
Copyright 2000 N. AYDIN. All rights 

reserved. 1

Medical Informatics

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

1

Database Technology

• The purpose of a database to facilitate the 
management of data
– a process that depends on 

• people

• processes 

• the enabling technology

• Consider that the thousands of base pairs
discovered every minute by the sequencing 
machines in public and private laboratories would 
be practically impossible to record, archive, and 
either publish or sell to other researchers without
computer databases.

2

Database Technology

• The database technology empowers researchers to 
store their data in a way that it can be 

– quickly and easily accessed, 

– manipulated, 

– compared to other data, 

– shared with other researchers

• The volatility of the data, the concept of working 
memory, and the interrelatedness of data,
regardless of the volume of data involved, are 
distinguishing features of the various forms of 
memory systems or databases.

3

Database Technology

• Organic Analog of Database 

Hierarchy. 

• The database hierarchy has 

many parallels to the hierarchy 

in the human genome. 

• Data stored in chromosomes, 

like a data archive, must be 

unpacked and transferred to a

more immediately useful form 

before the data can be put to 

use.

4

Database Technology

• The data-archiving process involves

– indexing, 

– selecting the appropriate software to manage the archive, 

– type of media as a function of frequency of use and 
expected useful life span of the data. 

• From an implementation perspective, the key issues in 
selecting one particular archiving technology over 
another depends on 

– the size of the archive, 

– the types of data and data sources to be archived, 

– the intended use, 

– any existing or legacy archiving systems involved.

5

Database Technology

• A single source of data is generally much easier to 
work with than data from multiple, disparate 
sources in different and often non-compatible 
formats. 

• In addition, hardware and software used in the 
archiving process should reflect the intended use 
of the data.

• For example, 

– seldom-used data can be archived using a much less 
powerful system, compared to data that must be 
accessed frequently.

6

mailto:naydin@yildiz.edu.tr


Copyright 2000 N. AYDIN. All rights 

reserved. 2

Database Technology

• The simplest approach to managing bioinformatics data in a 
small laboratory is to establish a file server that is regularly 
backed up to a secure archive. 

• To use the hardware most effectively, everyone connected to 
the server copies their files from their local hard drive to 
specific areas on the server's hard drive on a daily basis. 

• The data on the server are in turn archived to magnetic tape 
or other high-capacity media by someone assigned to the 
task. 
– In this way, researchers can copy the file from the server to their 

local hard drive as needed. 

• Similarly, if the server hardware fails for some reason, 
– then the archive can be used to reconstitute the data on a second 

server.

7

Database Technology

• From a database perspective, file servers used 
as archives have several limitations.

– For example, because the data may be created 
using different applications, perhaps using different
formats and operating systems, searching through 
the data may be difficult, 

• especially from a single interface other than with the 
search function that is part of the computer's operating 
system. 

• Even then, there is no way of knowing what 
particular files hold. 

8

Database Architecture

• From a structural or architectural perspective, database 
technology can be considered either centralized or 
distributed. 

• In the centralized approach, typified by the data warehouse, 
– data are processed in order to fit into a central database. 

• In a distributed architecture, 
– data are dispersed geographically, 

• even though they may appear to be in one location because of the 
database management system software. 

• In each case, the goal is the same
– providing researchers with some means of rapidly accessing and 

keeping track of data in a way that supports reuse. 
• This is especially critical in large biotech laboratories, where large, 

comprehensive patient and genomic databases support data mining and 
other methods that extract meaningful patterns from potentially 
millions of records.

9

Database Architecture

• Centralized Database Architecture

– concentrates all organizational activity in one 

location. 

• This can be a formidable task, as it requires 

– cleaning, 

– encoding, 

– translation 

of data before they can be included in the 

central database.

10

Database Architecture

• A data warehouse isn't simply a large hard disk, but a 
database system implemented on a tiered storage system that 
reflects access time, cost, and data longevity constraints.

11

Database Architecture

• Distributed Database Architecture
– characterized by physically disparate storage media. 

– supports the ability to use a variety of hardware and software in a 
laboratory, 
• allowing a group to use the software that makes their lives easiest, 

while still allowing a subset of data in each application to be shared 
throughout the organization. 

• Separate applications, often running on separate machines
and using proprietary data formats and storage facilities, 
share a subset of information with other applications. 
– A limitation of this common interface approach, compared to a 

central database, is that the amount of data that can be shared 
among applications is typically limited. 

– In addition, there is the computational overhead of 
communicating data between applications.

12



Copyright 2000 N. AYDIN. All rights 

reserved. 3

Database Architecture

• A challenge of using an integrated approach is 
developing the interfaces between the databases
associated with each application. 

• When there are only a few different applications and 
operating systems to contend with, developing custom 
interfaces between different databases may be tenable.

• However, with multiple applications and their 
associated databases, the number of custom interfaces
that must be developed to allow sharing of data 
becomes prohibitive.

• A better solution to integrating incompatible databases 
is to write interfaces to a common standard.

13

Database Architecture

• Distributed Database Integration. 

• Distributed databases can be configured to share data 
– through dedicated, one-to-one custom interfaces (left) 

– by writing to a common interface standard (right).

• Custom interfaces incur a work penalty on the order of two times the
number of databases that are integrated.

14

Database Architecture

• Full database integration is much more than simply moving 
data to a single hard disk. 
– A file server can store data from dozens of various applications 

and yet have no integration between applications.

• Similarly, just as a single hard disk can be formatted so that 
it appears as several logical volumes or drives, a distributed 
physical architecture can function like a logical centralized 
database. 

• Taking this analogy one step further, there are hybrid 
database architectures that combine aspects of centralized
and distributed architectures to provide enhanced 
functionality or reduced cost. 
– For example, the Storage Area Network (SAN) architecture is 

based on a separate, dedicated, high-speed network that provides 
storage under one interface (next slide). 

15

Database Architecture

• Storage Area Network Architecture. 

• A SAN is a dedicated network that connects servers and 
SAN-compatible storage devices. 

• SAN devices can be added as needed, within the bandwidth 
limitations of the high-speed fiber network.

16

Database Architecture

• In addition to SANs, there is a variety of other 
network-dependent database architectures. 

– Network Attached Storage (NAS) is one method of 
adding storage to a networked system of workstations. 

• To users on the network, the NAS acts like a second hard 
drive on their workstations.

• A NAS device, like a file server, must be managed and 
archived separately. 

• A similar approach is to use a Storage Service 
Provider (SSP), 

– which functions as an Application Service Provider 
(ASP) with a database as the application.

17

Database Architecture

• With the increased reliance on the Internet, outsourcing 
storage through Internet-based SANs and SSPs is often 
used instead of purchasing huge servers in-house. 

• The advantage of technologies such as SANs and SSPs 
is that they can provide virtually unlimited storage as 
part of huge server farms that may be located in 
geographically disparate areas. 

• The downside is loss of control over the data and 
archiving process, as well as the risk that company 
providing the service may fail, resulting in the loss of 
valuable research and production data. 

• In addition, like NAS, SANs and SSPs only address
additional storage space, not integration.

18



Copyright 2000 N. AYDIN. All rights 

reserved. 4

Database Management Systems (DBMS) 

• the set of software tools that works with a given
architecture to create a practical database application. 

• the interface between the low level hardware commands 
and the user, 

– allowing the user to think of data management in abstract,
high-level terms using a variety of data models, instead of 
the bits and bytes on magnetic media. 

• also provides views or high-level abstract models of 
portions of the conceptual database that are optimized 
for particular users. 

• shields the user from the details of the underlying 
algorithms and data representation schemes.

19

Database Management Systems (DBMS) 

• facilitates use by maximizing the efficiency of managing data with 
techniques 
– such as dynamically configuring operations to make use of a given

hardware platform. 
• For example, a DBMS should recognize a server with large amounts of free 

RAM and make use of that RAM to speed serving the data. 

• ensures data integrity by imposing data consistency constraints, 
– such as requiring numeric data in certain fields, free text in others, and 

image data elsewhere. 
• A researcher isn't allowed to insert a numerical sequence in the space assigned 

for a nucleotide sequence, for example.

• guards against data loss. 
• For example, a DBMS should support quick recovery from hardware or 

software failures.

• adds security to a database, 
– a properly constructed DBMS allows only users with permission to 

have access to specific data, normally down to the level of individual 
files.

20

Database Management Systems (DBMS) 

• A key issue in working with a DBMS is the use of metadata.

• For example, 
– one way to think about the application of metadata is to consider 

the high level biomedical literature a means of simplifying and 
synthesizing the underlying complexity of molecular disease, 
protein structure, protein alignment, and protein and DNA 
sequence data. 

– From this perspective, data are base pair identifiers derived from 
observation, experiment, or calculation, information is data in 
context, such as the relationship of DNA sequences to protein 
structure, and metadata is a descriptive summary of disease 
presentations that provides additional context to the underlying 
information. 

• The use of metadata as an organizational theme makes the 
centralized data management approach easier to maintain 
and control.

21

Database Management Systems (DBMS) 

• Metadata, Information, 

and Data in 

Bioinformatics. 

– Metadata labels, 

simplifies, and provides 

context for underlying 

information and data.

22

Database Management Systems (DBMS) 

• DBMS can be described using three levels of abstraction: 
– the physical database, 

– the conceptual database,

– the views. 

• The point of using these abstractions is that they allow 
researchers to manipulate huge amounts of data that may be 
associated in very complex ways by shielding database 
designers and users from the underlying complexity of 
computer hardware. 

• The physical database is the low-level data and framework 
that is defined in terms of media, bits, and bytes. 

• This low-level abstraction is most useful for anyone who has 
to deal directly with data and files.

23

Database Management Systems (DBMS) 

• The conceptual database is concerned with the 
most appropriate way to represent the data. 
– This level of abstraction more closely approximates the 

needs of database designers who deal with DBMS data 
representation and efficiency issues such as the data-
dictionary design. 

• The conceptual database is defined in terms of
data structures (an organizational scheme, such as 
a record) and the properties of the data to be
stored and manipulated. 
– The most common methods of representing the 

conceptual database are the entity-relationship model 
and the data model.

24



Copyright 2000 N. AYDIN. All rights 

reserved. 5

Database Management Systems (DBMS) 

• The entity-relationship model focuses on entities and their 
interrelationships in a way that parallels how we categorize the 
world. 
– For example, common database entities in bioinformatics are the human 

being, protein sequences, nucleotide sequences, and disease processes 
about which data are recorded. 

– Similarly, every entity has some basic attribute, such as name, size, 
weight (a particular protein may have a known weight), or charge. 

• Relationships within the model are classified according to how data 
are associated with each other, such as 
– one-to-one, 

– one-to-many, 

– many-to-many. 
• For example, a length of DNA may be translated to one mRNA sequence (a 

one-to-one relationship) and a gene may give rise to several proteins (a one-to-
many relationship). 

– These and other relationships can be used to maintain the integrity of 
data.

25

Database Management Systems (DBMS) 

• The conceptual database can also be represented as a 
data model. 

• Data models provide a means of representing and 
manipulating large amounts of data. 

• A data model consists of two components
– a mathematical notation for expressing data and 

relationships, 

– operations on the data that serve to express manipulations 
of the data. 

• data models may also contain a collection of integrity 
rules that define valid data relationships. 

• These various components work together to provide a 
formal means of representing and manipulating data.

26

Database Management Systems (DBMS) 

• The most common data models supported by DBMS products are flat, 

network, hierarchical, relational, object-oriented, and deductive data models, 

27

Database Management Systems (DBMS) 

• The flat data model is simply a table without any embedded structure 
information to govern the relationships between records. 

• As a result, a flat file database can only work with one table or file at
a time. 
– Strictly speaking, a flat file doesn't really fit the criteria for a data model 

because it lacks an embedded structure. 

– However, the lack of an embedded structure is one reason for the 
popularity of the flat file database in bioinformatics, especially in 
capturing sequence data. 
• A sequence of a few dozen characters may be followed by a sequence of 

thousands of characters, with no known relationship between the sequences, 
other than perhaps the tissue sample or sequence run. 

• As such, a separate flat file can be used to efficiently store the sequence data 
from each sample or run. 

• In order to make the management of large amounts of sequence or 
other data more tenable, a model with an embedded structure is 
required.

28

Database Management Systems (DBMS) 

• The relational model is based on the concept of a 

data table 

– in which every row is unique. 

• The records or rows in the table are called tuples; 

– the fields or columns are variably referred to attributes, 

predicates, or classes. 

• Database queries are performed with the select

operation, 

– which asks for all tuples in a certain relation that meet 

a certain criterion. 

29

Database Management Systems (DBMS) 

• To connect the data of two or more relations, an 
operation called a join is performed. 

• A record is retrieved from the database by means
of a key, or label, 
– that may consist of a field, part of a field, or a 

combination of several fields.

• A useful feature of the relational model is that 
records or rows from different files can be 
combined as long as the different files have one 
field in common.
– The price paid for this flexibility is extended access 

time.

30



Copyright 2000 N. AYDIN. All rights 

reserved. 6

Database Management Systems (DBMS) 

• In the hierarchical model, permanent hierarchical connections 

are defined when the database is created. 

• Within the hierarchical database model, the smallest data entity 

is the record. 

– Unlike records in a relational model, records within a hierarchical 

database are not necessarily broken up into fields. 

– In addition, connections within the hierarchical model do not depend on 

the data. 

• The hierarchical links, sometimes called the structure of the 

data, can best be thought of as forming an inverted tree, 

– with the parent file at the top and children files below. 

• The relationship between parent and children is a one-to-many 

connection, in that one parent may produce multiple children.

31

Database Management Systems (DBMS) 

• Because of the storage inefficiency of the hierarchical 
model for some types of data, the network model was 
developed in the late 1960s. 
– The network model is more flexible than the hierarchical 

one because multiple connections can be established 
between files. 

– These multiple connections enable the user to gain access to 
a particular file more effectively, 
• without traversing the entire hierarchy above that file. 

• The network model is based on a many-to-one 
relationship. 
– The network model is significant in bioinformatics in that it 

may play a significant role in the architecture of the Great 
Global Grid and other Web-based computing initiatives.

32

Database Management Systems (DBMS) 

• In the object-oriented model, complex data 

structures are represented by composite objects, 

– which are objects that contain other objects. 

• These objects may contain other objects in turn, 

– allowing structures to be nested to any degree. 

• This metaphor is especially appealing to those 

who work with bioinformatics data 

– because this nesting of complexity complements the 

natural structure of genomic data (next slide).

33

Database Management Systems (DBMS) 

• Object-Oriented Data Representation. 

• The OO data model is natural for hiding the complexity of genomic data.

34

Database Management Systems (DBMS) 

• The OO model combines the natural structure of the 
hierarchical model with the flexibility of the relational model. 
– The major advantage of the OO model is that it can be used to represent 

complex genomic information, including non-record-oriented data, 

• such as textual sequence data and images.

– With an OO DBMS, it's possible to use arbitrary data types, and 
complex relationships can be queried without having to create resource-
intensive joins between tables. 

• The OO model is considered optimum for handling genomic 
data, 
– because it allows combinations of data to be treated as single entities. 

• Instead of thinking about a gene with exons, introns, mRNA, nucleotide 
sequences, associated proteins, and their 3D shapes as a separate sound file, a 
separate video file, and a separate text document, researchers can simply work 
with the gene object.

35

Database Management Systems (DBMS) 

• Although the OO approach holds great promise in 

bioinformatics, it still lags far behind relational 

technology in the global database market. 

• In addition, because of the flexibility and power of the 

relational design, many of the OO DBMS products on 

the market are based on extensions of commercial 

relational database packages. 

• Because of the added overhead, the performance of 

these hybrid object-oriented systems is necessarily 

less than that of either a pure relational or an OO

system.

36



Copyright 2000 N. AYDIN. All rights 

reserved. 7

Database Management Systems (DBMS) 

• The deductive model is an extension of the relational database 
with a logic programming interface based on the principles of 
logic programming. 
– The logic programming interface is composed of rules, facts, and 

queries, using the relational database infrastructure to contain the facts.

• The database is termed deductive because from the set of rules 
and the facts it is possible to derive new facts not contained in 
the original set of facts. 

• Unlike logic programming languages such as PROLOG, which 
search for a single answer to a query using a top-down search, 
deductive databases search from bottom-up, starting from the 
facts to find all answers to a query.

• For example, using the format "patient (Patient ID, Sex, Mother Carrier, Father 
Trait Trait)," data in the deductive database describing a sex-linked recessive 
gene such as red-green color blindness could be represented in a relational table 
as in the next slide.

37

Database Management Systems (DBMS) 

• Data for a Deductive Database (example)

Patient ID Sex Mother Carrier Father Trait

001 Male Yes Yes

002 Female Yes No

003 Male No Yes

004 Female No Yes

005 Male Yes No

006 Male No No

007 Female Yes Yes

• A relevant rule in a deductive database would be:

– Potential Carrier (Sex = Female) AND (Mother Carrier = Yes)

38

Database Management Systems (DBMS) 

• The patient is a potential carrier if the sex of the patient is female 
and the patient's mother is a known carrier. 

• Males with the gene exhibit the disease, or red-green color blindness. 
However, because the gene involved in color blindness is maternal, 
then the state of the father's color acuity is irrelevant.

• The query:

Patient ID (X, potential carrier)

• would return the list of patients that should be tested for the genetic 
anomaly, 
– in this case Patient 002 and Patient 007 from the Table in previous slide. 

• Despite the obvious uses of deductive databases in bioinformatics, 
most deductive databases are either academic projects or internally 
developed and have yet to enter the ranks of commercial relational 
database products.

39

Database Management Systems (DBMS) 

• The semi-structured model is a hybrid between a flat file and a 
hierarchical model, typically written as a text document in 
XML. 

• The major advantage of the semi-structured model is the ability 
to revise the structure to match new requirements on the-fly. 
– However, there is a likely repetition of data.

• Regardless of the model, at the highest level of abstraction of 
the DBMS is the view
– views are abstract models of portions of the conceptual database. 

– Each view describes some of the database entities, attributes, and 
relationships between entities in a format convenient for a specific class 
of user or application. 
• For example, researchers in a pharmacogenomic firm working with an

application to report sequencing results do not need to know about patient 
findings.

• The view abstraction has application in user interface design.

40

Interfaces

• Databases communicate with devices and users 
through external and user interfaces. 

• Getting data into a database can come about 
programmatically as in the creation of a data 
warehouse or data mart through processing an 
existing database. 

• More often, the data are derived from external 
sources, 

– such as user input through keyboard activity, or 
devices connected to a computer or network.

41

Interfaces

• Common sources of input data include mouse and 
keyboard activity, voice recognition, bar-code
readers, wireless devices, and RF-ID tags. 

• Electronic data recorders, sequencing machines, 
and a variety of test equipment can also provide 
data for inclusion in the database, according to 
device communications standards. 

• A variety of standards, such as the IEEE 1073 
Point of Care Medical Device Communications 
standard, define the format, speed, and protocol of 
communications between workstations and 
external devices (next slide).

42



Copyright 2000 N. AYDIN. All rights 

reserved. 8

Interfaces

• External Interfaces

• Databases communicate with equipment and users 
through a variety of external interfaces.

43

Interfaces

• Getting data into a database is of little value unless the 
data can also be retrieved. 

• The most common methods for extracting data from a 
database are based on the Internet or an intranet and 
languages such as the Common Gateway Interface 
(CGI), the Hypertext Processor (PHP), and Java. 

• In each case, the user issues a command from the 
workstation that is interpreted in the server.

• Results of the database query are then processed by 
language system and HTML is sent to the user's 
browser. 
– In this scenario, the computational overhead is borne by the 

server.

44

Interfaces

• Regardless of the language used to extract data from a 
database, the data have to be displayed on the user's 
monitor in an appropriate, understandable, and 
attractive way. 

• This component of the user interface is most easily 
handled with a separate style sheet that defines the 
characteristics for the display device. 

• In this paradigm, data to be displayed are first extracted 
from the database and coded in XML, a markup 
language for the Web that classifies content, but doesn't 
define how it should be displayed. 

• A separate style sheet, in the form of an Extensible 
Stylesheet Language (XSL) document, specifies how 
the data are to be displayed in the user's browser.

45

Implementation

• Even with all of the public-domain databases 
accessible through the Internet, there will be 
research tasks that necessitate using a local 
database. 

• The reasons vary from a need to collect, analyze, 
and publish sequence information inside a small 
laboratory to establishing a massive data 
warehouse as part of a pharmacogenomic R&D 
effort. 

• In either case, the general issues and challenges 
are the same (next slide). 

46

Bioinformatics Database Implementation Issues

Issue Description

Accessibility Ease of use, support for multiple mental models 

and database abstractions

Archiving Support for the archival process, including software 

and hardware, and offsite storage facilities

Capacity Local and remote data storage capacity, including 

space for expansion of the database

Connectivity Connectivity through local and wide area networks, 

intranets, and the Internet

Control Internal vs. third-party control of data, which may 

be an issue with storage service providers and other 

Internet-based commercial storage options

Cost Initial, operating, and indirect (need to upgrade 

current network hardware and software, purchase 

additional peripherals) costs

47

Bioinformatics Database Implementation Issues

Issue Description

Data Dictionary Design, implementation, and maintenance of the 

data dictionary

Data Formats Data formats supported by the database

Data Input Hardware, software, and processes involved in 

feeding data into the database, from keyboard and 

voice recognition to direct instrument feed and the 

Internet

Data Model Flat files, relational, hierarchical, network, object-

oriented, or semistructured

Dependencies Dependence on primary databases for populating 

the database, especially regarding update frequency 

provision for validating data to minimize 

propagation of errors

48



Copyright 2000 N. AYDIN. All rights 

reserved. 9

Bioinformatics Database Implementation Issues

Issue Description

DBMS Software Robustness, scalability, performance, cost, vendor 

reputation, support available (if open source)

Disaster Recovery Procedural, hardware, and software provisions for 

disaster recovery, including error recovery 

mechanisms

Export/Import Capabilities Provisions for importing and exporting data to and 

from different file formats

Hardware Requirements Hard disks, controllers, backup hardware, 

production and staging servers for large database 

projects

Indexing Indexing methodology, including selection and use 

of the most appropriate controlled vocabulary

Integration Integration with other databases

49

Bioinformatics Database Implementation Issues

Issue Description

Intellectual Property Ownership of sequence data, images, and other data 

stored in and communicated through the database

Interfaces Connectivity with other databases and applications

Legacy Systems How to deal with legacy data and databases

Licensing For vendor-supplied database systems, the most 

appropriate licensing arrangement

Life Span The MTBF for the hardware as well as the likely 

useful life of the data

Load Testing The maximum number of simultaneous users that 

can be supported by the DBMS

Maintenance Cost and resource requirements

Media The most appropriate disk, tape cartridges, and CD-

ROM media

50

Bioinformatics Database Implementation Issues

Issue Description

Normalization Avoiding errors by representing data one way, one 

time, and in one place

Operating Environment Ensuring proper power and operating temperature 

and humidity

Operating System UNIX, Linux, Windows, MacOS, or 

mini/mainframe OS

Output Format of database output

Performance Access time and data throughput

Privacy Provision for preserving confidentiality of data

Query Language Proprietary or standard query language

Resource Requirements Hardware, software, and operating and 

development personnel

51

Bioinformatics Database Implementation Issues

Issue Description

Redundancy Hot backups, shadowing, and RAID systems

Scalability Ability to handle greater data volume with added 

hardware and/or software upgrades

Security Limits on user access, from username-password 

combinations to biometrics, as well as encryption 

of sessions

Stand-Alone vs. Network And multi- vs. single user

Standards From media format to operating system, query 

language, and data models

Utilities Availability of software tools for data recovery

Vendor Viability Commercial viability of the hardware and software 

vendors supplying database tools and platform

52

Implementation

• For example, a milestone in designing and implementing a 
database is defining the type of data to be stored. 

• This decision will then imply the most appropriate data 
model and type of DBMS to employ. 
– If the data are nucleotide sequences, then a reasonable choice 

would be a semi-structured database based on XML-tagged text 
files. 

– However, if the data are images of 3D protein structures and
keywords, then either an object-oriented or a relational database 
would likely be more appropriate.

• Even though the representation of rows and columns may 
not be optimum for mapping protein structures onto a 
database, factors such as support from a commercial 
relational database vendor and support might dictate use of a 
relational product.

53

Implementation

• Consider the process involved in creating a central 
data warehouse of a scale appropriate for the
pharmacogenomic laboratory. 

• The six-stage process usually involves the
following phases: 

– planning; 

– data consolidation; 

– data transformation; 

– selective archiving;

– data distribution; 

– ongoing maintenance.

54



Copyright 2000 N. AYDIN. All rights 

reserved. 10

Implementation

• In the planning stage, representatives from 
administration, R&D, and information technology 
departments decide exactly what to include in the 
data warehouse.
– Ideally, the data warehouse content should reflect the

questions likely to be asked.

• In the consolidation phase, the selected data from 
each application database are restructured. 
– This typically involves adding fields and relations to 

reflect how the data will be used in the data warehouse.

– The goal in the consolidation phase is to provide an 
efficient framework that supports queries likely to be 
asked, as determined in the planning stage.

55

Implementation

• The data transformation stage of data 

warehouse development involves transforming 

the consolidated data into a more useful form 

through summarization and packaging. 

– In summarization, the data are 

• selected, aggregated, and grouped into views more 

convenient and useful to users.

– Packaging involves using the summarized data as 

the basis of graphical presentations, animations,

and charts.

56

Implementation

• Selective archiving involves moving older or infrequently 
accessed data to tape, optical, or other longterm storage 
media. 
– Archiving saves money by sparing expensive magnetic, high-

speed storage, and minimizes the performance hit imposed by 
locally storing data that is no longer necessary for outcomes 
analysis.

• The distribution phase makes data contained in the data 
warehouse available to users. 
– Providing for distribution encompasses front-end development so 

that users can easily and intuitively request and receive data, 
whether in real-time or in the form of routine reports. 

– Push technologies, including email alerts, can be used to 
distribute data to specific users. 

– The Web is also a major portal for accessing the data.

57

Implementation

• Maintenance is the final, ongoing stage of data warehouse 
development. 

• However, creating a data warehouse involves much more than 
simply designing and implementing a database. 

• Even if there is a process in place for extracting, cleaning, 
transporting, and loading data from sequence machines,
bibliographic reference databases, and other molecular biology 
applications, and distribution tools are both powerful and 
intuitive, the data warehouse may not be sustainable in the 
long-term. 
– For example, the process of extracting, cleaning, and reloading data can 

be prohibitively expensive and time-consuming. 

• A sustainable data warehouse provides a real benefit to users to 
the degree that not only is the return worth the original 
development, 
– but that it is valuable enough to warrant continual redesigning and 

evaluation to meet changing demands.

58

Infrastructure

• From a hardware perspective, implementing a database 
requires more than servers, large hard drives, perhaps a 
network and the associated cables and electronics. 

• Power conditioners and uninterruptible power supplies 
are needed to protect sensitive equipment and the data 
they contain from power surges and sudden, unplanned 
power outages. 

• Providing a secure environment for data includes the 
usual use of username and passwords to protect 
accounts. 

• However, for higher levels of assurance against data 
theft or manipulation, secure ID cards, dongles, and 
biometrics (such as voice, fingerprint, and retinal 
recognition) may be appropriate.

59


