Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Object-Oriented Systems Analysis
and Design with the UML

A\ 4

&
<

Objectives:

Understand the basic characteristics of obje&rteid
systems.

Be familiar with the Unified Modeling Language (WY
Version 2.0.

Be familiar with the Unified Process.

Understand a minimalist approach to object-origsigstems
analysis and design.

» Until recent years, analysts focused on either data or businesp
processes when developing systems.

« As they moved through the SDLC, they emphasized either

— the data for the system (data-centric approaches)

— the processes that it would support (process-centric agEsia

In the mid-1980s, developers were capable of building systent

that could be more efficient

— if the analyst worked with a system’s data anadgsees
simultaneously and focused on integrating the two.

As such, project teams began usinghject-oriented

approach

— whereby self-contained modules called objectsté&nimg both
data and processes) were used as the buildingsiockystems.

[

History of object-oriented approaches

e Simulg an OOP language, was created in the 19609

Smalltalkwas created in the early 1970s.

Until the mid-1980s, developers had to keep the data

and processes separate

— to be capable of building systems that could nuthe
mainframe computers of that era.

» Today, due to the increase in processor power and the
decrease in processor cost, OO approaches are
feasible.

Basic Characteristics of Object Oriented Systems

* OO systems focus on capturing the structure and
behavior of information systems in little modules that]
encompass bottiataandprocess

* These little modules are known@sects
» The basic characteristics of OO systems include

— classes, — information hiding,
— objects, — inheritance,

— methods, — polymorphism,

— messages, — dynamic binding.

— encapsulation,

Classes and Objects

Class

the general template we use to define and create

specific instances, or objects.

» Every object is associated with a class.

— For example, all of the objects that capture imftion
about patients could fall into a class called Patie
because there are

« attributes (e.g., names, addresses, and birtls)date

* methods (e.g., insert new instances, maintairriméion, and
delete entries)

that all patients share (see next Figure).

Classes and Objects

Classes Objects
An instance of the Patient class

— Name
- Birthdate
— Address

aPatient : Patient
Name = Theresa Marks
Birthdate = March 26, 1965
— Phone Number Address = 50 Winds Way, Ocean City, N] 09009
Phone Number = (804) 555-7889
+Insert ()
+Delete ()
Instantiation
— Patient name
- Doctor name anAppointment : Appointment
- Date T
(o Patient name = John Smith
Doctor name = Dr. David Broussesau
+l=n() Date = September 17, 2002
+Delete () time = 9:30 AM.

Classes and Objects

» Object
— an instantiation of a class.

— a person, place, event, or thing about which wet twa
capture information.

« If we were building an appointment system for a
doctor’s office, classes might include doctor, patient,
and appointment.

» The specific patients like Jim Maloney, Mary Wilson,
and Theresa Marks are considered instances, or
objects, of the patient class.

Classes and Objects

¢ Each object haattributeghat
— describe information about the object, such as
< apatient's name, birth date, address, and phone number.
— The state of an object is defined by the value of its attributg
and its relationships with other objects at a particular point
in time.
» For example, a patient might have a state of “newtorrent” or
“former.”
» Each object also hda®haviorghat
— specify what the object can do.
« For example, an appointment object likely can schedotena

appointment, delete an appointment, and locate the vaikilze
appointment.

2]

Methods and M essages

» Methodsimplement an object’s behavior.
— nothing more than an action that an object cafopar

— analogous to a function or procedure in a tracio
programming language such as C, Cobol, or Pascal.
» Messagesre information sent to objects to trigger
methods.
— It is a function or procedure call from one object

another object.

« For example, if a patient is new to the doctoffice, the
system will send an insert message to the applitaiihe
patient object will receive a message (instructam) do
what it needs to do to go about inserting the natiept into
the system (see next Figure).

M ethods and M essages

Name
Birthdate
Address
Phone number

Insert new instance.

S

The object’s insert method will
respond to the message and
insert a new patient instance.

Insert ()
Delete ()

A message is sent to the application.

Encapsulation and Information Hiding

» Encapsulation
— the combination of process and data into a sieglity.
 Traditional approaches to information systems
development tend to be either
— process-centric
* e.g., structured systems
or
— data-centric
 e.g., information engineering.
» Object-oriented approaches combine process and dgta
into holistic entities (objects).

Encapsulation and Information Hiding

Information hiding

— first promoted in structured systems development.

— only the information required to use a softwarelule is
published to the user of the module.

 This implies the information required to be passethe module, anf
the information returned from the module is pulgish

* How the module implements the required functidgadi not
relevant.
In OO systems, combining encapsulation with the
information hiding principle suggests that the information
hiding principle be applied to objects instead of merely
applying it to functions or processes.

— Objects are treated like black boxes.

Encapsulation and Information Hiding

* Reusability Key
— Use an object by calling methods

« because it shields the internal workings of theadrom
changes in the outside system, and it keeps thensyfsom
being affected when changes are made to an object.

In the following figure, notice how a message
(insert new patient) is sent to an object yet the

internal algorithms needed to respond to the Honcly
message are hidden from other parts of the s e T
system. \

The only information that an object needs to fros) I

know is the set of operations, or methods, that
other objects can perform and what messages
need to be sent to trigger them.

respond to the message and
inserta new patient instance.

Inheritance

¢ Inheritance

— was proposed in data modeling in the late 1970s and the egr

1980s.
* The data modeling literature suggests using inheritan
to identify higher-level, or more general, classes of
objects.

» Common sets of attributes and methods can be orgarjized

into superclasses.

— the superclasses, or general classes, are at the top,
— the subclasses, or specific classes, are at the bottom.

Typically, classes are arranged in a hierarchy whereby

Inheritance

In the following figure,

— person is a superclass to the classe:
Doctor and Patient.

— Doctor, in turn, is a superclass to
general practitioner and specialist. /

Notice how a class (e.g., doctor) car ... =

serve as a superclass and subclass

concurrently.

The relationship between the class ¢

its superclass is known as the A-Kini

Of (AKO) relationship.

— For example, in the figure,
« ageneral practitioner is A-Kind-Of doctor,
which is A-Kind-Of person.

s 8

Inheritance

» Subclasses inherit the appropriate attributes and
methods from the superclasses above them.
— Thatis, each subclass contains attributes and methods fro
its parent superclass.

« For example, previous figure shows that both doatal
patient are subclasses of person and thereforénétit the
attributes and methods of the person class.

— Inheritance makes it simpler to define classes.

« In previous figure, instead of repeating the latties and
methods in the doctor and patient classes separttel
attributes and methods that are common to botplaced in
the person class and inherited by those classewlitel

=

Inheritance

With Inhertance

Without Inberitance

* Notice how much
more efficient
hierarchies of objec =
classes are than th "
same objects e
without a hierarchy
in the following

figure.

Last name
Firstname.
Birthdate

Update birthdate I

Insurance cartier I

Update carrier I Update specialty

ial school

i
al

i

Polymor phism and Dynamic Binding

e Polymorphismmeans that
— the same message can be interpreted differently by
different classes of objects.

« For example, inserting a patient means somethiifigrent
than inserting an appointment.

« As such, different pieces of information need ¢ccbllected

and stored.
* not have to be concerned with how something is done
when using objects.

« simply send a message to an object, and that object
will be responsible for interpreting the message
appropriately.

Polymor phism and Dynamic Binding

For example, if we
sent the message
“Draw yourself " to a N
square object, a circle e
object, and a triangle

object, the results el
would be very

different, even
though the message
is the same.

Notice in Figure how
each object responds
appropriately (and
differently) even
though the messages |
are identical.

Addtess
—— Prone number

2 Theabje's method
sspond o the mesage

Patent pame.
Doctorname.
Inertnew insance, e

Ry —

e Y e —

— Tme —

Insent ()
Delete)

2 e chjc o

totheappis respond o the mesage

Polymor phism and Dynamic Binding

¢ Polymorphism is made possible throutjmamic
binding(late binding)
— atechnique that delays typing the object untiHime.
< As such, the specific method that is actuallyechls not chosen
by the object-oriented system until the systenuiising.
» This is in contrast tetatic bindingin which
— the type of object would be determined at comjpite.
— The developer would have to choose which method
should be called instead of allowing the systemdat.

« This is why in most traditional programming langea you find
complicated decision logic based on the differgpes of
objects in a system.

Polymor phism and Dynamic Binding

« For example, in a traditional programming language,
instead of sending the message “Draw yourself " to
the different types of graphical objects in the previou
figure, you would have to write decision logic using a
case statement or a set of if statements to determineg]
what kind of graphical object you wanted to draw,
and you would have to name each draw function
differently (e.g., drawsquare, draw-circle, or draw-
triangle).

 This obviously would make the system much more
complicated and more difficult to understand.

The Unified M odeling L anguage,
Version 2.0

<&
<

A
”
Until 1995, object concepts were popular
« but implemented in many different ways by diffardavelopers.
< Each developer had his or her own methodologyraation.
Rational Software brought three industry leaders together to
create a single approach to object-oriented systems develop

« Grady Booch, Ivar Jacobson, and James Rumbaugh dvavikie
others to create a standard set of diagramming igoés known
as theUnified Modeling LanguagéUML).

hent.

The Unified Modeling Language

* The objective of UML
— to provide a common vocabulary of OO terms and
diagramming techniques that is
« rich enough to model any systems development préjen
analysis through implementation.
* In November 1997, the Object Management Group
(OMG) formally accepted UML as the standard for al
object developers.

« Over the years since, the UML has gone through
multiple minor revisions.

The Unified Modeling L anguage

* The Version 2.0 of the UML defines a set of fourteen
diagramming technigues used to model a system.

« Version history:

— UML 2.0 major revision was adopted by the OMG in
2005

—UML 2.1.1 and UML 2.1.2 appeared in 2007

— UML 2.2 was released in February 2009.

— UML 2.3 was formally released in May 2010.

— UML 2.4.1 was formally released in August 2011.

The Unified Modeling L anguage

¢ The diagrams are broken into two major groupings:

» one for modeling structure of a system
* The structure modeling diagrams include
— class,
— object,
— package,
— deployment,
— component,
— composite structure diagrams.

The Unified Modeling L anguage

« one for modeling behavior.
* The behavior modeling diagrams include
— activity,
— sequence,
— communication,
— interaction overview,
— timing,
— behavior state machine,
— protocol state machine,
— use case diagrams.

The Unified Modeling L anguage

Py

Structure Behaviour
Diagram Diagram
a

T 1 I [I
Class Component| Object Activity Use Case
Diagram Diagram Diagram

Diagram Diagram
Profile Composite | | Deploymen Package Interaction State
‘ Diagram %ﬁ%ﬁ%ﬁe Diagram Diagram Diagram giaacg?g%
[[1
N Sequence || Communication| ‘gt\ferravcite‘\?vm Timing
Diagram Diagram Diagram Diagram

The Unified Modeling Language

» Depending on where in the development process thg
system is, different diagrams play a more important
role.

* In some cases, the same diagramming technique is
used throughout the development process.

— In that case, the diagrams start off very conadatnd
abstract.

— As the system is developed, the diagrams evolve to
include details that ultimately lead to code getiena
and development.

Structure diagrams

» emphasize the things that must be present in the
system being modeled.
» used extensively in documenting the software
architecture of software systems.
 Class diagramapalysis, Desigh
— describes the structure of a system by showing the
system's classes, their attributes, and the raktips
among the classes.
« Component diagranPgysical Design, Implementatipn
— describes how a software system is split up into

components and shows the dependencies among thepe

components.

30}

Structure diagrams

e Composite structure diagramn@lysis, Desigh
— describes the internal structure of a class aad th
collaborations that this structure makes possible.
» Deployment diagranmPpysical Design, Implementatipn
— describes the hardware used in system implemensati
and the execution environments and artifacts deploy
on the hardware.
* Object diagramAnalysis, Desigh
— shows a complete or partial view of the structdran
example modeled system at a specific time.

Structurediagrams

* Package diagranifalysis, Design, Implementatipn
— describes how a system is split up into logical
groupings by showing the dependencies among thesg
groupings.
 Profile diagram
— operates at the metamodel level to show stereoggpes
classes with the <<stereotype>> stereotype, and
profiles as packages with the <<profile>> stereetyp
— The extension relation (solid line with closedefl
arrowhead) indicates what metamodel element a give
stereotype is extending.

Behavior Diagrams

» emphasize what must happen in the system being
modeled.

« used extensively to describe the functionality of
software systems.
e Activity diagram @nalysis, Desigh
— describes the business and operational step-py-ste
workflows of components in a system.

— An activity diagram shows the overall flow of cait
« UML state machine diagramdalysis, Desigh
— describes the states and state transitions afytem.

Behavior Diagrams

* Use Case Diagramfalysig

— describes the functionality provided by a systam i
terms of actors, their goals represented as uss.cas
and any dependencies among those use cases.

» asubset of behavior diagramgdriteraction diagrams

— emphasize the flow of control and data among the
things in the system being modeled

e Timing diagramsAnalysis, Desigh

— a specific type of interaction diagram where theug
is on timing constraints.

Interaction diagrams

* Communication diagram (Analysis, Design)
— shows the interactions between objects or parts in
terms of sequenced messages.
— represent a combination of information taken from
Class, Sequence, and Use Case Diagrams describing|
both the static structure and dynamic behavior of a
system.
« Interaction overview diagranAfalysis, Desigh

— provides an overview in which the nodes represent
communication diagrams.

Interaction diagrams

e Sequence diagramdalysis, Desigh
— shows how objects communicate with each other in
terms of a sequence of messages.

— Also indicates the lifespans of objects relativéhiase
messages.

UML 2.0 Diagram Summary

Diagram Name Used to Primary Phase

Structure Diagrams
Class

Hlustrate the relationships between classes modeled in the system. Analysis, Design

Object Hlustrate the relationships between objects modeled in the system. Analysis, Design
Used when actual instances of the classes will better communicate
the model.
Package Group other UML elements together to form higher level constructs. Analysis, Design,
Implementation
Deployment Show the physical architecture of the system. Can also be sed to show Physical Design,
software components being deployed onto the physical architecture. Implementation
Component illustrate the physical refationships among the software components. Physical Design,

Implementation

Composite Structure Hlustrate the interal structure of a class, i.e., the relationships among Analysis, Design

the paris of a class.

Behavioral Diagrams

Activity Hlustrate business workflows independent of classes, the flow of activities Analysis, Design
in a use case, or detailed dsign of a method.
Sequence Model the behavior of objects within a use case. Focuses on the time-based Analysis, Design

ordering of an activity.

Model the behavior of objects within a use case. Focuses on the communi-
cation among a set of collaborating objects of an activity.

Hlustrate an overview of the flow of control of a process.

Communication Analysis, Design

Interaction Overview
Timing

Analysis, Design
Hlustrate the interaction that takes place among a set of objects and the Analysis, Design
state changes in which they go through along a time axis.

Examine the behavior of one class.

Hiustrates the dependencies among the different interfaces of a class.
Capture business requirements for the system and to illustrate the inter-
action between the system andlits environment.

Behavioral State Machine Analysis, Design
Analysis, Design

Analysis

Protocol State Machine
Use-Case

Extension M echanisms

¢ As large and as complete as the UML is, it is
impossible for the creators of the UML to anticipate
all potential uses.

« Therefore UML also provides a set of extension
mechanisms. These include
— stereotypes,
— tagged values,
— constraints,
— profiles.

Extension M echanisms

» Stereotypes
— provide the analyst with the ability to increméiyta
extend the UML using the model elements already in
the UML.
» A stereotype is shown as a text item enclosed within
guillemets (<< >>) or angle brackets (<< >>).
« Stereotypes can be associated with any model elemgnt
(e.g., class, object, use case, relationships) within any
UML diagram.

Extension M echanisms

e Tagged Values

— In the UML, all model elements have properties tha
describe them.

— Tagged values are used to add new propertiebdse
element.

« For example, if a project team was interesteddaing the
authorship of each class in a class diagram, tiegrteam
could extend the class element to include an ayttaperty.

— Itis also possible to associate tagged valuds wit
specific stereotypes.

« In this manner, when the analyst applies a stgpedb a
model element, all of the additional tagged vakssociated
with the stereotype also are applied.

39 40
Extension Mechanisms
 Constraints . . .
— allow the analyst to model problem domain specific semanfics Obj ect-Oriented WS[GI’T]S Analyss
by placing additional restrictions on the use of model and Desi an
elements.
— Constraints are typically modeled using the Object Constrajnt < >
Language (OCL). OO approaches to developing IS can use any of the tradition
« Profiles methodologies (waterfall development, parallel development,
— allow the developer to group a set of model elements that ljave phased development, prototyping, and throwaway pr(_)totypln
been extended using stereotypes, tagged values, and/or However, the OO approaches are most associated with a ph
constraints into a package. development RAD methodology.
— have been used to create modeling extensions that can adfiress According to the creators of UML, any modern OO approach

specific types of implementation platforms, such as .NET, qr
specific modeling domains, such as embedded systems.

41

developing IS must be (1) use-case driven, (2) architecture-
centric, and (3) iterative and incremental.

—

sed

o

Use-Case Driven

¢ means that use cases are the primary modeling tool fo
define the behavior of the system.
» A use case describes how the user interacts with the
system to perform some activity,

— such as placing an order, making a reservation, or
searching for information.

¢ The use cases are used
— to identify
— to communicate

the requirements for the system to the programmers
who must write the system.

43

Architecture Centric

* means that the underlying software architecture of the
evolving system specification drives the specification|
construction, and documentation of the system.

¢ Modern OO systems analysis and design approache]
should support at least three separate but interrelate:
architectural views of a system:

— functional
— static,

L)

j=

— dynamic.
« Any modern approach to systems analysis and desig
should be architecture centric.

>

44

|terative and I ncremental

1°l

¢ Modern OO systems analysis and design approache|

emphasize iterative and incremental development that

— undergoes continuous testing and refinement
throughout the life of the project.

» Each iteration of the system brings it closer and clos¢r

to real user needs.

45

The Unified Process

The Unified Process is a specific methodology that
maps out when and how to use the various UML
techniques for OO analysis and design.

Whereas the UML provides structural support for
developing the structure and behavior of an
information system, the Unified Process provides thg
behavioral support.

The Unified Process is use-case driven, architecture
centric, and iterative and incremental.

46|

The Unified Process

* The Unified Process is a two-dimensional systems
development process described by a set of phases gnd
workflows. The phases are

— inception, elaboration, construction, and traositi
» The workflows include
— business modeling, requirements, analysis, design,
implementation, test, deployment, project manageme
configuration and change management, and
environment.

47

Phases

—

The phases of the Unified Process support an analyd
in developing information systems in an iterative and
incremental manner.

The phases describe how an information system
evolves through time.

Depending on which development phase the evolving
system is currently in, the level of activity will vary
over the workflows.

The curves, in the next figures, associated with each
workflow approximates the amount of activity that
takes place during the specific phase.

as|

Engineering Workflows
Phases Inception Elaboration Construction Transition
Business Modeling Supporting Workdlows
Inception Elaboration Construction Transition

Requirements Configuration and

Change Management
Analysis Project Management
Design Environment

Iter Iter Iter Iter Iter Iter Iter Iter
Implementation 1 i i1 i jt K| ket m
Test
Deployment
49 50}
. Inceptlon ¢ To answer these questions,

 very similar to the planning phase of a traditional
SDLC approach.
« A business case is made for the proposed system.
¢ This includes feasibility analysis that should answer
questions such as the following:
— Do we have the technical capability to build it?
(technical feasibility)
— If we build it, will it provide business value@omic
feasibility)
— If we build it, will it be used by the organizati®
(organizational feasibility)

9]

— the development team performs work related primarily to tl
business modeling, requirements, and analysis workflows.|
* The project management and environment supporting
workflows are very relevant to this phase.
« The primary deliverables from the inception phase ale
— avision document that sets the scope of the project, identifies
the primary requirements and constraints, sets up an initia
project plan, and describes the feasibility of and risks
associated with the project
— the adoption of the necessary environment to develop the
system.

Phases

» Elaboration

» The analysis and design workflows are the primary focus duripg
this phase.

» The elaboration phase continues with developing the vision
document, including

— finalizing the business case,

— revising the risk assessment,

— completing a project plan in sufficient detail
to allow the stakeholders to be able to agree with constructin
the actual final system.

« It deals with gathering the requirements, building the UML
structural and behavioral models of the problem domain, and
detailing the how the problem domain models fit into the
evolving system architecture.

Phases

» Developers are involved with all but the deployment
engineering workflow in this phase.

» As the developers iterate over the workflows, the
importance of addressing configuration and change
management becomes apparent.

« The primary deliverables of this phase include

— the UML structure and behavior diagrams
— an executable of a baseline version of the evglvin
information system.

By providing a solid foundation at this point in time,

the developers can begin to grow the system toward|its

completion in the construction and transition phasesm.

Phases

» Construction

« focused on programming the evolving information
system.

« primarily concerned with the implementation
workflow.

« the requirements, analysis, and design workflows alg
are involved with this phase.

« Itis during this phase that missing requirements are
uncovered, and the analysis and design models are
finally completed.

Phases

« There are iterations of the workflows during this
phase.

« The configuration and change management workflo
with its version control activities, becomes extremely
important during the construction phase.

» Attimes, an iteration may have to be rolled back.

— Without good version controls, rolling back to a
previous version (incremental implementation) & th
system is nearly impossible.

¢ The primary deliverable of this phase

— an implementation of the system that can be retkas
for beta and acceptance testing.

Phases

» Transition

« addresses aspects associated with the implementati
phase of a traditional SDLC approach.

« Its primary focus is on the testing and deployment
workflows.

« The business modeling, requirements, and analysis
workflows should have been completed in earlier
iterations of the evolving information system.

* From a managerial perspective, the project

management, configuration and change managemer
and environment are involved.

—

=)

Phases

« Some of the activities that take place are
— beta and acceptance testing,
— fine tuning the design and implementation,
— user training,

— the actual rolling out of the final product onto a
production platform.

¢ The primary deliverable is
— the actual executable information system.
» The other deliverables include

— user manuals, a plan to support the users, alzhdqy
upgrading the information system in the future.

Workflows

» describe the tasks or activities that

— a developer performs to evolve an informationesyst
over time.

« The workflows of the Unified Process are grouped
into two broad categories:
— engineering workflows
— supporting workflows

Engineering Wor kflows

* include
— business modeling workflow,
— requirements workflow,
— analysis workflow,
— design workflow,
— implementation workflow,
— test workflow,
— deployment workflow.
« deal with the activities that produce the technical

product
* i.e., the Information System.

10

Business Modeling workflow

uncovers problems and identifies potential projects within a
user organization.

aids management in understanding the scope of the projects
that can improve the efficiency and effectiveness of a user
organization.

The primary purpose of business modeling is to ensure that
both developer and user organizations understand where and
how the to-be-developed information system fits into the
business processes of the user organization.

This workflow primarily is executed during the inception phas
to ensure that we develop information systems that make
business sense.

The activities that take place on this workflow are most glose

associated with the planning phase of the traditional SDLC
61

Requirements workflow

=3

includes eliciting both functional and nonfunctional requiremep
Typically, requirements are gathered from project stakeholdefs,

such as end users, managers within the end user organizatiop, and

even customers.

— There are many different ways in which to capteguirements,
« interviews, observation techniques, joint appl@atdevelopment, document
analysis, and questionnaires.

utilized the most during the inception and elaboration phases|
The identified requirements are very useful in developing the
vision document and the use cases used throughout the
development process.

It should be stressed that additional requirements tend to be
discovered throughout the development process.

Analysis workflow

addresses creating an analysis model of the problem domain

— In the Unified Process, the analyst begins desigtiie
architecture associated with the problem domain,

— and using the UML, the analyst creates structmel behavioral
diagrams that depict a description of the problemain classes
and their interactions.

The primary purpose of the analysis workflow

— to ensure that both the developer and user o@#omis
understand the underlying problem and its domaihawit over
analyzing.

If they are not careful, analysts can createlysis paralysjs

— occurs when the project becomes so bogged dowrawilysis
that the system is never actually designed or impleed.

Analysis workflow

A second purpose of the analysis workflow

— to identify useful reusable classes for classitibs.

By reusing predefined classes, the analyst can avoid
“reinventing the wheel” when creating the structural and
behavioral diagrams.

The analysis workflow is predominantly associated with the
elaboration phase,

— but like the requirements workflow, it is possitiiat additional
analysis will be required throughout the developnpeacess.

Design workflow

transitions the analysis model into a form that can be used to
implement the system:

— thedesign model
focuses on developing a solution that will execute in a specifi
environment.

enhances the evolving information system description by
adding classes that address the environment of the informatid
system to the evolving analysis model.

As such, the design workflow addresses activities, such as

— user interface design, database design, physitdatecture
design, detailed problem domain class design, lzed t
optimization of the evolving information system.

The design workflow primarily is associated with the

elaboration and construction phases of the Unified Process.
65

Implementation workflow

The primary purpose is to create an executable solution basefl
on the design model including
— writing new classes,
— incorporating reusable classes from executabgs dilararies into
the evolving solution.
Testing of the new classes and their interactions with the
incorporated reusable classes must occur.
In the case of multiple groups performing the implementation
of the information system,
— the implementers also must integrate the sepanaigidually
tested, modules to create an executable versitreclystem.
Associated with the elaboration and construction phases.

S.

11

Test workflow

» The primary purpose is to increase the quality of the evolving
system.
* includes
— testing the integration of all modules used tolemgent the system,
— user acceptance testing,
— the actual alpha testing of the software.
testing of the analysis and design models are involved duringfthe
elaboration and construction phases,
« implementation testing is performed primarily during the
construction and, to some degree, transition phases.

— At the end of each iteration during the developmoéthe
information system, some type of test should béopered.

Deployment workflow

* most associated with the transition phase of the Unified
Process.
« includes activities, such as
— software packaging,
— distribution,
— installation,
— beta testing.
* When actually deploying the new information system into a
user organization,
— the developers may have to convert the curreit dat
— interface the new software with the existing safsy
— provide end user training on the use of the nestesy.

Supporting Workflows

* include
— the project management workflow,
— configuration and change management workflow,
— the environment workflow.

« focus on the managerial aspects of information sysfem
development.

Project management workflow

« cross-phase workflow.
» This workflow’s activities include
— risk identification and management,
— scope management,
— estimating the time to complete each iterationtaed
entire project,
— estimating the cost of the individual iteratiomddhe
whole project,

— tracking the progress being made toward the final
version of the evolving information system.

Configuration and change management workflojv

« The primary purpose is to keep track of the state of the
evolving system.

* The evolving information system comprises a set of artifacts
that includesdiagrams, source code, and executables.

» During the development process, these artifacts are modified

» Since the artifacts are modified on a regular, if not continuous,
basis, good version control mechanisms should be establishgd.

« A good deal of project management information needs to be
captured
— e.g., author, time, and location of each modiiicat

« associated mostly with the construction and transition phases

Environment workflow

« During the development of an information system, the

development team needs to use different tools and processeg.

— Theenvironment workflonaddresses these needs.
— For example,

« acomputer aided software engineering tool thapstts the development of
an OO0 information system via the UML could be reegli

» Other tools necessary would include
— programming environments,
— project management tools,
— configuration management tools.
* The environment workflow includes acquiring and installing
these tools.
» Environment workflow should primarily be involved with the
inception phase.

12

A MINIMALIST APPROACH TO OO
SYSTEMSANALYSIS AND DESIGN
WITH UML 2.0

A

A
»
The UML is an OO modeling language used to describe infeomaystems.

It provides a common vocabulary of OO terms and afsiagramming
techniques that are rich enough to model any systeméogdenent project
from analysis through implementation.

UML is nothing more than a notation.

UML does not dictate any formal approach to developingrinétion systems,
but its iterative nature is best-suited to RAD-based smies such as phased
development

A popular RAD-based approach that uses the UML is theednifrocess.

Benefits of Object-Oriented Systems Analysisand Design

» Concepts in the OO approach enable analysts to
— break a complex system into smaller, more mandgeabdules,
— work on the modules individually,
— easily piece the modules back together to forisan
» This modularity makes system development
— easier to grasp,
— easier to share among members of a project team,
— easier to communicate to users

« who are needed to provide requirements and corifow well the system
meets the requirements throughout the SDLC.

* By modularizing system development, the project team actua
is creating reusable pieces that can be plugged into other
systems efforts, or used as starting points for other projects.

74

Benefits of Object-Oriented Systems Analysisand Design

Ultimately, this can save time because new projects don'’t ha

to start completely from scratch.

« Finally, many people argue that “object-think” is a much more|
realistic way to think about the real world.

« Users typically do not think in terms of data or process;

— instead, they see their business as a collecfitogizal units that
contain both

« so communicating in terms of objects improvesitieraction between the
user and the analyst or developer.

* Next figure summarizes the major concepts of the object-
oriented approach and how each concept contributes to the
benefits.

Benefits of Object-Oriented Systems Analysisand Design

Concept Supports Leads to

Classes, objects, methods,
and messages

A more realistic way for people to
think about their business

W Better communication between user and analyst or
developer

B Highly cohesive units that contain W Reusable objects

both data and processes W Benefits from having a highly cohesive system
(see cohesion in Chapter 13)

Encapsulation and informa-

 Loosely coupled units W Reusable objects

tion hiding B Fewer ripple effects from changes within an
object or in the system itself
B Beneits from having a loosely coupled system
design (see coupling in Chapter 13)
Inheritance B Allows us to use classes asstan- W Less redundancy
dard templates from which other W Faster creation of new classes.
classes can be built m Standards and consistency within and across
development efforts
B Ease in supporting exceptions
Polymorphism and Dynamic B Minimal messaging that s inter- B Simpler programming of events
Binding preted by objects themselves B Ease i replacing or changing objects in a system
B Fewer ripple effects from changes within an
object or in the system itself
Use-case driven and use B Allows users and analysts to B Betier understanding and gathering of user needs
cases focus on how a user will interact W Better communication between user and analyst
with the system 1o perform a sin-
gle activity
Architecture cenic and B Viewing the evolving system B Better understanding and modeling of user needs

functional, static, and
dynamic views

from multiple points of view W More complete depiction of information system

Iterative and incremental B Continuous testing and refine- B Meeting real needs of users

development ment of the evolving system W Higher quality systems

Extensionsto the Unified Process

« Unified Process some critical weaknesses.
* First, the UP does not address
— staffing issues,
— budgeting issues,
— contract management issues.
» These activities were explicitly left out of the UP.
» Second, the UPdoes not address issues relating to
— maintenance,
— operations,
— support of the product once it has been delivered.

Extensionsto the Unified Process

 Third, the Unified Process does not address cross- o
inter- project issues.

» Considering the importance of reuse in OO systems
development and the fact that in many organizations
employees work on many different projects at the
same time, leaving out inter-project issues is a majof
omission.

13

Extensionsto the Unified Process

¢ To address these omissions, Ambler and Constantin
suggest the addition of a Production phase and two
workflows:

— Operations and Support workflow

— Infrastructure Management workflow

* In addition to these new workflows,

— the test, deployment and environment workflows are
modified, and the project management and
configuration and change management workflows are
extended into the production phase.

3%

Engineering Workflows

Inception Haboration

Business Modeling

Construction

Transition

Production

Requirements

Analysis

Design

Implementation

Test

Deployment

Inceptior Haboration

Configuration and
Change Management

Supporting Workilows

Can

Transitio

Production

Project Management

Environment

Operations and Support

Infrastructure
Management

her | .. ! lter | lter
1 i |t

ter | Wer | ..} ler | ler
i li+1 ko |k+1

Teer

The Minimalist OO SAD Approach

* OOSAD approaches are based on a phased-development RAD
approach.
* However, because of the iteration across the functional, statiq,
and dynamic views of the evolving information system,
— an actual OO development process tends to be coarplex
than typical phased-development RAD approaches.
¢ The minimalist OOSAD (MOOSAD) approach is based on the
Unified Process
— as extended by the processes associated withRE&®rocess
and the OO Software Process approaches to object:ex
systems development.
* Next Figure shows modified phased-development RAD-base
approach.
« The solid lines in represent information flowsrfrone step to another step.

« The dashed lines represent feedback from a ltprts an earlier one.
81

Anaiysis

Planning

MOOSAD Approach

Summary

* Class and method design

« Data management layer design

* Human computer interaction layer design

» Physical architecture layer design

» Construction

* Installation

« Operations and support

« Basic characteristics of an object oriented system
¢ Unified modeling system

« Object oriented Systems Analysis and Design
¢ Minimalist approach to OO SAD with UML

14

