object-Oriented Design (Englewood 
Cliffs, NJ: Yourdon Press, 1991)

Coupling

29

• Interaction coupling 
– deals with the coupling among methods and objects through 

message passing. 

• Law of Demeter* states that 
– an object should only send messages to one of the 

following: 
• itself, 

• an object that is contained in an attribute of the object 
– or one of its superclasses, 

• an object that is passed as a parameter to the method, 

• an object that is created by the method, 

• an object that is stored in a global variable.

⃰ Karl J. Lieberherr, Adaptive Object-Oriented Software: The Demeter 
Method with Propagation Patterns (Boston, MA: PWS Publishing, 1996)

Coupling

30



6

• In each case, interaction coupling is increased. 

• For example, 
– the coupling increases between the objects 

• if the calling method passes attributes to the called method, 

• or if the calling method depends on the value being returned by the 
called method.

• There are six types of interaction coupling, 
– each falling on different parts of a good-to bad continuum. 

– They range from no direct coupling (Good) up to content 
coupling (Bad).

• Following figure presents the different types of 
interaction coupling

Coupling

31

Types of Interaction Coupling

32

• In general, interaction coupling should be minimized. 
– one possible exception is that non–problem domain classes 

must be coupled to their corresponding problem domain 
classes. 

– For example, 
• a report object (on the HCI layer) that displays the contents of an 

employee object (on the problem domain layer) will be dependent 
on the employee object. 

• In this case, for optimization purposes, the report class may be even 
content or pathologically coupled to the employee class. 

– However, problem domain classes should never be coupled 
to non–problem domain classes.

Coupling

33

• Inheritance coupling, 
– deals with how tightly coupled the classes are in an 

inheritance hierarchy. 

• Most authors tend to say simply that this type of 
coupling is desirable. 

• However, depending on the issues raised previously 
with inheritance
– inheritance conflicts, redefinition capabilities, and dynamic 

binding

a high level of inheritance coupling may not be a good 
thing. 

Coupling

34

• For example, 
– should a method defined in a subclass be allowed to call a 

method defined in one of its superclasses? 

– should a method defined in a subclass refer to an attribute 
defined in one of its superclasses? 

– can a method defined in an abstract superclass depend on its 
subclasses to define a method or attribute on which it is 
dependent? 

• Depending on the object-oriented programming 
language being used, all of these options are possible.

Coupling

35

• Snyder* has pointed out that 
– most problems with inheritance is the ability within the OO 

programming languages to violate the encapsulation and 
information hiding principles.

• Therefore, knowledge of which OO programming 
language is to be used is crucial. 

• From a design perspective, 
– the developer will need to optimize the trade-offs of 

violating the encapsulation and information hiding 
principles and increasing the desirable coupling between 
subclasses and its superclasses. 

⃰ Alan Snyder, “Encapsulation and Inheritance in Object-Oriented 
Programming Languages,” in: N.Meyrowitz, Ed., OOPSLA ‘86 Conference 
Proceedings, ACM SigPlan Notices, 21 (11) (November 1986)

Coupling

36



7

• The best way to solve this conundrum 
– to ensure that inheritance is used only to support 

• generalization/specialization (A-Kind-Of) semantics 

• the principle of substitutability.

• All other uses should be avoided.

Coupling

37

• refers to how single-minded a module (class, object, 
or method) is within a system.
– A class or object should only represent one thing, 

– A method should only solve a single task.

• Three general types of cohesion have been identified 
by Coad and Yourdon* for OO systems: 
– method, 

– class, 

– generalization/specialization, 

⃰ Coad and Yourdon, Object-Oriented Design

Cohesion 

38

• Method cohesion 
– addresses the cohesion within an individual method.

• i.e., how singleminded is a method

– Methods should do one and only one thing. 

• There are seven types of method cohesion that have 
been identified 
– illustrated in next slide

• They range from functional cohesion (Good) down to 
coincidental cohesion (Bad). 

• In general, method cohesion should be maximized.

Cohesion 

39

Types of Method Cohesion

40

• Class cohesion 
– level of cohesion among the attributes and methods of a class 

• i.e., how single-minded is a class. 

– A class should only represent one thing, such as an employee, 
a department, or an order. 

• All attributes and methods contained in a class should 
be required for the class to represent the thing. 

• For example, 
– an employee class should have attributes that deal with a 

• social security number, last name, first names, middle initial, 
addresses, and benefits,

– but it should not have attributes like 
• door, engine, or hood. 

Cohesion 

41

• A class should have only the attributes and methods 
necessary to fully define instances for the problem at 
hand. 

• In this case, we have ideal class cohesion. 
– Glenford Meyers* suggested that a cohesive class should:

• contain multiple methods that are visible outside of the class and that 
each visible method only performs a single function,

• have methods that only refer to attributes or other methods defined 
with the class or its superclass(es),

• not have any control-flow couplings between its methods.

⃰ Glenford J. Myers, Composite/Structured Design [New York, NY: Van 
Nostrand Reinhold, 1978]

Cohesion 

42



8

• Page-Jones* has identified three less than desirable 
types of class cohesion: 
– mixed instance,

– mixed-domain, 

– mixed-role

which are summarised in next slide. 

• An individual class can have a mixture of any of the 
three types.

⃰ Meilir Page-Jones, Fundamentals of Object-Oriented Design in UML 
(Reading, MA: Addison-Wesley, 2000)

Cohesion 

43

Types of Class Cohesion

44

• generalizes the ideas of cohesion and coupling, and it 
combines them with the arguments for encapsulation. 

• To accomplish this, three levels of encapsulation have 
been identified. 
– Level-0 encapsulation 

• refers to the amount of encapsulation realized in an individual line of 
code, 

– Level-1 encapsulation 
• the level of encapsulation attained by combining lines of code into a 

method, 

– Level-2 encapsulation 
• achieved by creating classes that contain both methods and attributes. 

Connascence

45

• Method cohesion and interaction coupling primarily 
address level-1 encapsulation. 

• Class cohesion, generalization/specialization cohesion, 
and inheritance coupling only address level-2 
encapsulation. 

• Connascence, as a generalization of cohesion and 
coupling, addresses both level-1 and level-2 
encapsulation.

• Connascence means to be born together.
– From an OO design perspective, it means that two modules 

(classes or methods) are so intertwined, that 
• if you make a change in one, it is likely that a change in the other will 

be required.

Connascence

46

• On the surface, this is very similar to coupling, and as 
such should be minimized. 

• However,when you combine it with the encapsulation 
levels, it is not quite as simple as that. 

• In this case, you want to 
– minimize overall connascence by eliminating any 

unnecessary connascence throughout the system, 

– minimize connascence across any encapsulation boundaries, 
such as method boundaries and class boundaries,

– maximize connascence within any encapsulation boundary.

Connascence

47

• Based on these guidelines, 
– a subclass should never directly access any hidden attribute or 

method of a superclass . 

– If direct access to the non-visible attributes and methods of a 
superclass by its subclass is allowed and a modification to the 
superclass is made, 

• then due to the connascence between the subclass and its superclass, it 
is likely that a modification to the subclass also will be required. 

– Practically speaking, you should maximize the cohesion 
(connascence) within an encapsulation boundary and 
minimize the coupling (connascence) between the 
encapsulation boundaries. 

• There are many possible types of connascence. 
– Following slide describes five of the types.

Connascence

48



9

Types of Connascence

49

Object Design ActivitiesObject Design Activities

The design activities for classes and methods are 
an extension of the analysis and evolution 
activities presented previously.

The expanded descriptions are created through 
the activities that take place during the detailed 
design of the classes and methods.

• The activities used to design classes and methods 
include 
– additional specification of the current model, 

– identifying opportunities for reuse, 

– restructuring the design,

– optimizing the design, 

– mapping the problem domain classes to an implementation 
language. 

• Any changes made to a class on one layer can cause 
the classes on the other layers that are coupled to it to 
be modified also. 

51

• At this point in the development of the system, it is 
crucial to review the current set of structural and 
behavioral models.

• Ensure the classes are both necessary and sufficient 
for the problem
– To do this,we need to be sure that there are no missing 

attributes or methods and no extra or unused attributes or 
methods in each class.

• Finalize the visibility of the attributes and methods of 
each class
– Depending on the object-oriented programming language 

used, this could be predetermined

Additional Specification

52

• Determine the signature of every method of each class
– The signature of a method comprises three parts: 

• the name of the method, 

• the parameters or arguments that must be passed to the method, 

• the type of value that the method will return to the calling method.

• Define constraints to be preserved by objects
– There are three different types of constraints: 

• pre-conditions, 

• post-conditions, 

• invariants.

• These are captured in the form of contracts and 
assertions added to CRC cards and class diagrams.

Additional Specification

53

• We also must decide how to handle a violation of a 
constraint. 
– Should the system simply abort? 

– Should the system automatically undo the change that 
caused the violation? 

– Should the system let the end user determine the approach 
to correct the violation?

• The designer must design the errors that the system is 
expected to handle.
– It is best to not leave these types of problems for the 

programmer to solve.

• Violations of a constraint are known as exceptionsin 
languages, such as C++ and Java.

Additional Specification

54



10

• In the design phase, in addition to using analysis 
patterns, there are opportunities for using 
– design patterns, 

– frameworks, 

– libraries, 

– components. 

• The opportunities will vary depending on which layer 
is being reviewed.
– For example, 

• it is doubtful that a class library will be of much help on the 
problem domain layer, 

• but an appropriate class library could be of great help on the 
foundation layer. 

Identifying Opportunities for Reuse

55

• Design patterns 

• useful grouping of collaborating classes that provide a 
solution to a commonly occurring problem. 

• useful in solving “a general design problem in a 
particular context.”

• For example, 
– a useful pattern is the Whole-Part pattern (see the next slide, 

Part A). 

– The Whole-Part pattern explicitly supports the Aggregation 
and Composition relationships within the UML. 

– Another useful design pattern is the Command Processor 
pattern (see the next slide, Part B). 

Identifying Opportunities for Reuse

56

57

Sample Design Patterns

• The primary purpose of the Command Processor 
pattern 
– to force the designer to explicitly separate the interface to 

an object (Command) from the actual execution of the 
operation (Supplier) behind the interface.

• Some of the design patterns support different physical 
architectures. 

• For example, 
– the Forwarder-Receiver pattern (see the next slide, Part C) 

supports a peer-to-peer architecture. 

• Many design patterns are available in C++ or Java 
source code.

Identifying Opportunities for Reuse

58

Sample Design Patterns

59

• A framework 
– composed of a set of implemented classes that can be can 

be used as a basis for implementing an application. 

• For example, 
– there are frameworks available for CORBA and DCOM on 

which you could base the implementation of part of the 
physical architecture layer. 

• Most frameworks allow you to create subclasses to 
inherit from classes in the framework. 
– There are object-persistence frameworks that can be 

purchased and used to add persistence to the problem 
domain classes, which would be helpful on the data 
management layer. 

Identifying Opportunities for Reuse

60



11

• A class library 

• similar to a framework in that you typically have a set 
of implemented classes that were designed for reuse. 

• A typical class library could be purchased to support 
– numerical or statistical processing, 

– file management (data management layer), 

– user interface development (HCI layer). 

• In some cases, you will create instances of classes 
contained in the class library and in other cases you 
will extend classes in the class library by creating 
subclasses based on them. 

Identifying Opportunities for Reuse

61

• If you use inheritance to reuse the classes in the class 
library, 
– you will run into all of the issues dealing with inheritance 

coupling and connascence. 

• If you directly instantiate classes in the class library, 
– you will create a dependency between your object and the 

library object based on the signatures of the methods in the 
library object. 

• This will increase the interaction coupling between 
the class library object and your object.

Identifying Opportunities for Reuse

62

• A component 
– a self-contained, encapsulated piece of software that can be 

“plugged” into a system to provide a specific set of required 
functionality. 

• Today, there are many components available for 
purchase that have been implemented using ActiveX
or JavaBeantechnologies. 

• A component has a well-defined Application Program 
Interface(API). 
– The API is essentially a set of method interfaces to the 

objects contained in the component. 

Identifying Opportunities for Reuse

63

• The internal workings of the component are hidden 
behind the API. 

• Components can be implemented using class libraries 
and frameworks. 

• However, components also can be used to implement 
frameworks. 

• Unless, the API changes between versions of the 
component, upgrading to a new version normally will 
require only linking the component back into the 
application. 
– As such, recompilation typically is not required.

Identifying Opportunities for Reuse

64

• Which of these approaches should you use? 
– It depends on what you are trying to build.

• frameworks are used mostly to aid in developing 
objects on the physical architecture, human computer 
interaction, or data management layers

• components are used primarily to simplify the 
development of objects on the problem domain and 
human computer interaction layers

• class libraries are used to develop frameworks and 
components and to support the foundation layer

Identifying Opportunities for Reuse

65

• Once the individual classes and methods have been 
specified, and the class libraries, frameworks, and 
components have been incorporated into the evolving 
design, 
– factoring should be used to restructure the design. 

• Factoringis the process of separating out aspects of a method or class 
into a new method or class to simplify the overall design. 

– For example, 
• when reviewing a set of classes on a particular layer, you might 

discover that a subset of them shares a similar definition. 

• In that case, it may be useful to factor out the similarities and create a 
new class. 

• Based on the issues related to cohesion, coupling, and connascence, 
the new class may be related to the old classes via inheritance 
(generalization) or through an aggregation or association relationship.

Restructuring the Design

66



12

• Another process that is useful to restructure the 
evolving design is normalization.

• Normalization can be useful at times to identify 
potential classes that are missing from the design. 

• Also, related to normalization is the requirement to 
implement the actual association and aggregation 
relationships as attributes. 

• Virtually no OO programming language differentiates 
between attributes and association and aggregation
relationships. 
– Therefore, all association and aggregation relationships 

must be converted to attributes in the classes.

Restructuring the Design

67

• optimizations that can be used to create a more 
efficient design:

� review the access paths between objects. 
– In some cases, a message from one object to another may 

have a long path to traverse 
• i.e., it goes through many objects. 

– If the path is long, and the message is sent frequently, a 
redundant path should be considered. 

– Adding an attribute to the calling object that will store a
direct connection to the object at the end of the path can 
accomplish this.

Optimizing the Design

68

� review each attribute of each class.
– Which methods use the attributes and which objects use the 

methods should be determined. 

– If the only methods that use an attribute are read and update 
methods, and only instances of a single class send messages 
to read and update the attribute, 

• then the attribute may belong with the calling class instead of the 
called class. 

– Moving the attribute to the calling class will substantially
speed up the system

Optimizing the Design

69

� review the direct and indirect fan-out of each method.
– Fan-outrefers to the number of messages sent by a method. 

– The direct fan-out is the number of messages sent by the 
method itself, 

– The indirect fan-out also includes the number of messages 
sent by the methods called by the other methods in a 
message tree. 

– If the fan-out of a method is high relative to the other 
methods in the system, the method should be optimized. 

• One way to do this is to consider adding an index to the attributes 
used to send the messages to the objects in the message tree.

Optimizing the Design

70

� look at the execution order of the statements in often-
used methods. 
– In some cases, it may be possible to rearrange some of the 

statements to be more efficient. 

– For example,

– if it is known, based on the objects in the system, that a 
search routine can be narrowed by searching on one 
attribute before another one,

• then the search algorithm should be optimized by forcing it to 
always search in a predefined order.

Optimizing the Design

71

� avoid recomputation by creating a derived attribute 
(active value), e.g., a total that will store the value of the computation. 

– This is also known as caching computational results. 

– This can be accomplished by adding a triggerto the 
attributes contained in the computation. 

• This would require a recomputation to take place only when one of 
the attributes that go into the computation is changed. 

– Another approach would be to mark the derived attribute, 
and delay the recomputation until the next time the derived 
attribute is accessed. 

• This delays the recomputation as long as possible. 

• In this manner, a computation does not occur unless it has to occur.
– Otherwise, every time a derived attribute needs to be accessed, a 

computation would be required.

Optimizing the Design

72


