
1

1

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

ObjectObject--Oriented Systems Analysis Oriented Systems Analysis
and Design with the UMLand Design with the UML

Objectives:
• Understand the basic characteristics of object-oriented

systems.
• Be familiar with the Unified Modeling Language (UML),

Version 2.0.
• Be familiar with the Unified Process.
• Understand a minimalist approach to object-oriented systems

analysis and design.

• Until recent years, analysts focused on either data or business
processes when developing systems.

• As they moved through the SDLC, they emphasized either
– the data for the system (data-centric approaches)

– the processes that it would support (process-centric approaches).

• In the mid-1980s, developers were capable of building systems
that could be more efficient
– if the analyst worked with a system’s data and processes

simultaneously and focused on integrating the two.

• As such, project teams began using an object-oriented
approach,
– whereby self-contained modules called objects (containing both

data and processes) were used as the building blocks for systems.

3

• Simula, an OOP language, was created in the 1960s

• Smalltalkwas created in the early 1970s.

• Until the mid-1980s, developers had to keep the data
and processes separate
– to be capable of building systems that could run on the

mainframe computers of that era.

• Today, due to the increase in processor power and the
decrease in processor cost, OO approaches are
feasible.

History of object-oriented approaches

4

• OO systems focus on capturing the structure and
behavior of information systems in little modules that
encompass both dataand process.

• These little modules are known as objects.

• The basic characteristics of OO systems include

Basic Characteristics of Object Oriented Systems

5

– classes,

– objects,

– methods,

– messages,

– encapsulation,

– information hiding,

– inheritance,

– polymorphism,

– dynamic binding.

• Class

• the general template we use to define and create
specific instances, or objects.

• Every object is associated with a class.
– For example, all of the objects that capture information

about patients could fall into a class called Patient,
because there are

• attributes (e.g., names, addresses, and birth dates)

• methods (e.g., insert new instances, maintain information, and
delete entries)

that all patients share (see next Figure).

Classes and Objects

6

2

Classes and Objects

7

• Object
– an instantiation of a class.

– a person, place, event, or thing about which we want to
capture information.

• If we were building an appointment system for a
doctor’s office, classes might include doctor, patient,
and appointment.

• The specific patients like Jim Maloney, Mary Wilson,
and Theresa Marks are considered instances, or
objects, of the patient class.

Classes and Objects

8

• Each object has attributesthat
– describe information about the object, such as

• a patient’s name, birth date, address, and phone number.

– The state of an object is defined by the value of its attributes
and its relationships with other objects at a particular point
in time.

• For example, a patient might have a state of “new” or “current” or
“former.”

• Each object also has behaviorsthat
– specify what the object can do.

• For example, an appointment object likely can schedule a new
appointment, delete an appointment, and locate the next available
appointment.

Classes and Objects

9

• Methodsimplement an object’s behavior.
– nothing more than an action that an object can perform.

– analogous to a function or procedure in a traditional
programming language such as C, Cobol, or Pascal.

• Messagesare information sent to objects to trigger
methods.
– It is a function or procedure call from one object to

another object.
• For example, if a patient is new to the doctor’s office, the

system will send an insert message to the application. The
patient object will receive a message (instruction) and do
what it needs to do to go about inserting the new patient into
the system (see next Figure).

Methods and Messages

10

Methods and Messages

11

• Encapsulation
– the combination of process and data into a single entity.

• Traditional approaches to information systems
development tend to be either
– process-centric

• e.g., structured systems

or
– data-centric

• e.g., information engineering.

• Object-oriented approaches combine process and data
into holistic entities (objects).

Encapsulation and Information Hiding

12

3

• Information hiding
– first promoted in structured systems development.

– only the information required to use a software module is
published to the user of the module.

• This implies the information required to be passed to the module, and
the information returned from the module is published.

• How the module implements the required functionality is not
relevant.

• In OO systems, combining encapsulation with the
information hiding principle suggests that the information
hiding principle be applied to objects instead of merely
applying it to functions or processes.
– Objects are treated like black boxes.

Encapsulation and Information Hiding

13

• Reusability Key
– Use an object by calling methods

• because it shields the internal workings of the object from
changes in the outside system, and it keeps the system from
being affected when changes are made to an object.

Encapsulation and Information Hiding

14

• In the following figure, notice how a message
(insert new patient) is sent to an object yet the
internal algorithms needed to respond to the
message are hidden from other parts of the
system.

• The only information that an object needs to
know is the set of operations, or methods, that
other objects can perform and what messages
need to be sent to trigger them.

• Inheritance,
– was proposed in data modeling in the late 1970s and the early

1980s.

• The data modeling literature suggests using inheritance
to identify higher-level, or more general, classes of
objects.

• Common sets of attributes and methods can be organized
into superclasses.

• Typically, classes are arranged in a hierarchy whereby
– the superclasses, or general classes, are at the top,

– the subclasses, or specific classes, are at the bottom.

Inheritance

15

• In the following figure,
– person is a superclass to the classes

Doctor and Patient.

– Doctor, in turn, is a superclass to
general practitioner and specialist.

• Notice how a class (e.g., doctor) can
serve as a superclass and subclass
concurrently.

• The relationship between the class and
its superclass is known as the A-Kind-
Of (AKO) relationship.
– For example, in the figure,

• a general practitioner is A-Kind-Of doctor,
which is A-Kind-Of person.

Inheritance

16

• Subclasses inherit the appropriate attributes and
methods from the superclasses above them.
– That is, each subclass contains attributes and methods from

its parent superclass.
• For example, previous figure shows that both doctor and

patient are subclasses of person and therefore will inherit the
attributes and methods of the person class.

– Inheritance makes it simpler to define classes.
• In previous figure, instead of repeating the attributes and

methods in the doctor and patient classes separately, the
attributes and methods that are common to both are placed in
the person class and inherited by those classes below it.

Inheritance

17

• Notice how much
more efficient
hierarchies of object
classes are than the
same objects
without a hierarchy
in the following
figure.

Inheritance

18

4

• Polymorphismmeans that
– the same message can be interpreted differently by

different classes of objects.
• For example, inserting a patient means something different

than inserting an appointment.

• As such, different pieces of information need to be collected
and stored.

• not have to be concerned with how something is done
when using objects.

• simply send a message to an object, and that object
will be responsible for interpreting the message
appropriately.

Polymorphism and Dynamic Binding

19

• For example, if we
sent the message
“Draw yourself ” to a
square object, a circle
object, and a triangle
object, the results
would be very
different, even
though the message
is the same.

• Notice in Figure how
each object responds
appropriately (and
differently) even
though the messages
are identical.

Polymorphism and Dynamic Binding

20

• Polymorphism is made possible through dynamic
binding(late binding)
– a technique that delays typing the object until run-time.

• As such, the specific method that is actually called is not chosen
by the object-oriented system until the system is running.

• This is in contrast to static binding, in which
– the type of object would be determined at compile time.

– The developer would have to choose which method
should be called instead of allowing the system to do it.

• This is why in most traditional programming languages you find
complicated decision logic based on the different types of
objects in a system.

Polymorphism and Dynamic Binding

21

• For example, in a traditional programming language,
instead of sending the message “Draw yourself ” to
the different types of graphical objects in the previous
figure, you would have to write decision logic using a
case statement or a set of if statements to determine
what kind of graphical object you wanted to draw,
and you would have to name each draw function
differently (e.g., drawsquare, draw-circle, or draw-
triangle).

• This obviously would make the system much more
complicated and more difficult to understand.

Polymorphism and Dynamic Binding

22

The Unified Modeling Language, The Unified Modeling Language,
Version 2.0Version 2.0

Until 1995, object concepts were popular
• but implemented in many different ways by different developers.
• Each developer had his or her own methodology and notation.

Rational Software brought three industry leaders together to
create a single approach to object-oriented systems development.

• Grady Booch, Ivar Jacobson, and James Rumbaugh worked with
others to create a standard set of diagramming techniques known
as the Unified Modeling Language (UML).

• The objective of UML
– to provide a common vocabulary of OO terms and

diagramming techniques that is
• rich enough to model any systems development project from

analysis through implementation.

• In November 1997, the Object Management Group
(OMG) formally accepted UML as the standard for all
object developers.

• Over the years since, the UML has gone through
multiple minor revisions.

The Unified Modeling Language

24

5

• The Version 2.0 of the UML defines a set of fourteen
diagramming techniques used to model a system.

• Version history:
– UML 2.0 major revision was adopted by the OMG in

2005

– UML 2.1.1 and UML 2.1.2 appeared in 2007

– UML 2.2 was released in February 2009.

– UML 2.3 was formally released in May 2010.

– UML 2.4.1 was formally released in August 2011.

The Unified Modeling Language

25

• The diagrams are broken into two major groupings:

• one for modeling structure of a system

• The structure modeling diagrams include
– class,

– object,

– package,

– deployment,

– component,

– composite structure diagrams.

The Unified Modeling Language

26

• one for modeling behavior.

• The behavior modeling diagrams include
– activity,

– sequence,

– communication,

– interaction overview,

– timing,

– behavior state machine,

– protocol state machine,

– use case diagrams.

The Unified Modeling Language

27

The Unified Modeling Language

28

• Depending on where in the development process the
system is, different diagrams play a more important
role.

• In some cases, the same diagramming technique is
used throughout the development process.
– In that case, the diagrams start off very conceptual and

abstract.

– As the system is developed, the diagrams evolve to
include details that ultimately lead to code generation
and development.

The Unified Modeling Language

29

• emphasize the things that must be present in the
system being modeled.

• used extensively in documenting the software
architecture of software systems.

• Class diagram (Analysis, Design)
– describes the structure of a system by showing the

system's classes, their attributes, and the relationships
among the classes.

• Component diagram (Physical Design, Implementation)
– describes how a software system is split up into

components and shows the dependencies among these
components.

Structure diagrams

30

6

• Composite structure diagram (Analysis, Design)
– describes the internal structure of a class and the

collaborations that this structure makes possible.

• Deployment diagram (Physical Design, Implementation)
– describes the hardware used in system implementations

and the execution environments and artifacts deployed
on the hardware.

• Object diagram (Analysis, Design)
– shows a complete or partial view of the structure of an

example modeled system at a specific time.

Structure diagrams

31

• Package diagram (Analysis, Design, Implementation)
– describes how a system is split up into logical

groupings by showing the dependencies among these
groupings.

• Profile diagram
– operates at the metamodel level to show stereotypes as

classes with the <<stereotype>> stereotype, and
profiles as packages with the <<profile>> stereotype.

– The extension relation (solid line with closed, filled
arrowhead) indicates what metamodel element a given
stereotype is extending.

Structure diagrams

32

• emphasize what must happen in the system being
modeled.

• used extensively to describe the functionality of
software systems.

• Activity diagram (Analysis, Design)
– describes the business and operational step-by-step

workflows of components in a system.

– An activity diagram shows the overall flow of control.

• UML state machine diagram (Analysis, Design)
– describes the states and state transitions of the system.

Behavior Diagrams

33

• Use Case Diagram (Analysis)
– describes the functionality provided by a system in

terms of actors, their goals represented as use cases,
and any dependencies among those use cases.

• a subset of behavior diagrams is Interaction diagrams
– emphasize the flow of control and data among the

things in the system being modeled

• Timing diagrams (Analysis, Design)
– a specific type of interaction diagram where the focus

is on timing constraints.

Behavior Diagrams

34

• Communication diagram (Analysis, Design)
– shows the interactions between objects or parts in

terms of sequenced messages.

– represent a combination of information taken from
Class, Sequence, and Use Case Diagrams describing
both the static structure and dynamic behavior of a
system.

• Interaction overview diagram (Analysis, Design)
– provides an overview in which the nodes represent

communication diagrams.

Interaction diagrams

35

• Sequence diagram (Analysis, Design)
– shows how objects communicate with each other in

terms of a sequence of messages.

– Also indicates the lifespans of objects relative to those
messages.

Interaction diagrams

36

7

UML 2.0 Diagram Summary

37

• As large and as complete as the UML is, it is
impossible for the creators of the UML to anticipate
all potential uses.

• Therefore UML also provides a set of extension
mechanisms. These include
– stereotypes,

– tagged values,

– constraints,

– profiles.

Extension Mechanisms

38

• Stereotypes
– provide the analyst with the ability to incrementally

extend the UML using the model elements already in
the UML.

• A stereotype is shown as a text item enclosed within
guillemets (<< >>) or angle brackets (<< >>).

• Stereotypes can be associated with any model element
(e.g., class, object, use case, relationships) within any
UML diagram.

Extension Mechanisms

39

• Tagged Values
– In the UML, all model elements have properties that

describe them.

– Tagged values are used to add new properties to a base
element.

• For example, if a project team was interested in tracing the
authorship of each class in a class diagram, the project team
could extend the class element to include an author property.

– It is also possible to associate tagged values with
specific stereotypes.

• In this manner, when the analyst applies a stereotype to a
model element, all of the additional tagged values associated
with the stereotype also are applied.

Extension Mechanisms

40

• Constraints
– allow the analyst to model problem domain specific semantics

by placing additional restrictions on the use of model
elements.

– Constraints are typically modeled using the Object Constraint
Language (OCL).

• Profiles
– allow the developer to group a set of model elements that have

been extended using stereotypes, tagged values, and/or
constraints into a package.

– have been used to create modeling extensions that can address
specific types of implementation platforms, such as .NET, or
specific modeling domains, such as embedded systems.

Extension Mechanisms

41

ObjectObject--Oriented Systems Analysis Oriented Systems Analysis
and Designand Design

OO approaches to developing IS can use any of the traditional
methodologies (waterfall development, parallel development,
phased development, prototyping, and throwaway prototyping).

However, the OO approaches are most associated with a phased
development RAD methodology.

According to the creators of UML, any modern OO approach to
developing IS must be (1) use-case driven, (2) architecture-
centric, and (3) iterative and incremental.

8

• means that use cases are the primary modeling tool to
define the behavior of the system.

• A use case describes how the user interacts with the
system to perform some activity,
– such as placing an order, making a reservation, or

searching for information.

• The use cases are used
– to identify

– to communicate

the requirements for the system to the programmers
who must write the system.

Use-Case Driven

43

• means that the underlying software architecture of the
evolving system specification drives the specification,
construction, and documentation of the system.

• Modern OO systems analysis and design approaches
should support at least three separate but interrelated
architectural views of a system:
– functional

– static,

– dynamic.

• Any modern approach to systems analysis and design
should be architecture centric.

Architecture Centric

44

• Modern OO systems analysis and design approaches
emphasize iterative and incremental development that
– undergoes continuous testing and refinement

throughout the life of the project.

• Each iteration of the system brings it closer and closer
to real user needs.

Iterative and Incremental

45

• The Unified Process is a specific methodology that
maps out when and how to use the various UML
techniques for OO analysis and design.

• Whereas the UML provides structural support for
developing the structure and behavior of an
information system, the Unified Process provides the
behavioral support.

• The Unified Process is use-case driven, architecture
centric, and iterative and incremental.

The Unified Process

46

• The Unified Process is a two-dimensional systems
development process described by a set of phases and
workflows. The phases are
– inception, elaboration, construction, and transition.

• The workflows include
– business modeling, requirements, analysis, design,

implementation, test, deployment, project management,
configuration and change management, and
environment.

The Unified Process

47

• The phases of the Unified Process support an analyst
in developing information systems in an iterative and
incremental manner.

• The phases describe how an information system
evolves through time.

• Depending on which development phase the evolving
system is currently in, the level of activity will vary
over the workflows.

• The curves, in the next figures, associated with each
workflow approximates the amount of activity that
takes place during the specific phase.

Phases

48

9

Engineering Workflows

49

Supporting Workflows

50

• Inception

• very similar to the planning phase of a traditional
SDLC approach.

• A business case is made for the proposed system.

• This includes feasibility analysis that should answer
questions such as the following:
– Do we have the technical capability to build it?

(technical feasibility)

– If we build it, will it provide business value? (economic
feasibility)

– If we build it, will it be used by the organization?
(organizational feasibility)

Phases

51

• To answer these questions,
– the development team performs work related primarily to the

business modeling, requirements, and analysis workflows.

• The project management and environment supporting
workflows are very relevant to this phase.

• The primary deliverables from the inception phase are
– a vision document that sets the scope of the project, identifies

the primary requirements and constraints, sets up an initial
project plan, and describes the feasibility of and risks
associated with the project

– the adoption of the necessary environment to develop the
system.

Phases

52

• Elaboration
• The analysis and design workflows are the primary focus during

this phase.

• The elaboration phase continues with developing the vision
document, including
– finalizing the business case,

– revising the risk assessment,

– completing a project plan in sufficient detail

to allow the stakeholders to be able to agree with constructing
the actual final system.

• It deals with gathering the requirements, building the UML
structural and behavioral models of the problem domain, and
detailing the how the problem domain models fit into the
evolving system architecture.

Phases

53

• Developers are involved with all but the deployment
engineering workflow in this phase.

• As the developers iterate over the workflows, the
importance of addressing configuration and change
management becomes apparent.

• The primary deliverables of this phase include
– the UML structure and behavior diagrams

– an executable of a baseline version of the evolving
information system.

• By providing a solid foundation at this point in time,
the developers can begin to grow the system toward its
completion in the construction and transition phases.

Phases

54

10

• Construction

• focused on programming the evolving information
system.

• primarily concerned with the implementation
workflow.

• the requirements, analysis, and design workflows also
are involved with this phase.

• It is during this phase that missing requirements are
uncovered, and the analysis and design models are
finally completed.

Phases

55

• There are iterations of the workflows during this
phase.

• The configuration and change management workflow,
with its version control activities, becomes extremely
important during the construction phase.

• At times, an iteration may have to be rolled back.
– Without good version controls, rolling back to a

previous version (incremental implementation) of the
system is nearly impossible.

• The primary deliverable of this phase
– an implementation of the system that can be released

for beta and acceptance testing.

Phases

56

• Transition

• addresses aspects associated with the implementation
phase of a traditional SDLC approach.

• Its primary focus is on the testing and deployment
workflows.

• The business modeling, requirements, and analysis
workflows should have been completed in earlier
iterations of the evolving information system.

• From a managerial perspective, the project
management, configuration and change management,
and environment are involved.

Phases

57

• Some of the activities that take place are
– beta and acceptance testing,

– fine tuning the design and implementation,

– user training,

– the actual rolling out of the final product onto a
production platform.

• The primary deliverable is
– the actual executable information system.

• The other deliverables include
– user manuals, a plan to support the users, and a plan for

upgrading the information system in the future.

Phases

58

• describe the tasks or activities that
– a developer performs to evolve an information system

over time.

• The workflows of the Unified Process are grouped
into two broad categories:
– engineering workflows

– supporting workflows

Workflows

59

• include
– business modeling workflow,

– requirements workflow,

– analysis workflow,

– design workflow,

– implementation workflow,

– test workflow,

– deployment workflow.

• deal with the activities that produce the technical
product

• i.e., the Information System.

Engineering Workflows

60

11

• uncovers problems and identifies potential projects within a
user organization.

• aids management in understanding the scope of the projects
that can improve the efficiency and effectiveness of a user
organization.

• The primary purpose of business modeling is to ensure that
both developer and user organizations understand where and
how the to-be-developed information system fits into the
business processes of the user organization.

• This workflow primarily is executed during the inception phase
to ensure that we develop information systems that make
business sense.

• The activities that take place on this workflow are most closely
associated with the planning phase of the traditional SDLC

Business Modeling workflow

61

• includes eliciting both functional and nonfunctional requirements.

• Typically, requirements are gathered from project stakeholders,
such as end users, managers within the end user organization, and
even customers.
– There are many different ways in which to capture requirements,

• interviews, observation techniques, joint application development, document
analysis, and questionnaires.

• utilized the most during the inception and elaboration phases.

• The identified requirements are very useful in developing the
vision document and the use cases used throughout the
development process.

• It should be stressed that additional requirements tend to be
discovered throughout the development process.

Requirements workflow

62

• addresses creating an analysis model of the problem domain.
– In the Unified Process, the analyst begins designing the

architecture associated with the problem domain,

– and using the UML, the analyst creates structural and behavioral
diagrams that depict a description of the problem domain classes
and their interactions.

• The primary purpose of the analysis workflow
– to ensure that both the developer and user organizations

understand the underlying problem and its domain without over
analyzing.

• If they are not careful, analysts can create analysis paralysis,
– occurs when the project becomes so bogged down with analysis

that the system is never actually designed or implemented.

Analysis workflow

63

• A second purpose of the analysis workflow
– to identify useful reusable classes for class libraries.

• By reusing predefined classes, the analyst can avoid
“reinventing the wheel” when creating the structural and
behavioral diagrams.

• The analysis workflow is predominantly associated with the
elaboration phase,
– but like the requirements workflow, it is possible that additional

analysis will be required throughout the development process.

Analysis workflow

64

• transitions the analysis model into a form that can be used to
implement the system:
– the design model.

• focuses on developing a solution that will execute in a specific
environment.

• enhances the evolving information system description by
adding classes that address the environment of the information
system to the evolving analysis model.

• As such, the design workflow addresses activities, such as
– user interface design, database design, physical architecture

design, detailed problem domain class design, and the
optimization of the evolving information system.

• The design workflow primarily is associated with the
elaboration and construction phases of the Unified Process.

Design workflow

65

• The primary purpose is to create an executable solution based
on the design model including
– writing new classes,

– incorporating reusable classes from executable class libraries into
the evolving solution.

• Testing of the new classes and their interactions with the
incorporated reusable classes must occur.

• In the case of multiple groups performing the implementation
of the information system,
– the implementers also must integrate the separate, individually

tested, modules to create an executable version of the system.

• Associated with the elaboration and construction phases.

Implementation workflow

66

12

• The primary purpose is to increase the quality of the evolving
system.

• includes
– testing the integration of all modules used to implement the system,

– user acceptance testing,

– the actual alpha testing of the software.

• testing of the analysis and design models are involved during the
elaboration and construction phases,

• implementation testing is performed primarily during the
construction and, to some degree, transition phases.
– At the end of each iteration during the development of the

information system, some type of test should be performed.

Test workflow

67

• most associated with the transition phase of the Unified
Process.

• includes activities, such as
– software packaging,

– distribution,

– installation,

– beta testing.

• When actually deploying the new information system into a
user organization,
– the developers may have to convert the current data,

– interface the new software with the existing software,

– provide end user training on the use of the new system.

Deployment workflow

68

• include
– the project management workflow,

– configuration and change management workflow,

– the environment workflow.

• focus on the managerial aspects of information system
development.

Supporting Workflows

69

• cross-phase workflow.

• This workflow’s activities include
– risk identification and management,

– scope management,

– estimating the time to complete each iteration and the
entire project,

– estimating the cost of the individual iteration and the
whole project,

– tracking the progress being made toward the final
version of the evolving information system.

Project management workflow

70

• The primary purpose is to keep track of the state of the
evolving system.

• The evolving information system comprises a set of artifacts
that includesdiagrams, source code, and executables.

• During the development process, these artifacts are modified.

• Since the artifacts are modified on a regular, if not continuous,
basis, good version control mechanisms should be established.

• A good deal of project management information needs to be
captured
– e.g., author, time, and location of each modification.

• associated mostly with the construction and transition phases.

Configuration and change management workflow

71

• During the development of an information system, the
development team needs to use different tools and processes.
– The environment workflow addresses these needs.

– For example,
• a computer aided software engineering tool that supports the development of

an OO information system via the UML could be required.

• Other tools necessary would include
– programming environments,

– project management tools,

– configuration management tools.

• The environment workflow includes acquiring and installing
these tools.

• Environment workflow should primarily be involved with the
inception phase.

Environment workflow

72

13

A MINIMALIST APPROACH TO OO A MINIMALIST APPROACH TO OO
SYSTEMS ANALYSIS AND DESIGN SYSTEMS ANALYSIS AND DESIGN

WITH UML 2.0WITH UML 2.0

The UML is an OO modeling language used to describe information systems.

It provides a common vocabulary of OO terms and a set of diagramming
techniques that are rich enough to model any systems development project
from analysis through implementation.

UML is nothing more than a notation.

UML does not dictate any formal approach to developing information systems,

but its iterative nature is best-suited to RAD-based approaches such as phased

development

A popular RAD-based approach that uses the UML is the Unified Process.

• Concepts in the OO approach enable analysts to
– break a complex system into smaller, more manageable modules,

– work on the modules individually,

– easily piece the modules back together to form an IS.

• This modularity makes system development
– easier to grasp,

– easier to share among members of a project team,

– easier to communicate to users
• who are needed to provide requirements and confirm how well the system

meets the requirements throughout the SDLC.

• By modularizing system development, the project team actually
is creating reusable pieces that can be plugged into other
systems efforts, or used as starting points for other projects.

Benefits of Object-Oriented Systems Analysis and Design

74

• Ultimately, this can save time because new projects don’t have
to start completely from scratch.

• Finally, many people argue that “object-think” is a much more
realistic way to think about the real world.

• Users typically do not think in terms of data or process;
– instead, they see their business as a collection of logical units that

contain both
• so communicating in terms of objects improves the interaction between the

user and the analyst or developer.

• Next figure summarizes the major concepts of the object-
oriented approach and how each concept contributes to the
benefits.

Benefits of Object-Oriented Systems Analysis and Design

75

Benefits of Object-Oriented Systems Analysis and Design

76

• Unified Process some critical weaknesses.

• First, the UP does not address
– staffing issues,

– budgeting issues,

– contract management issues.

• These activities were explicitly left out of the UP.

• Second, the UPdoes not address issues relating to
– maintenance,

– operations,

– support of the product once it has been delivered.

Extensions to the Unified Process

77

• Third, the Unified Process does not address cross- or
inter- project issues.

• Considering the importance of reuse in OO systems
development and the fact that in many organizations
employees work on many different projects at the
same time, leaving out inter-project issues is a major
omission.

Extensions to the Unified Process

78

14

• To address these omissions, Ambler and Constantine
suggest the addition of a Production phase and two
workflows:
– Operations and Support workflow

– Infrastructure Management workflow

• In addition to these new workflows,
– the test, deployment and environment workflows are

modified, and the project management and
configuration and change management workflows are
extended into the production phase.

Extensions to the Unified Process

79 80

• OOSAD approaches are based on a phased-development RAD
approach.

• However, because of the iteration across the functional, static,
and dynamic views of the evolving information system,
– an actual OO development process tends to be more complex

than typical phased-development RAD approaches.

• The minimalist OOSAD (MOOSAD) approach is based on the
Unified Process
– as extended by the processes associated with the OPEN Process

and the OO Software Process approaches to object-oriented
systems development.

• Next Figure shows modified phased-development RAD-based
approach.

• The solid lines in represent information flows from one step to another step.

• The dashed lines represent feedback from a later step to an earlier one.

The Minimalist OO SAD Approach

81

MOOSAD Approach

82

• Class and method design
• Data management layer design
• Human computer interaction layer design
• Physical architecture layer design
• Construction
• Installation
• Operations and support
• Basic characteristics of an object oriented system
• Unified modeling system
• Object oriented Systems Analysis and Design
• Minimalist approach to OO SAD with UML

Summary

83

