Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr
http://www.yildiz.edu.tr/~naydin

A

Classand Method Design

A\ 4

The most important step of the design phase
— designing the individual classes and methods.
OO0 systems can be quite complex,

— analysts need to create instructions and guidefime
programmers that clearly describe what the systest dp.
A set of criteria, activities, and technigues used to design
classes and methods will be presented.

— Together they are used to ensure the object-edetgsign
communicates how the system needs to be coded.

Objectives

Become familiar witrcoupling cohesionand
connascence

Be able to specify, restructure, and optimize object
designs.

Be able to identify the reuse of predefirdgisses
libraries frameworks andcomponents

Be able to specifgonstraintandcontracts
Be able to create a method specification.

Class and Method design is where all of the work
actually gets done during the design phase.

No matter which layer you are focusing on, the
classes, which will be used to create the system
objects, must be designed.

Some people believe that with reusable class librarie]
and off-the-shelf components, this type of low-level,
or detailed, design is a waste of time and that we
should jump immediately into the “real” work:

— coding the system.

However, low-level or detailed design is critical
despite the use of libraries and components.

Detailed design is still very important for two reasong,

— First,
« even preexisting classes and components needs to betooder
organized, and pieced together.

— Second,

« itis still common for the project team to haventdite some code (if
not all) and produce original classes that support the afiplic
logic of the system.

Jumping right into coding will guarantee results that
can be disastrous.

For example,

— even though the use of layers can simplify the individual
classes, they can increase the complexity of the interactio
between them.

— As such,

« if the classes are not designed carefully, the residgistem can be
very inefficient
« the instances of the classes (i.e., the objectsputi be capable of
communicating with each other,
— which, of course, will cause the system not to wandperly.

w

in an OO system, changes can take place at differen
levels of abstraction. These levels include
— variable, Method, Class/Object, Cluster,Library, and
Application/System levels.
The changes that take place at one level can impact
other levels
— e.g., changes to a class can affect the cluster level, which
can affect both the system level and the library level,
« which in turn can cause changes back down at the elesis |
Finally, changes can be occurring at different levels §
the same time.

—

Levelsof Abstraction in OO Systems

Application/System

Cluster |—' Library I

|

Class/Object

AN

Variable I Method I

The detailed design of the individual classes and
methods is fairly straightforward

The interactions among the objects on the problem
domain layer have been designed, in some detail, in
the analysis phase

As far as the other layers go (system architecture,

human computer interaction, and data management)
they will be highly dependent on the problem domain
layer.

Therefore, if we get the problem domain classes

designed correctly, the design of the classes on the
other layers will fall into place.

REVISITING THE BASIC
CHARACTERISTICS OF
OBJECT-ORIENTATION

A
¥

Object-oriented systems can be traced back toithel&and
Smalltalk programming languages.
However,
until the increase in processor power and the
decrease in processor cost that occurred in th@s198
— object-oriented approaches were not practical.

Classes, Objects,M ethods, and M essages

The basic building block of the system:
— theobject
Objects

— instancesf classes
« used as templates to define objects.

A class

— defines both the data and processes that each object
contains.

Each object haattributes
— describing data about the object.

Classes, Objects,M ethods, and M essages

* Objects havstate

— defined by the value of its attributes and its relationships
with other objects at a particular point in time.

» each object hasiethods
« specifying what processes the object can perform.
« In order to get an object to perform a method,
— amessageés sent to the object.
* A message

— a function or procedure call from one object to another
object.

Encapsulation and Information Hiding

Encapsulation

— the mechanism that combines the processes and data into g
single object.

Information hiding

— suggests only the information required to use an object be
available outside the object.

— Exactly how the object stores data or performs methods is nf
relevant, as long as the object functions correctly.

All that is required to use an object is the set of metho

and the messages needed to be sent to trigger them.

The only communication between objects should be
through an object’s methods.

D

-

Polymor phism and Dynamic Binding

Polymorphism
— means having the ability to take several forms.
By supporting polymorphism, object-oriented system
can send the same message to a set of objects, whi
can be interpreted differently by different classes of
objects.
Based on encapsulation and information hiding,
— an object does not have to be concernedhati

something is done when using other objects.
It simply sends a message to an object and that object
determines how to interpret the message.
— This is accomplished through the use of dynamic binding.

14

°

>

e Dynamic binding

Polymor phism and Dynamic Binding

refers to the ability of OO systems to defer the data
typing of objects to run time.

For example,

— imagine that you have an array of type employee that
contains instances of hourly employees and salaried
employees.

— Both of these types of employees implement a “compute
pay” method.

— An object can send the message to each instance contain
in the array to compute the pay for that individual instance

Polymor phism and Dynamic Binding

— Depending on whether the instance is an hourly employee]
or a salaried employee, a different method would be
executed.

— The specific method is chosen at run time.
— With this ability, individual classes are easier to understangl.
However, the specific level of support for
polymorphism and dynamic binding is language
specific.

Most object-oriented programming languages suppoft
dynamic binding of methods, and some support
dynamic binding of attributes.

— As such, it is important to know what object-oriented
programming language is going to be used.

Inheritance

Inheritance

— allows developers to define classes incrementally by
reusing classes defined previously as the basis for new
classes.

Although we could define each class separately, it

might be simpler to define one general superclass th

contains the data and methods needed by the

subclasses, and then have these classes inherit the

properties of the superclass.

Subclasses inherit the appropriate attributes and

methods from the superclasses “above” them.

Inheritance makes it simpler to define classes.

=3

Inheritance

There have been many different types of inheritance
mechanisms associated with OO systems.

The most common inheritance mechanisms include
different forms of single and multiple inheritance.
Single inheritance

— allows a subclass to have only a single parent class.
Currently, all OO methodologies, databases, and
programming languages permit extending the
definition of the superclass through single inheritancg.

Inheritance

« Some OO methodologies, databases, and

programming languages allow a subclass to redefing

some or all of the attributes and/or methods of its

superclass.

With redefinition capabilitiesit is possible to

introduce annheritance conflict

— an attribute [or method] of a subclass with the same name
as an attribute [or method)] of a superclass.

For example in next figure, Doctor is a subclass of

Employee.

— Both have methods named computePay().

This causes an inheritance conflict.

Inheritance

* When the definition of a superclass is
modified, all of its subclasses are affect

* This may introduce additional inheritanc
conflicts in one (or more) of the
superclass’s subclasses.

» For example in the Figure,

— Employee could be modified to include an
additional method, updateSchedule().

— This would add another inheritance conflict
between Employee and Doctor.

— Therefore, developers must be aware of the
effects of the modification not only in the
superclass, but also in each subclass that
inherits the modification

Employee

+computePay()

+computePay()
+updateSchedule()

Inheritance

through redefinition capabilities, it is possible for a
programmer to arbitrarily cancel the inheritance of
methods

— by placingstubsin the subclass that will override the
definition of the inherited method.
« astubis the minimal definition of a method to prevent syreavors
occurring

If the cancellation of methods is necessary for the
correct definition of the subclass,

— then it is likely that the subclass has been misclassified
« i.e., it is inheriting from the wrong superclass.

Inheritance

« inheritance conflicts and redefinition can cause all
kinds of problems with interpreting the final design
and implementation.

* most inheritance conflicts are due to poor

classification of the subclass in the inheritance

hierarchy

— i.e., the generalization A-Kind-Of semantics are violated,

or the actual inheritance mechanism violates the

encapsulation principle

— i.e., subclasses are capable of directly addressing the
attributes or methods of a superclass.

Inheritance

» To address these issues, Jim Rumbaugh, and his
colleagues, suggested the following guidelines:
— Do not redefine query operations.
— Methods that redefine inherited ones should only restrict t
semantics of the inherited ones.
— The underlying semantics of the inherited method should
never be changed.

— The signature (argument list) of the inherited method
should never be changed.

[]

Inheritance

Many existing OO programming languages violate
these guidelines.

When it comes to implementing the design, different
OO programming languages address inheritance
conflicts differently.

Therefore, it is important at this point in the
development of the system to know what the
programming language that you are going to use
supports.

1%

1%

Inheritance Inheritance

« With multiple inheritancea subclass may inherit from 1. Two inherited attributes (or methods) have the sam

more than one superclass. name and semantics.
« In this situation, the types of inheritance conflicts are 2. Two inherited attributes (or methods) have different

multiplied. names but with identical semantics
« In addition to the possibility of having an inheritance — Le., they arsynonyms

conflict between the subclass and one (or more) of its 3. Two inherited attributes (or methods) have the sam

superclasses, name but with different semantics

— itis now possible to have conflicts between two (or more) — l.e., they arbhomonyms

superclasses. — This also violates the proper use of polymorphism.

« In this latter case, there are three different types of

additional inheritance conflicts that can occur:

25 26

Additional Inheritance Conflicts with Multiple Inheritancg
« Inthe Figure, Employee Rohot

— Robot-Employee is a suhc\a

of both Employee and Robof, iclasﬁ'\ﬁcaﬂ\)n

+ Employee and Robot —runningTime unningTime D&’ gn Cr ita‘ i a

conflict with the attribute

name. {‘)
« Which one should Robot- T‘ T) i)

Employee inherit? When considering the design of an OO system,
. ltis eilso poss(ijble tgat | | there is a set of criteria that can be used to

Employee and Robot coult f : :

have & semantic confiict ol determine whether the design is a good one or a

the classification and type bad one.

attributes if they are T

synonyms. These criteria include

— coupling, cohesion, and connascence.
27|
Coupling Coupling

refers to how interdependent or interrelated the
modules (classes, objects, and methods) are in a
system.

— The higher the interdependency, the more likely changes i
part of a design can cause changes to be required in othe
parts of the design.

For OO systems, Coad and Yourdadentified two
types of coupling to consider:

— interaction

— inheritance.

Peter Coad and Edward Yourd@hject-Oriented Design (Englewood
Cliffs, NJ: Yourdon Press, 1991)

Interaction coupling

— deals with the coupling among methods and objects through
message passing.

Law of Demetet states that

— an object should only send messages to one of the
following:
« itself,
< an object that is contained in an attribute of thiect
— orone of its superclasses,
< an object that is passed as a parameter to the method,
< an object that is created by the method,
< an object that is stored in a global variable.

Karl J. LieberherrAdaptive Object-Oriented Software: The Demeter

Method with Propagation Patterns (Boston, MA: PWS Publishing, 1996)
30|

Coupling

« In each case, interaction coupling is increased.

« For example,

— the coupling increases between the objects
« if the calling method passes attributes to the callethod,

« or if the calling method depends on the value being retLioy the
called method.

» There are six types of interaction coupling,
— each falling on different parts of a good-to bad continuum.
— They range from no direct coupling (Good) up to content
coupling (Bad).
 Following figure presents the different types of
interaction coupling

Types of Interaction Coupling

Level Type Description

Good No Direct Coupling The methods do not relate to one anather; that is, they do

not call one another,

Data The calling method passes a variable to the called method.
If the variable is composite, (i.e., an object), the entire

object is used by the called method to perform its function.

Stamp The calling method passes a composite variable (i.e., an
object) to the called method, but the called method only

uses a portion of the object to perform its function.

Control The calling method passes a control variable whose value

will control the execution of the called method.

Common or Clobal The methods refer to a “global data area” that is outside the

individual objects.

Bad Content or Pathological A method of one object refers to the inside (hidden parts) of
another object. This violates the principles of encapsulation
and information hiding. However, C++ allows this to take

place through the use of “friends.”

Coupling

« In general, interaction coupling should be minimized.

— one possible exception is that non—problem domain classgs
must be coupled to their corresponding problem domain
classes.

— For example,
< areport object (on the HCI layer) that displaysdbetents of an
employee object (on the problem domain layer) wildbpendent
on the employee object.
« Inthis case, for optimization purposes, the repossciaay be even
content or pathologically coupled to the employee class.
— However, problem domain classes should never be coupld
to non—problem domain classes.

[=}

Coupling

« Inheritance coupling
— deals with how tightly coupled the classes are in an
inheritance hierarchy.
* Most authors tend to say simply that this type of
coupling is desirable.
« However, depending on the issues raised previously
with inheritance
— inheritance conflicts, redefinition capabilities, and dynamic
binding
a high level of inheritance coupling may not be a gog
thing.

Coupling

* For example,

— should a method defined in a subclass be allowed to call &
method defined in one of its superclasses?

— should a method defined in a subclass refer to an attributel
defined in one of its superclasses?

— can a method defined in an abstract superclass depend o
subclasses to define a method or attribute on which it is
dependent?

« Depending on the object-oriented programming
language being used, all of these options are possibl

=3

its

®

Coupling

* Snyder has pointed out that
— most problems with inheritance is the ability within the OO
programming languages to violate the encapsulation and
information hiding principles.

Therefore, knowledge of which OO programming
language is to be used is crucial.

« From a design perspective,

— the developer will need to optimize the trade-offs of
violating the encapsulation and information hiding
principles and increasing the desirable coupling between
subclasses and its superclasses.

Alan Snyder, “Encapsulation and Inheritance in Objed¢ited
Programming Languages,” in: N.Meyrowitz, EQQOPSLA ‘86 Conference
Proceedings, ACM SigPlan Notices, 21 (11) (November 1986) 36

Coupling

¢ The best way to solve this conundrum

— to ensure that inheritance is used only to support
< generalization/specialization (A-Kind-Of) semantics
« the principle of substitutability.

¢ All other uses should be avoided.

Cohesion

« refers to how single-minded a module (class, object,
or method) is within a system.
— Aclass or object should only represent one thing,
— A method should only solve a single task.
« Three general types of cohesion have been identifieq
by Coad and Yourddnfor OO systems:
— method,
— class,
— generalization/specialization,

Coad and Yourdoi®bject-Oriented Design

Cohesion

* Method cohesion
— addresses the cohesion within an individual method.
« i.e., how singleminded is a method
— Methods should do one and only one thing.
* There are seven types of method cohesion that have
been identified
— illustrated in next slide
* They range from functional cohesion (Good) down td
coincidental cohesion (Bad).

* In general, method cohesion should be maximized.

Types of Method Cohesion

Level Type Description
Good Functional A method performs a single problem-related task (e.g.,
Calculate current GPAL.
Sequential The method combines two functions in which the output

from the first one is used as the input to the second one
(e.g., format and validate current GPA).

Communicational The method combines two functions that use the same
attributes 1o execute (e.g., calculate current and

cumulative GPA).

Procedural The method supports multiple weakly related functions. For
example, the methed could calculate student GPA, print
student record, calculate cumulative GPA, and print
cumulative GPA.

Temporal or Classical The method supports multiple related functions in time

(e.g., initialize all atiributes).

Logical The method supports multiple related functions, but the
choice of the specific function is chosen based on a control
variable that is passed into the method. For example, the
called method could open a checking account, open a sav-
ings account, or calculate a loan, depending on the message
that is send by its calling method.

Bad Coincidental The purpose of the method cannot be defined or it performs
multiple functions that are unrelated to one another. For
example, the method could update customer records, calcu-
late loan payments, print exception reports, and analyze
competitor pricing structure.

40

Cohesion

 Class cohesion
— level of cohesion among the attributes and methods of a class

« i.e.,how single-minded is a class.

— Aclass should only represent one thing, such as an empldyee,

a department, or an order.

« All attributes and methods contained in a class should
be required for the class to represent the thing.

« For example,

— an employee class should have attributes that deal with a

« social security number, last name, first names, midhutial,
addresses, and benefits,

— but it should not have attributes like

« door, engine, or hood.
41

Cohesion

» A class should have only the attributes and methods
necessary to fully define instances for the problem a
hand.

« In this case, we havdeal class cohesion

— Glenford Meyers suggested that a cohesive class should:

contain multiple methods that are visible outside efdlass and that
each visible method only performs a single function,

have methods that only refer to attributes or othethods defined
with the class or its superclass(es),

not have any control-flow couplings between its mdgho

5

Glenford J. Myers, Composite/Structured Design [New YNk, Van
Nostrand Reinhold, 1978]

42|

Cohesion

« Page-Jonéshas identified three less than desirable
types of class cohesion:
— mixed instance,
— mixed-domain,
— mixed-role
which are summarised in next slide.

¢ Anindividual class can have a mixture of any of the
three types.

* Meilir Page-Jonesundamentals of Object-Oriented Design in UML

(Reading, MA: Addison-Wesley, 2000)

43

Types of Class Cohesion

Level Type Description

Good Ideal The class has none of the mixed cohesions.

Mixed-Role The class has one or more attributes that relate objects of
the class to other objects on the same layer (e.g,, the
problem domain layer), but the attribute(s) have nothing to

do with the underlying semantics of the class.

Mixed-Domain The class has one or more attributes that relate objects of
the class to other objects on a different layer. As such,

they have nothing to do with the underlying semantics of
the thing that the class represents. In these cases, the
offending attribute(s) belongs in another class located on
one of the other layers. For example, a port attribute located
in a problem domain class should be in a system architec-
ture class that is related to the problem domain class.

Worse Mixed-Instance The class represents two different types of objects. The class
should be decomposed into two separate classes. Typically,
different instances only use a portion of the full definition of

the class.

44

Connascence

—

¢ generalizes the ideas of cohesion and coupling, and
combines them with the arguments for encapsulation.

« To accomplish this, three levels of encapsulation ha
been identified.
— Level-0 encapsulation

« refers to the amount of encapsulation realized imdividual line of
code,

— Level-1 encapsulation

« the level of encapsulation attained by combining linesode into a
method,

— Level-2 encapsulation
< achieved by creating classes that contain both rdstand attributes.

D

45

Connascence

« Method cohesion and interaction coupling primarily
address level-1 encapsulation.

¢ Class cohesion, generalization/specialization cohesi
and inheritance coupling only address level-2
encapsulation.

» Connascence, as a generalization of cohesion and
coupling, addresses both level-1 and level-2
encapsulation.

» Connascence means to be born together.
— From an OO design perspective, it means that two modulg
(classes or methods) are so intertwined, that

« if you make a change in one, it is likely that a chaingée other will
be required.

n,

46

Connascence

» On the surface, this is very similar to coupling, and ap
such should be minimized.
* However,when you combine it with the encapsulatior]
levels, it is not quite as simple as that.
* In this case, you want to

— minimize overall connascence by eliminating any
unnecessary connascence throughout the system,

— minimize connascence across any encapsulation boundarfes,
such as method boundaries and class boundaries,

— maximize connascence within any encapsulation boundary.

47

Connascence

» Based on these guidelines,

— a subclass should never directly access any hidden attriby
method of a superclass .

— If direct access to the non-visible attributes and methods 9
superclass by its subclass is allowed and a modification to
superclass is made,

« then due to the connascence between the subclass angerclass, it
is likely that a modification to the subclass alsd bé required.

— Practically speaking, you should maximize the cohesion
(connascence) within an encapsulation boundary and
minimize the coupling (connascence) between the
encapsulation boundaries.

¢ There are many possible types of connascence.
— Following slide describes five of the types.

as|

te or

El
the

Types of Connascence

Type Description

Name If a method refers to an attribute, it is tied to the name of the attribute. If the

attribute’s name changes, the content of the method will have to change.

Type or Class | If a class has an attribute of type A, it is tied 1o the type of the attribute. If the type

of the attribute changes, the attribute declaration will have 1o change.

Convention A class has an attribute in which a range of values has a semantic meaning (e.g.,
account numbers whose values range from 1000 to 1999 are assets). If the range
would change, then every methodl that used the attribute would have

to be modified.

Algorithm Two different methods of a class are dependent on the same algorithm to
execute correctly (e.g, insert an element into an array and find an element in
the same array). If the underlying algorithm would change, then the insert and

find methods would also have to change.

Position The order of the code in a method or the order of the arguments to a method is
critical for the method to execute correctly. If either is wrong, then the method

will, at least, not function correctly

Source: Page-Jones, “Comparing Techniques by Means of Encapsulation and Connascence” and Page-Jones,
Fundamentals of Gbject-Criented Design in UML

49

Object Design Activities

Y
(e

The design activities for classes and methods are
an extension of the analysis and evolution
activities presented previously.

The expanded descriptions are created through
the activities that take place during the detailed
design of the classes and methods.

A

¢ The activities used to design classes and methods
include
— additional specification of the current model,
— identifying opportunities for reuse,
— restructuring the design,
— optimizing the design,
— mapping the problem domain classes to an implementatio
language.
* Any changes made to a class on one layer can caus

Additional Specification

At this point in the development of the system, it is
crucial to review the current set of structural and
behavioral models.

» Ensure the classes are both necessary and sufficien

for the problem

— To do this,we need to be sure that there are no missing
attributes or methods and no extra or unused attributes or
methods in each class.

Finalize the visibility of the attributes and methods of|

each class

the clas's_es on the other layers that are coupled to it fo — Depending on the object-oriented programming language
be modified also. used, this could be predetermined
51 52|
Additional Specification Additional Specification
« Determine the signature of every method of each claks * We also must decide how to handle a violation of a

— Thesignatureof a method comprises three parts:
« the name of the method,
« the parameters or arguments that must be passed tethedn
« the type of value that the method will return to thiry method.
» Define constraints to be preserved by objects
— There are three different types of constraints:
« pre-conditions,
 post-conditions,
* invariants.

* These are captured in the form of contracts and
assertions added to CRC cards and class diagrams.

constraint.
— Should the system simply abort?

— Should the system automatically undo the change that
caused the violation?

— Should the system let the end user determine the approac]
to correct the violation?
¢ The designer must design the errors that the system
expected to handle.
— Itis best to not leave these types of problems for the
programmer to solve.
* Violations of a constraint are known esceptionsn
languages, such as C++ and Java.

is

Identifying Opportunities for Reuse

* In the design phase, in addition to using analysis
patterns, there are opportunities for using
— design patterns,
— frameworks,
— libraries,
— components.
» The opportunities will vary depending on which layer
is being reviewed.
— For example,

« it is doubtful that a class library will be of muchihen the
problem domain layer,

« but an appropriate class library could be of great heffhen
foundation layer.

Identifying Opportunities for Reuse

Design patterns

useful grouping of collaborating classes that provide
solution to a commonly occurring problem.

useful in solving “a general design problem in a
particular context.”

For example,

— a useful pattern is the Whole-Part pattern (see the next sli
Part A).

— The Whole-Part pattern explicitly supports the Aggregation]
and Composition relationships within the UML.

— Another useful design pattern is the Command Processor
pattern (see the next slide, Part B).

Sample Design Patterns

Ppart1

combines o |
+serviceAl()
+serviceA20
Client Whole

e |

+servicel(y

service20

partN

o |
+serviceAl()
serviceA2(

(A)

ey
EE |

undo()

Command Procassor

+dolt(in cmd) 1
+undolt()

transfer/command

creates -stateForUndo I uses
-l
+undon

+eventLoop() +appFunctions()

gerStatc)
restorestate)

K

+do)
lo()
(B

Identifying Opportunities for Reuse

» The primary purpose of the Command Processor
pattern

— to force the designer to explicitly separate the interface to
an object (Command) from the actual execution of the
operation (Supplier) behind the interface.

« Some of the design patterns support different physicg

architectures.
* For example,

— the Forwarder-Receiver pattern (see the next slide, Part C
supports a peer-to-peer architecture.

* Many design patterns are available in C++ or Java
source code.

Sample Design Patterns

InterProcessCe

hal() icai ivell
| +deliver() +unmarshal()

sendMsg

receivelsg

Controller

+service() 1

1 +servica()

m +sendMsg() +eceiveMsg()
1 ‘ 1

InterProcessCe

) eceive() icii hal)
receivelsg unmarshal(+deliver() sendhsg
+ieceiveMsg) +sendMsg()
©

Identifying Opportunities for Reuse

» A framework

— composed of a set of implemented classes that can be cal

be used as a basis for implementing an application.
* For example,

— there are frameworks available for CORBA and DCOM on
which you could base the implementation of part of the
physical architecture layer.

» Most frameworks allow you to create subclasses to
inherit from classes in the framework.

— There are object-persistence frameworks that can be
purchased and used to add persistence to the problem

domain classes, which would be helpful on the data
management layer.

[

10

I dentifying Opportunities for Reuse

A class library
similar to a framework in that you typically have a se

of implemented classes that were designed for reusq.

A typical class library could be purchased to support
— numerical or statistical processing,

— file management (data management layer),

— user interface development (HCI layer).

In some cases, you will create instances of classes
contained in the class library and in other cases you
will extend classes in the class library by creating
subclasses based on them.

I dentifying Opportunities for Reuse

« If you use inheritance to reuse the classes in the clag

library,

— you will run into all of the issues dealing with inheritance
coupling and connascence.

If you directly instantiate classes in the class library,

— you will create a dependency between your object and the]
library object based on the signatures of the methods in th
library object.

 This will increase the interaction coupling between
the class library object and your object.

n

1

I dentifying Opportunities for Reuse

A component

— aself-contained, encapsulated piece of software that can
“plugged” into a system to provide a specific set of require
functionality.

Today, there are many components available for

purchase that have been implemented uAirtgyeX

or JavaBeanechnologies.

A component has a well-definégpplication Program

Interface(API).

— The APl is essentially a set of method interfaces to the
objects contained in the component.

I dentifying Opportunities for Reuse

The internal workings of the component are hidden

behind the API.

« Components can be implemented using class librarig
and frameworks.

« However, components also can be used to impleme
frameworks.

¢ Unless, the API changes between versions of the

component, upgrading to a new version normally will

require only linking the component back into the

application.

— As such, recompilation typically is not required.

)

—

I dentifying Opportunities for Reuse

Which of these approaches should you use?

— It depends on what you are trying to build.

frameworks are used mostly to aid in developing
objects on the physical architecture, human compute
interaction, or data management layers

components are used primarily to simplify the
development of objects on the problem domain and
human computer interaction layers

class libraries are used to develop frameworks and
components and to support the foundation layer

Restructuring the Design

* Once the individual classes and methods have been
specified, and the class libraries, frameworks, and
components have been incorporated into the evolving
design,

— factoring should be used to restructure the design.

< Factoringis the process of separating out aspects of a methoassr cl
into a new method or class to simplify the overaligles

— For example,
« when reviewing a set of classes on a particular ayer might
discover that a subset of them shares a similar definiti
« Inthat case, it may be useful to factor out the sirities and create a
new class.
« Based on the issues related to cohesion, coupling, amascence,
the new class may be related to the old classeshgiance

(generalization) or through an aggregation or associagiationship. s

11

Restructuring the Design

» Another process that is useful to restructure the
evolving design is normalization.

Normalization can be useful at times to identify
potential classes that are missing from the design.

Also, related to normalization is the requirement to
implement the actual association and aggregation
relationships as attributes.

Virtually no OO programming language differentiates
between attributes and association and aggregation
relationships.

— Therefore, all association and aggregation relationships
must be converted to attributes in the classes.

Optimizing the Design

 optimizations that can be used to create a more
efficient design:

v review the access paths between objects.

— In some cases, a message from one object to another ma

have a long path to traverse
« i.e., it goes through many objects.

— If the path is long, and the message is sent frequently, a
redundant path should be considered.

— Adding an attribute to the calling object that will store a
direct connection to the object at the end of the path can
accomplish this.

Optimizing the Design

v review each attribute of each class.

— Which methods use the attributes and which objects use t
methods should be determined.

— If the only methods that use an attribute are read and upddte

9]

methods, and only instances of a single class send messafies

to read and update the attribute,
« then the attribute may belong with the calling classead of the
called class.
— Moving the attribute to the calling class will substantially
speed up the system

Optimizing the Design

v review the direct and indirect fan-out of each methodj

— Fan-outrefers to the number of messages sent by a metho|

— The direct fan-out is the number of messages sent by the
method itself,

— The indirect fan-out also includes the number of messages
sent by the methods called by the other methods in a
message tree.

— If the fan-out of a method is high relative to the other
methods in the system, the method should be optimized.

* One way to do this is to consider adding an index tattibutes
used to send the messages to the objects in the message tr

j=x

Optimizing the Design

v'look at the execution order of the statements in oftent

used methods.

— In some cases, it may be possible to rearrange some of thp
statements to be more efficient.

— For example,

— ifitis known, based on the objects in the system, that a
search routine can be narrowed by searching on one
attribute before another one,

« then the search algorithm should be optimized by fgritito
always search in a predefined order.

Optimizing the Design

v avoid recomputation by creatinglarived attribute
(active valuae, e.g., a total that will store the value of the compaiat

— This is also known as caching computational results.

— This can be accomplished by addirtgiggerto the
attributes contained in the computation.

« This would require a recomputation to take place only winenod
the attributes that go into the computation is changed.

— Another approach would be to mark the derived attribute,
and delay the recomputation until the next time the derived
attribute is accessed.

« This delays the recomputation as long as possible.
« In this manner, a computation does not occur unldsssito occur.

— Otherwise, every time a derived attribute needsetaccessed, a
computation would be required.

12

