
1

1

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Moving On To DesignMoving On To Design

The design phase in OO system development uses the
requirements that were gathered during analysis to
create a blueprint for the future system.

A successful design builds upon what was learned in
earlier phases and leads to a smooth implementation
by creating a clear, accurate plan of what needs to be
done.

• The purpose of the analysis phase is to figure out
– what the business needs.

• The purpose of the design phase is to figure out
– how to provide it.

• The steps in both analysis and design phases are
highly interrelated
– may require much “going back and forth”

Key Ideas

3

• Understand the transition from analysis to design.

• Understand the use of factoring, partitions, and layers.

• Be able to create package diagrams.

• Be familiar with the custom, packaged, and outsource
design alternatives.

• Be able to create an alternative matrix.

Objectives

4

• An important initial part of the design phase
– to examine several design strategies and decide which will

be used to build the system.

• Systems can be
– built from scratch,

– purchased and customized,

– outsourced to others.

• The project team needs to investigate the viability of
each alternative.
– The decision to make, to buy, or to outsource influences the

design tasks that are accomplished throughout the rest of
the phase.

Introduction

5

• Detailed design of the individual classes and methods
that are used to map out the nuts and bolts of the system
and how they are to be stored must still be completed.

• Techniques like
– CRC cards,

– class diagrams,

– contract specification,

– method specification,

– database design

provide detail in preparation for the implementation
phase, and they ensure that programmers have sufficient
information to build the right system efficiently.

Introduction

6

2

• Design also includes activities like designing
– the user interface,

– system inputs,

– system outputs,

which involve the ways that the user interacts with the
system.

• Additionally, there are techniques such as
– story boarding

– prototyping

that help the project team design a system that meets
the needs of its users.

Introduction

7

• Finally, physical architecture decisions are made:
– the hardware and software that will be purchased to support

the new system and

– the way that the processing of the system will be organized.

– For example,
• the system can be organized so that its processing is centralized at

one location, distributed, or both centralized and distributed, and
each solution offers unique benefits and challenges to the project
team.

• Global issues and securityneed to be considered
along with the system’s technical architecture
– because they will influence the implementation plans that

are made.

Introduction

8

• Many steps of the design phase are highly interrelated
– the analysts often go back and forth among them.

• For example,
– prototyping in the interface design step often uncovers

additional information that is needed in the system.

– Alternatively, a system that is being designed for an
organization that has centralized systems may require
substantial hardware and software investments

• if the project team decides to change to a system in which all of the
processing is distributed.

• packages and package diagrams will be introduced

• three fundamental approaches (make, buy, outsource)
to developing new systems will be examined

Introduction

9

EVOLVING THE ANALYSIS EVOLVING THE ANALYSIS
MODELS INTO DESIGN MODELSMODELS INTO DESIGN MODELS

The purpose of the analysis models was
– to represent the underlying business problem domain

as a set of collaborating objects.

the primary purpose of the design models is
– to increase the likelihood of successfully delivering a

system that implements the functional requirements
in a manner that is affordable and easily
maintainable.

• Therefore, in system design, both the functional and
nonfunctional requirements are addressed.

• From an OO perspective, system design models
simply refine the system analysis models
– by adding system environment (or solution domain) details

to them

– by refining the problem domain information already
contained in the analysis models.

11

• When evolving the analysis model into the design model, the
use cases and the current set of classes (their methods and
attributes, and the relationships between them) should be
reviewed.
– Are all of the classes necessary?

– Are there any missing classes?

– Are the classes fully defined?

– Are there any missing attributes or methods?

– Do the classes have any unnecessary attributes and methods?

– Is the current representation of the evolving system optimal?

• Next, factoring, partitions and collaborations, and layers as a
way to evolve problem domain-oriented analysis models into
optimal solution domain-oriented design modelsare introduced.

12

3

• Reducing design time
• If time is short, there is a temptation to reduce the

time spent in “unproductive” activities such as design
so that the team can jump into “productive”
programming.

• This results in missing important details that have to
be investigated later at a much higher time cost
– usually at least ten times longer.

• Solution:
• If time pressure is intense, use timeboxing to

eliminate functionality or move it into future versions.

Avoid Classic Design Mistakes

13

• Feature creep
• Even if you are successful at avoiding scope creep,

about 25 percent of system requirements will still
change.
– Changes can significantly increase time and cost.

• Solution:
• Ensure that all changes are vital and that the users are

aware of the impact on cost and time.

• Try to move proposed changes into future versions.

Avoid Classic Design Mistakes

14

• Silver bullet syndrome
• Analysts sometimes believe the marketing claims for

some design tools that claim to solve all problems and
magically reduce time and costs.
– No one tool or technique can eliminate overall time or costs

by more than 25%).

• Solution:

• If a design tool has claims that appear too good to be
true,
– just say no.

Avoid Classic Design Mistakes

15

• Switching tools in mid-project
• Sometimes analysts switch to what appears to be a

better tool during design in the hopes of saving time
or costs.
– Usually, any benefits are outweighed by the need to learn

the new tool.

– This also applies to even “minor” upgrades to current tools.

• Solution:
• Don’t switch or upgrade unless there is a compelling

need for specific features in the new tool, and then
explicitly increase the schedule to include learning
time.

Avoid Classic Design Mistakes

16

• the process of separating out a moduleinto a
standalone module in and of itself.
– The new module can be a new classor a new method.

– For example,

– when reviewing a set of classes, it may be discovered that
they have a similar set of attributes and methods.

• As such, it may make sense to factor out the similarities into a
separate class.

– Depending on whether the new class should be in a
superclass relationship to the existing classes or not, the
new class can be related to the existing classes through
generalization(A-Kind-Of) or possibly through aggregation
(Has-Parts) relationship.

Factoring

17 18

4

• For example, using the appointment system example
discussed previously.

• if the Employee class had not been identified, it could
possibly be identified at this stage

• by factoring out the similar methods and attributes
from the Nurse, Administrative Staff, and Doctor
classes.

• In this case, we would relate the new class
(Employee) to the existing classes using the
generalization (A-Kind-Of) relationship.

Factoring

19

• Abstractionand refinement are two closely related
processes to factoring.

• Abstraction
– deals with the creation of a “higher” level idea from a set of

ideas.
• Identifying the Employee class is an example of abstracting from a

set of lower classes to a higher one.

– In some cases, the abstraction process will identify abstract
classes

– In other situations, it will identify additional concrete
classes.

Factoring

20

• The refinementprocess is the opposite of the
abstraction process.

• In the appointment system example (in the previous
eample), it is possible to identify additional subclasses
of the Administrative Staff class, such as
Receptionist, Secretary, and Bookkeeper.

• We would only add the new classes if there were
sufficient differences between them.

• Otherwise, the more general class, Administrative
Staff, would suffice.

Factoring

21

• the sheer size of the system representation can overload
both the user and the developer.

• At this point in the evolution of the system, it may make
sense to split the representation into a set of partitions.

• A partition
– the OO equivalent of a subsystem,

• where a subsystem is a decomposition of a larger system into its
component systems

• (e.g., an accounting information system could be functionally
decomposed into an accounts payable system, an account receivable
system, a payroll system, and so on).

– From an OO perspective, partitions are based on the pattern of
activity (messages sent) among the objects in an OO system.

Partitions and Collaborations

22

• A good place to look for potential partitions is the
collaborations modeled in UML’s communication
diagrams

• CRUD analysis can also be used to identify potential
classes on which to merge collaborations.

• Depending on the complexity of the merged
collaboration, it may be useful in decomposing the
collaboration into multiple partitions.
– In this case, in addition to having collaborations between

objects, it is possible to have collaborations among
partitions.

Partitions and Collaborations

23

• Another useful approach to identify potential
partitions is to model each collaboration between
objects in terms of clients, servers, and contracts.

• A client
– an instance of a class that sends a messageto an instance of

another class for a methodto be executed

• A server
– the instance of a class that receives the message

• A contract
– the specification that formalizes the interactions between

the client and server objects

Partitions and Collaborations

24

5

• This approach allows the developer to build up
potential partitions by looking at the contracts that
have been specified between objects.

• In this case,
– the more contracts there are between objects,

– the more often than not the objects belong in the same
partition.

• The fewer contracts,
– the chances are the two classes do not belong in the same

partition.

Partitions and Collaborations

25

• Until this point in the development of our system, we
have focused only on the problem domain.

• To successfully evolve the analysis model of the
system into a design model of the system,
– we must add the system environment information.

• One useful way to do this, without overloading the
developer, is to use layers.

Layers

26

• A layer
– represents an element of the software architecture of the

evolving system.

• We have focused only on one layer in the evolving
software architecture:
– the problem domain layer.

• There should be a layer for each of the different
elements of the system environment
– system architecture,

– user interface,

– data access and management.

Layers

27

• The idea of separating the different elements of the
architecture into separate layers is traced back to the
MVC architecture of Smalltalk.

• When Smalltalk was first created, the authors decided
to separate the application logic from the logic of the
user interface.

• In this manner, it was possible to easily develop
different user interfaces that worked with the same
application.

Layers

28

• To accomplish this, they created the Model-View-
Controller (MVC)architecture where
– Models implemented the application logic (problem

domain),

– Viewsand Controllersimplemented the logic for the user
interface.

• Views handled the output

• Controllers handled the input.

• Since graphical user interfaces were first developed in
the Smalltalk language, the MVC architecture served
as the foundation for virtually all graphical user
interfaces that have been developed today

• including the Mac interfaces, the Windows family, and the various
Unix-based GUI environments.

Layers

29

• Based on Smalltalk’s innovative MVC architecture,
many different software layers have been proposed.

• Based on these proposals, the following layers on which
to base software architecture may be suggested:
– foundation,

– physical architecture,

– human computer interaction,

– data access and management,

– problem domain.

• Each layer limits the types of classes that can exist on it
– e.g., only user interface classes may exist on the human

computer interaction layer.

Layers

30

6

• Contains classes that are necessary for any OO
application to exist.

• They include
– classes that represent fundamental data types

• e.g., integers, real numbers, characters, and strings,

– classes that represent fundamental data structures
(sometimes referred to as container classes;

• e.g., lists, trees, graphs, sets, stacks, and queues,

– classes that represent useful abstractions (sometimes
referred to as utility classes;

• e.g., date, time, and money.

• Today, the classes found on this layer typically are
included with the OO development environments.

Foundation layer

31

• addresses how the software will execute on specific
computers and networks.

• includes classes that deal with communication
between the software and the computer’s operating
system and the network.
– For example, classes that address how to interact with the

various ports on a specific computer would be included in
this layer.

• also includes classes that would interact with so-
called middlewareapplications, such as the OMG’s
CORBA and Microsoft’s DCOM architectures that
handle distributed objects.

Physical architecture layer

32

• Object Management Group (http://www.omg.org)
– OMG has been an international, open membership, not-for-

profit computer industry consortium since 1989
• OMG’s mission is to develop, with our worldwide membership,

enterprise integration standards that provide real-world value. OMG
is also dedicated to bringing together end-users, government
agencies, universities and research institutions in our communities
of practice to share experiences in transitioning to new management
and technology approaches like Cloud Computing.

• OMG’s middleware standards and profiles are based
on the Common Object Request Broker Architecture
(CORBA®) and support a wide variety of industries.
– http://www.corba.org/

33

• There are many design issues that must be addressed
before choosing the appropriate set of classes for this
layer:

• The choice of
– a computing or network architecture

• such as the various client-server architectures,

– the actual design of a network, hardware and server
software specification,

– global/international issues
• such as multilingual requirements,

– security issues.

Physical architecture layer

34

• contains classes associated with the View and
Controller idea from Smalltalk.

• The primary purpose of this layer is to keep the
specific user interface implementation separate from
the problem domain classes.

• This increases the portability of the evolving system.

• Typical classes found on this layer include classes that
can be used to represent
– buttons, windows, text fields, scroll bars, check boxes,

drop-down lists, and many other classes that represent user
interface elements.

Human computer interaction layer

35

• addresses the issues involving the persistence of the
objects contained in the system.

• The types of classes that appear in this layer deal with
how objects can be stored and retrieved.

• The classes contained in this layer allow the problem
domain classes to be independent of the storage utilized,
and hence increase the portability of the evolving
system.

• Some of the issues related to this layer include choice of
the storage format (such as relational, object/relational,
and object databases) and storage optimization (such as
clustering and indexing).

Data management layer

36

7

• what we have focused our attention on up until now.

• At this stage of the development of our system, we will
need to further detail the classes so that it will be
possible to implement them in an effective and efficient
manner.

• Many issues need to be addressed when designing
classes. For example,
– there are issues related to

• factoring, cohesion and coupling, connascence, encapsulation, proper
use of inheritance and polymorphism, constraints, contract
specification, and detailed method design.

Problem domain layer

37

PACKAGES AND PACKAGE PACKAGES AND PACKAGE
DIAGRAMSDIAGRAMS

In UML, collaborations, partitions, and layers can be
represented by a higher-level construct:

– a package.

A package
– a general construct that can be applied to any of the

elements in UML models.

A package diagram
– a class diagram that only shows packages.

• A Package:
• A logical grouping of UML elements

• Used to simplify UML diagrams
– by grouping related elements into a single

higher level element

• A Dependency Relationship:
• Represents a dependency between

packages,
– i.e., if a package is changed, the dependent

package also could have to be modified

• The arrow is drawn from the dependent
package toward the package on which it
is dependent

Syntax for Package Diagram

39

• Depending on where a package is used,
– packages can participate in different types of relationships.

• For example,
– in a class diagram, packages represent groupings of classes.

– Therefore, aggregation and association relationships are possible.

• A dependency relationship represents the fact that a
modification dependency exists between two packages.
– It is possible that a change in one package potentially could

cause a change to be required in another package.
• Following figure portrays the dependencies among the different layers

– foundation, physical architecture, human computer interaction, data access
and management, and problem domain.

Package Diagram

40

• If a change occurs in the
problem domain layer,

– it most likely will cause
changes to occur in the

• human computer interaction,

• physical architecture,

• data management layers.

• Notice that these layers
“point to” the problem
domain layer;

– as such, they are dependent
on it.

• However,
– the reverse is not true.

Package Diagram of Dependency Relationships among Layers

41

• Indicates that a change in one package could cause a
change to be required in another package.
– At the class level, there could be many causes for dependencies

among classes.

• For example,
– A change in one method will cause the interface for all objects of

this class to change.

– Therefore, all classes that have objects that send messages to the
instances of the modified class may have to be modified.

• Capturing dependency relationships among the
classes and packages helps the organization in
maintaining OO information systems.

Modification Dependency

42

8

• Collaborations, partitions, and layers are modeled as
packages in UML.
– collaborations are normally factored into a set of partitions,

which are typically placed on a layer.

– In addition, partitions can be composed of other partitions.

– Also, it is possible to have classes in partitions, which are
contained in another partition, which is placed on a layer.

• All of these groupings are represented using packages
in UML.
– a package is simply a generic, grouping construct used to

simplify UML models through the use of composition.

43

• A simple package diagram, based on the appointment
system example from the previous slides, is shown in
this figure.

– This diagram portrays a very small portion of the entire system.

• we see that the Patient UI, DAM-Patient, and Patient
Table classes are dependent on the Patient class.

• Furthermore, the DAM-Patient class is dependent on
the Patient Table class.

– The same can be seen with the classes dealing with the actual
appointments.

• By isolating the Problem Domain classes (such as the
Patient and Appt classes) from the actual object
persistence classes (such as the Patient Table and Appt
Table classes) through the use of the intermediate Data
Access and Manipulation classes (DAM-Patient and
DAM-Appt classes), we isolate the Problem Domain
classes from the actual storage medium.

• This greatly simplifies the maintenance and increases
the reusability of the Problem Domain classes.

• Of course, in a complete description of a real system,
there would be many more dependencies. 44

• set the context for the package diagram.
– Remember, packages can be used to model partitions

and/or layers.
• Revisiting the appointment system again, let’s set the context as

the problem domain layer.

• cluster the classes together into partitions based on
the relationships that the classes share.
– The relationships include generalization, aggregation, the

various associations, and the message sending that takes
place between the objects in the system.

• To identify the packages in the appointment system, we should look
at the different analysis models (e.g., the class diagram, sequence
diagrams, and the communication diagrams).

• Any classes in a generalization hierarchy should be kept together in
a single partition.

Identifying Packages and Creating Package Diagrams

45

• place the clustered classes together in a partition and
model the partitions as packages.

• Following figure portrays five packages:
– PD Layer,

– Person Pkg,

– Patient Pkg,

– Appt Pkg,

– Treatment Pkg.

Identifying Packages and Creating Package Diagrams

46

47

Package Diagram of the PD Layer for the Appointment System

• identify the dependency relationships among the
packages.
– In this case, we review the relationships that cross the

boundaries of the packages to uncover potential
dependencies.

– In the appointment system, we see association relationships
• connecting the Person Pkg with the Appt Pkg (via the association

between the Doctor class and the Appointment class), and the Patient
Pkg, which is contained within the Person Pkg, with the Appt Pkg
(via the association between the Patient and Appointment classes)
and the Treatment Pkg (via the association between the Patient and
Symptom classes).

Identifying Packages and Creating Package Diagrams

48

9

• place the dependency relationships on the evolved
package diagram.
– In the case of the Appointment system,

• there are dependency relationships between the Person Pkg and the
Appt Pkg and the Person Pkg and the Treatment Pkg.

– To increase the understandability of the dependency
relationships among the different packages,

• a pure package diagram that only shows the dependency
relationships among the packages can be created

– as shown in the following figure.

Identifying Packages and Creating Package Diagrams

49

Overview Package Diagram of the PD Layer for the Appointment System

50

• Creation of a package diagram for the CD Selections
Internet sales system:

– set the context

– cluster classes together

– model each partitions as packages

– identify dependency relationships among the packages

– place the dependency relationships on the package diagram

Example: CD Selections

51 52

Package Diagram of the PD Layer of CD Selections Internet Sales System

Overview Package Diagram of the PD Layer of CD SelectionsInternet Sales System

53

DESIGN STRATEGIESDESIGN STRATEGIES

There are three ways to approach the creation of a new system:
– developing a custom application in-house,

– buying a packaged system and customizing it,

– relying on an external vendor, developer, or service provider to
build the system.

Each of these choices has its strengths and weaknesses, and
each is more appropriate in different scenarios.

10

• Many project teams assume that custom development,
– building a new system from scratch,

is the best way to create a system.

• Teams have complete control over the way the system
looks and functions.

• custom development
– allows for meeting highly specialized requirements

– allows flexibility and creativity in solving problems

Custom Development

55

• Building a system in-house also builds technical skills
and functional knowledge within the company.

• As developers work with business users, their
understanding of the business grows and they become
better able to align IS with strategies and needs.

• These same developers climb the technology learning
curve so that future projects applying similar
technology become much less effortful.

Custom Development

56

• However,
– Custom application development,

• includes a dedicated effort that requires long hours and hard work.

– Many companies have a development staff that already is
overcommitted to filling huge backlogs of systems requests,
and they just do not have time for another project.

– Also, a variety of skills—
• technical, interpersonal, functional, project management, and

modeling

all have to be in place for the project to move ahead
smoothly.

– IS professionals, especially highly skilled individuals, are
quite difficult to hire and retain.

Custom Development

57

• The risks associated with building a system from the
ground up can be quite high,

• There is no guarantee that the project will succeed.

– Developers could be pulled away to work on other projects,

– Technical obstacles could cause unexpected delays,

– The business users could become impatient with a growing
timeline.

Custom Development

58

• Many business needs are not unique, therefore
– many organizations buy packaged software

• Software that already been written.

• Most companies have needs that can be met quite well by
packaged software
– such as payroll or accounts receivable.

• It can be much more efficient to buy programs that have
already been created, tested, and proven,

• A packaged system can be bought and installed in a relatively
short period of time, when compared with a custom system.

• Packaged systems also incorporate the expertise and
experience of the vendor who created the software.

Packaged Software

59

• Packaged software can range from reusable components
– such as ActiveX and Javabeans

• to small single-function tools
– like the shopping cart program

• to huge, all encompassing systems
– such as enterprise resource planning (ERP) applications that are

installed to automate an entire business.
• Implementing ERP systems is a process in which large organizations spend millions

of dollars installing packages by companies like
– SAP, PeopleSoft, Oracle, and Baan

and then change their businesses accordingly.

– Installing ERP software is much more difficult than installing small
application packages

• because benefits can be harder to realize and problems are much more serious.

Packaged Software

60

11

• One problem is that companies buying packaged
systems must accept the functionality that is provided
by the system.

• If the packaged system is large in scope,
– its implementation could mean a substantial change in the

way the company does business.

• Letting technology drive the business can be a
dangerous way to go.

• Most packaged applications allow for customization,
– the manipulation of system parameters

to change the way certain features work.

Packaged Software

61

• If the amount of customization is not enough,

• If the software package has a few features that don’t
quite work the way the company needs it to work,
– the project team can create workarounds.

• A workaround
– a custom-built add-on program

• interfacing with the packaged application to handle special needs.

• It can be a nice way to create needed functionality that
does not exist in the software package.

• But, workarounds should be a last resort for several
reasons:

Packaged Software

62

• First, workarounds are not supported by the vendor
who supplied the packaged software,
– so when upgrades are made to the main system, they may

make the workaround ineffective.

• Also, if problems arise, vendors have a tendency to
blame the workaround as the culprit and refuse to
provide support.

• Although choosing a packaged software system is
simpler than custom development,
– it too can benefit from following a formal methodology just

as if you were building a custom application.

Packaged Software

63

• Systems integration

• refers to the process of building new systems by
combining
– packaged software,

– existing legacy systems,

– new software written to integrate these together.

• Many consulting firms specialize in systems
integration,
– so it is common for companies to select the packaged

software option and then outsource the integration of a
variety of packages to a consulting firm.

Packaged Software

64

• Systems integration

• refers to the process of building new systems by
combining
– packaged software,

– existing legacy systems,

– new software written to integrate these together.

• Many consulting firms specialize in systems
integration,
– so it is common for companies to select the packaged

software option and then outsource the integration of a
variety of packages to a consulting firm.

Packaged Software

65

• The key challenge in systems integration
– finding ways to integrate the data produced by the different

packages and legacy systems.
• Integration often hinges around taking data produced by one

package/system and reformatting it for use in another package/system.

– The project team starts by examining the data produced by
and needed by the different packages/systems and identifying
the transformations that must occur to move the data from one
to the other.

• In many cases, this involves “fooling” the different packages/systems
into thinking that the data was produced by an existing program
module that the package/system expects to produce the data rather than
the new package/system that is being integrated.

Packaged Software

66

12

• Another approach is through the use of an object
wrapper.

• An object wrapper
– an object that “wraps around” a legacy system,

• enabling an object-oriented system to send messages to the legacy
system.

• Object wrappers create an application program interface
(API) to the legacy system.

• The creation of an object wrapper allows the protection
of the corporation’s investment in the legacy system.

Packaged Software

67

• The design choice that requires the least amount of in-
house resources

• Outsourcing

• hiring an external vendor, developer, or service
provider to create the system.

• There can be great benefit to having someone else
develop your system:
– They may be more experienced in the technology or have

more resources, like experienced programmers.

– Many companies embark upon outsourcing deals to reduce
costs, while others see it as an opportunity to add value to
the business.

Outsourcing

68

• outsourcing can be a good alternative for a new
system.

• However, it does not come without costs.
– If you decide to leave the creation of a new system in the

hands of someone else,
• you could compromise confidential information or lose control over

future development.

– In-house professionals are not benefiting from the skills that
could be learned from the project,

• instead the expertise is transferred to the outside organization.

– Ultimately, important skills can walk right out the door at
the end of the contract.

Outsourcing

69

• Most risks can be addressed if you decide to
outsource, but two are particularly important:

1. assess the requirements for the project thoroughly
– you should never outsource what you don’t understand.

– If you have conducted rigorous planning and analysis, then
you should be well aware of your needs.

2. carefully choose a vendor, developer, or service with
a proven track record with the type of system and
technology that your system needs.

Outsourcing

70

• Three primary types of contracts can be drawn to control the
outsourcing contract.

• A time and arrangements deal
– very flexible because you agree to pay for whatever time and

expenses are needed to get the job done.
• Of course, this agreement could result in a large bill that exceeds

initial estimates.

• This works best when you and the outsourcer are unclear about
what it is going to take to finish the job.

• You will pay no more than expected with a fixed-price contract
– because if the outsourcer exceeds the agreed-upon price, they will have

to absorb the costs.

– Outsourcers are much more careful about defining requirements clearly
up front, and there is little flexibility for change.

Outsourcing

71

• The type of contract gaining in popularity is the value-added
contract
– whereby the outsourcer reaps some percentage of the completed

system’s benefits.
• You have very little risk in this case, but expect to share the wealth once the system

is in place.

• Creating fair contracts is an art because you need to carefully
balance flexibility with clearly defined terms.
– Often needs change over time.

• you don’t want the contract to be so specific and rigid that alterations can’t be made.

• Managing the outsourcing relationship is a full-time job.
– Thus, someone needs to be assigned full-time to manage the outsourcer,

and the level of that person should be appropriate for the size of the job

Outsourcing

72

13

• Keep lines of communication open with outsourcer

• Define and stabilize requirements before signing a
contract

• View outsourcing relationship as partnership

• Select outsource vender carefully

• Assign person to manage relationship

• Don’t outsource what you don’t understand

• Emphasize flexible requirements, long-term
relationships, and short-term contracts

Outsourcing Guidelines

73

Selecting a Design Strategy

74

• Suppose that your university is interested in creating a
new course registration system that can support Web-
based registration?

• What should the university consider when
determining whether to invest in a custom, packaged,
or outsourcing system solution?

Your Turn

75

DEVELOPING THE ACTUAL DEVELOPING THE ACTUAL
DESIGNDESIGN

Once the project team has a good understanding
of how well each design strategy fits with the
project’s needs,

– they must begin to understand exactly how to
implement these strategies

• For example,
– what tools and technology would be used

– if a custom alternative were selected?

– What vendors make packaged systems that address the
project needs?

– What service providers would be able to build this system
• if the application were outsourced?

• This information can be obtained
– from people working in the IS department

– from recommendations by business users.

77

• The project team can contact other companies with
similar needs and investigate the types of systems that
they have put in place.

• Vendors and consultants usually are willing to
provide information about various tools and solutions
in the form of brochures, product demonstrations, and
information seminars.
– However, be sure to validate the information you receive

from vendors and consultants.
• After all, they are trying to make a sale.

• Therefore, they may “stretch” the capabilities of their tool by only
focusing on the positive aspects of the tool while omitting the tool’s
drawbacks.

78

14

• It is likely that the project team will identify several
ways that the system could be constructed after
weighing the specific design options.

• For example,
– the project team may have found three vendors that make

packaged systems that potentially could meet the project’s
needs.

– Or, the team may be debating over whether
• to develop a system using Java as a development tool and the

database management system from Oracle; or

• to outsource the development effort to a consulting firm

– Each alternative will have pros and cons associated with it
that need to be considered, and only one solution can be
selected in the end.

79

• An alternative matrix can be used to organize the pros
and cons of the design alternatives
– so that the best solution will be chosen in the end.

• This matrix is created using the same steps as the
feasibility analysis.
– The only difference is that the alternative matrix combines

several feasibility analyses into one matrix
• so that the alternatives can be easily compared.

80

• a grid that contains
– technical feasibilities,

– budget feasibilities,

– organizational feasibilities

for each system candidate,

– pros and cons associated with adopting each solution,

– other information that is helpful when making comparisons.

• Sometimes weights are provided for different parts of
the matrix
– to show when some criteria are more important to the final

decision.

The Alternative matrix

81

• To create the alternative matrix,

• draw a grid with
– the alternatives across the top

– different criteria
• e.g., feasibilities, pros, cons, and other miscellaneous criteria)

along the side.

• Next, fill in the grid with detailed descriptions about
each alternative.

• This becomes a useful document for discussion
– because it clearly presents the alternatives being reviewed

and comparable characteristics for each one.

The Alternative matrix

82

• One helpful tool is the request for proposals (RFP).

• An RFP
– a document that solicits proposals to provide the alternative

solutions from a vendor, developer, or service provider.

– explains the system that you are trying to build and the
criteria that you will use to select a system.

• Vendors then respond by describing what it would
mean for them to be a part of the solution.

• They communicate the time, cost, and exactly how
their product or services will address the needs of the
project.

The Alternative matrix

83

• an RFP should include basic information
– the description of the desired system,

– any special technical needs or circumstances,

– evaluation criteria,

– instructions for how to respond,

– the desired schedule.

• An RFP can be
– a very large document (i.e., hundreds of pages)

• because companies try to include as much detail as possible about their needs so that
the respondent can be just as detailed in the solution that would be provided.

– Thus, RFPs typically are used for large projects rather than small ones
• because they take a lot of time to create, and even more time and effort for vendors,

developers, and service providers to develop high quality responses
– only a project with a fairly large price tag would be worth the time and cost to develop a

response for the RFP.

The Alternative matrix

84

15

• A less effort-intensive tool is
– a request for information (RFI)

• that includes the same format as the RFP.

• The RFI
– shorter and contains less detailed information about a

company’s needs,

– requires general information from respondents
• that communicates the basic services that they can provide.

The Alternative matrix

85

• The final step,
– to decide which solution to design and implement.

• The decision should be made by a combination of
– business users

– technical professionals

after the issues involved with the different alternatives
are well understood.

• Once the decision is finalized,
– the design phase can continue as needed,

• based on the selected alternative.

86

• Three different approaches could be selected for the
new system:
– developing the entire system using development resources

from CD Selections,

– buying a commercial Internet sales packaged software
program (or a set of different packages and integrate them),

– hiring a consulting firm or service provider to create the
system.

• Following slide shows alternative matrix for
Shopping Cart Program

Example: Applying the Concepts at CD Selections

87

Alternative Matrix for Shopping Cart Program

88

• When evolving analysis into design models,
– it is important to review the analysis models
– then add system environment information.

• Packages and package diagramshelp provide
structure and less complex views of the new system.

• Custom building, packages, and outsourcingare
alternative ways of creating the new system.

• The alternative matrix can help with the selection of a
design strategy.

Summary

89

• Smalltalk is an object-oriented programming language
with many very loyal adherents.

• For more information check the site at:

http://www.smalltalk.org/main.html

Expanding the Domain

90

