
1

Mesleki İngilizce - Technical English

II

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

1

• Notes:

– In the slides, 

• texts enclosed by curly parenthesis, {…}, are examples.

• texts enclosed by square parenthesis, […], are 

explanations related to examples.

2

Anatomy of the Linux Kernel

• Learning Objectives

– to acquire basic vocabulary related to operating 

systems

– to understand the basics of Linux kernel 

architecture

• Sub-areas covered

– Linux kernel and its subsystems

3

Anatomy of the Linux Kernel

• Keywords

– kernel 

• the central component of most computer operating 
systems (OS). 

• Its functions include managing the system’s resources 
– the communication between hardware and software 

components

– Linux kernel 

• Unix-like operating system kernel

– VFS (Virtual file system) 

• an abstraction layer on top of a more concrete file 
system

4

Anatomy of the Linux Kernel

• Keywords

– GNU

• a computer operating system composed entirely of free 

software, 

– initiated in 1984 by Richard Stallman

– [GNU is a recursive acronym for "GNU's Not Unix!", chosen 

because GNU's design is Unix-like, but differs from Unix by being 

free software and containing no Unix code. The GNU project 

includes an operating system kernel, GNU HURD, which was the 

original focus of the Free Software Foundation (FSF).]

– GPL

• a widely used free software license

– originally written by Richard Stallman for the GNU project

5

Anatomy of the Linux Kernel

• Keywords

– Minix

• free/open source, Unix-like operating system (OS) based on a 
microkernel architecture

– Unix 

• a computer operating system originally developed in 1969 by 
a group of AT&T employees at Bell Labs including Ken 
Thompson, Dennis Ritchie and Douglas Ilroy

– operating system

• the software that 

– manages the sharing of the resources of a computer 

– provides programmers with an interface used to access those
resources

6

mailto:naydin@yildiz.edu.tr


2

Anatomy of the Linux Kernel

• Keywords

– buffer

• a region of memory used to temporarily hold data while 

it is being moved from one place to another

– buffer cache

• a collection of data duplicating original values stored 

elsewhere or computed earlier, 

– where the original data is expensive to fetch (owing to longer

access time) or to compute, compared to the cost of reading the 

cache

7

Anatomy of the Linux Kernel

• Reading text

• Pre-reading questions

– What are the most popular operating systems?

– What are the advantages of Linux?

– What are the disadvantages of Linux?

8

Anatomy of the Linux Kernel

• The Linux® kernel 
– the core of a large and complex operating system

• over six million lines of code

– well organized in terms of subsystems and layers. 

– a monolithic Unix-like computer OS kernel. 

– The Linux family of OSs is based on this kernel

• Developer
– Linus Torvalds and thousands of collaborators

• Written in
– C and assembly

• Latest release
– 4.13.4 (28 September 2017)

• Initial release
– 0.01 (17 September 1991)

9

What is an Operating System

• You need two types of software in order to use 
your computer 

– applications 

• the programs you use to do tasks, such as write a document, 
surf the web, or play games

– system software

• runs the computer system for you, 

– an operating system

• There are many different operating systems, 

– but they all have a similar architecture (or structure). 

– That is because they must all overcome the same 
problems and perform the same basic functions. 

10

What is an Operating System

• An operating system is a program that acts as an interface 

between the user and the computer hardware and controls the 

execution of all kinds of programs.

11

What is an Operating System

• An operating system must be able to:

– Manage system resources

• CPU scheduling

• Process management

• Memory management

• Input/Output device management

• Storage device management (hard disks, CD/DVD 

drives, etc)

• File System Management

– Simplify the development and use of applications

12

../Reading/R-03.pdf


3

What is an Operating System

• Other Important Activities that an OS performs 
– Security

• By means of password and similar other techniques, it prevents 
unauthorized access to programs and data.

– Control over system performance
• Recording delays between request for a service and response from 

the system.

– Job accounting
• Keeping track of time and resources used by various jobs and users.

– Error detecting aids
• Production of dumps, traces, error messages, and other debugging 

and error detecting aids.

– Coordination between other softwares and users
• Coordination and assignment of compilers, interpreters, assemblers 

and other software to the various users of the computer systems.

13

What is an Operating System

• Types of OSs

– Batch operating system

– Time-sharing operating systems

– Distributed operating System

– Network operating System

– Real Time operating System

• Hard real-time systems

• Soft real-time systems

• Some popular Operating Systems 

– Unix, Linux, Windows, DOS, OS X, VMS, OS/400, 
AIX, z/OS, etc.

14

Linux history

• Linux is arguably the most popular open 

source operating system

– Its history is actually quite short considering the 

timeline of OSs

• In the early days of computing, programmers 

developed on the bare hardware in the 

hardware’s language. 

– The lack of an operating system meant that only 

one application (and one user) could use the large 

and expensive device at a time. 

15

Linux history

• Early operating systems

– developed in the 1950s to provide a simpler 

development experience. 

• Examples include 

– the General Motors Operating System (GMOS) 

• developed for the IBM 701 

– the FORTRAN Monitor System (FMS) 

• developed by North American Aviation for the IBM 

709.

16

Linux history

• In the 1960s, the MIT and a host of companies

developed an experimental operating system 

called Multics for the GE-645 
• [Multics: Multiplexed Information and Computing Service]

• In 1970, one of the developers of this operating 

system, AT&T, left Multics and developed their 

own operating system called Unics
• [Unics: Uniplexed Information and Computing Service]

– Along with this operating system was the C language, 

• for which C was developed and then rewritten to make 

operating system development portable.

17

Linux history

• Twenty years later, Andrew Tanenbaum 
created a microkernel version of UNIX®,

– called MINIX (for minimal UNIX), that ran on 
small personal computers. 

• This open source operating system inspired 
Linus Torvalds’ initial development of Linux 
in the early 1990s.

• Linux quickly evolved from a single-person 
project to a world-wide development project 
involving thousands of developers. 

18



4

Linux history

• One of the most important decisions for Linux 

was its adoption of the GNU General Public 

License (GPL). 

– Under the GPL, the Linux kernel was protected 

from commercial exploitation, 

– It also benefited from the user-space development 

of the GNU project. 

• This allowed useful applications such as the GNU

Compiler Collection (GCC) and various shell support.

19

Linux history

• Linux has its roots in a student project. In 1992, an undergraduate called Linus 
Torvalds was studying computer science in Helsinki, Finland. Like most computer 
science courses, a big component of it was taught on (and about) Unix. Unix was the 
wonder operating system of the 1970s and 1980s: both a textbook example of the 
principles of operating system design, and sufficiently robust to be the standard OS 
in engineering and scientific computing. But Unix was a commercial product 
(licensed by AT&T to a number of resellers), and cost more than a student could pay.

• Annoyed by the shortcomings of Minix (a compact Unix clone written as a teaching 
aid by Professor Andy Tannenbaum) Linus set out to write his own 'kernel' — the 
core of an operating system that handles memory allocation, talks to hardware 
devices, and makes sure everything keeps running. 

• He used the GNU programming tools developed by Richard Stallman's Free 
Software Foundation, an organisation of volunteers dedicated to fulfilling Stallman's 
ideal of making good software that anyone could use without paying. When he'd
written a basic kernel, he released the source code to the Linux kernel on the 
Internet.

• Source code is important. It's the original from which compiled programs are 
generated. If you don't have the source code to a program, you can't modify it to fix 
bugs or add new features. Most software companies won't sell you their source code, 
or will only do so for an eyewatering price, because they believe that if they make it 
available it will destroy their revenue stream.

20

Linux history

• What happened next was astounding, from the conventional, commercial software industry point of 

view — and utterly predictable to anyone who knew about the Free Software Foundation. 

Programmers (mostly academics and students) began using Linux. They found that it didn't do things 

they wanted it to do -so they fixed it. And where they improved it, they sent the improvements to 

Linus, who rolled them into the kernel. And Linux began to grow.

• There's a term for this model of software development; it's called Open Source (see www. opensource. 

org/ for more information). Anyone can have the source code - it's free (in the sense of free speech, 

not free beer). Anyone can contribute to it. If you use it heavily you may want to extend or develop or 

fix bugs in it — and it is so easy to give your fixes back to the community that most people do so.

• An operating system kernel on its own isn't a lot of use; but Linux was purposefully designed as a 

near-clone of Unix, and there is a lot of software out there that is free and was designed to compile on 

Linux. By about 1992, the first 'distributions' appeared.

• A distribution is the Linux-user term for a complete operating system kit, complete with the utilities 

and applications you need to make it do useful things — command interpreters, programming tools, 

text editors, typesetting tools, and graphical user interfaces based on the X windowing system. X is a 

standard in academic and scientific computing, but not hitherto common on PCs; it's a complex

distributed windowing system on which people implement graphical interfaces like KDE and Gnome.

• As more and more people got to know about Linux, some of them began to port the Linux kernel to 

run on non-standard computers. Because it's free, Linux is now the most widelyported operating 

system there is.

21

Introduction to the Linux kernel

• GNU/Linux OS architecture can be thought as an 
operating system from two levels:

• At the top is the user (or application) space. 
– This is where the user applications are executed. 

• Below the user space is the kernel space
– Here, the Linux kernel exists.

• There is also the GNU C Library (glibc), providing
– the system call interface that connects to the kernel 

– the mechanism to transition between the user-space
application and the kernel. 

• This is important because the kernel and user application
occupy different protected address spaces. 

• While each user-space process occupies its own virtual address 
space, the kernel occupies a single address space. 

22

Properties of the Linux kernel

• The Linux kernel can be further divided into three 
gross levels:
– At the top is the system call interface (SCI), 

• which implements the basic functions such as read and write. 

– Below the system call interface is the kernel code, 
• which can be more accurately defined as the architecture-

independent kernel code. 

• This code is common to all of the processor architectures
supported by Linux. 

– Below this is the architecture-dependent code, 
• which forms what is more commonly called a BSP (Board 

Support Package). 

• This code serves as the processor and platform-specific code 
for the given architecture.

23

Properties of the Linux kernel

• The Linux kernel implements a number of 
important architectural attributes. 

• At a high level, and at lower levels, the kernel is 
layered into a number of distinct subsystems.

• Linux can also be considered monolithic because 
it lumps all of the basic services into the kernel. 
– This differs from a microkernel architecture, where the 

kernel provides basic services such as communication, 
I/O, memory and process management, and more 
specific services are plugged in to the microkernel 
layer. 

• Each has its own advantages.

24



5

Properties of the Linux kernel

• Over time, the Linux kernel has become efficient 
in terms of both memory and CPU usage, as well 
as extremely stable. 

• But the most interesting aspect of Linux, given its
size and complexity, is its portability. 

– Linux can be compiled to run on different processors 
and platforms with different architectural constraints 
and needs. 

• {One example is the ability of Linux to run on a process with 
a memory management unit (MMU), as well as those that 
provide no MMU. 

• The uClinux port of the Linux kernel provides for non-MMU 
support.}

25

Major subsystems of the Linux kernel

• System call interface (SCI)

– a thin layer that provides the means to perform 

function calls from user space into the kernel. 

– can be architecture dependent, 

• even within the same processor family. 

– The SCI is actually an interesting function-call 

multiplexing and demultiplexing service. 

– You can find the SCI implementation in 

./linux/kernel, as well as architecture-dependent 

portions in ./linux/arch. 

26

Major subsystems of the Linux kernel

• Process management

– focused on the execution of processes. 

– In the kernel, these are called threads and represent an 
individual virtualization of the processor (thread code, data, 
stack, and CPU registers). 

– In user space, the term process is typically used, though the 
Linux implementation does not separate the two concepts. 

– The kernel provides an application program interface (API) 
through the SCI

• to create a new process (fork, exec, or Portable Operating System 
Interface [POSIX] functions), 

• to stop a process (kill, exit), 

• to communicate and synchronize between them (signal, or POSIX 
mechanisms).

27

Major subsystems of the Linux kernel

– Also in process management there is a need to share 
the CPU between the active threads. 

– The kernel implements a novel scheduling algorithm 
that operates in constant time, 

• regardless of the number of threads vying for the CPU. 

– This is called the O(1) scheduler, denoting that the 
same amount of time is taken to schedule one thread as
it is to schedule many. 

– The O(1) scheduler also supports multiple processors 
(called Symmetric MultiProcessing, or SMP). 

– You can find the process management sources in 
./linux/kernel and architecture-dependent sources in 
./linux/arch). 

28

Major subsystems of the Linux kernel

• Memory management

– Another important resource that is managed by the 

kernel is memory. 

– For efficiency, given the way that the hardware 

manages virtual memory, memory is managed in

what are called pages,

• 4KB in size for most architectures.

– Linux includes the means to manage the available 

memory, as well as the hardware mechanisms for 

physical and virtual mappings.

29

Major subsystems of the Linux kernel

– But memory management is much more than 
managing 4KB buffers. 

– Linux provides abstractions over 4KB buffers, such 
as the slab allocator. 

• [Slab allocation: a memory management mechanism 
intended for the efficient memory]

– This memory management scheme uses 4KB 
buffers as its base, but then allocates structures 
from within, keeping track of which pages are full, 
partially used, and empty. 

– This allows the scheme to dynamically grow and 
shrink based on the needs of the greater system.

30



6

Major subsystems of the Linux kernel

– In supporting multiple users of memory, there are 

times when the available memory can be 

exhausted. 

– For this reason, pages can be moved out of 

memory and onto the disk. 

– This process is called swapping because the pages 

are swapped from memory onto the hard disk. 

– You can find the memory management sources in 

./linux/mm..

31

Major subsystems of the Linux kernel

• Virtual file system (VFS)
– provides a common interface abstraction for file 

systems. 

– provides a switching layer between the SCI and the file 
systems supported by the kernel. 

– At the top of the VFS is a common API abstraction of 
functions such as open, close, read, and write. 

– At the bottom of the VFS are the file system 
abstractions that define how the upper-layer functions 
are implemented. 

– These are plug-ins for the given file system (of which 
over 50 exist). 

– You can find the file system sources in ./linux/fs.

32

Major subsystems of the Linux kernel

– Below the file system layer is the buffer cache, 

• which provides a common set of functions to the file 

system layer (independent of any particular file system). 

– This caching layer optimizes access to the physical 

devices by keeping data around for a short time 

• or speculatively read ahead so that the data is available 

when needed. 

– Below the buffer cache are the device drivers, 

• which implement the interface for the particular physical

device.

33

Major subsystems of the Linux kernel

• Network stack
– The network stack, by design, follows a layered architecture 

modeled after the protocols themselves. 
• Recall that the Internet Protocol (IP) is the core network layer 

protocol that sits below the transport protocol (most commonly the 
Transmission Control Protocol, or TCP). 

– Above TCP is the sockets layer, which is invoked through 
the SCI.

• The sockets layer is the standard API to the networking subsystem 
and provides a user interface to a variety of networking protocols. 

• From raw frame access to IP protocol data units (PDUs) and up to 
TCP and the User Datagram Protocol (UDP), the sockets layer 
provides a standardized way to manage connections and move data 
between endpoints. 

– You can find the networking sources in the kernel at 
./linux/net.

34

Major subsystems of the Linux kernel

• Device drivers

– The vast majority of the source code in the Linux 

kernel exists in device drivers that make a 

particular hardware device usable. 

– The Linux source tree provides a drivers

subdirectory that is further divided by the various 

devices that are supported, such as

• Bluetooth, I2C, serial, and so on. 

– You can find the device driver sources in 

./linux/drivers.

35

Major subsystems of the Linux kernel

• Architecture-dependent code
– While much of Linux is independent of the architecture on 

which it runs, there are elements that must consider the 
architecture for normal operation and for efficiency.

– The /linux/arch subdirectory defines the architecture-
dependent portion of the kernel source contained in a 
number of subdirectories that are specific to the architecture
(collectively forming the BSP). 

– For a typical desktop, the i386 directory is used. 

– Each architecture subdirectory contains a number of other 
subdirectories that focus on a particular aspect of the kernel, 
such as boot, kernel, memory management, and others.

– You can find the architecture-dependent code in 
./linux/arch.

36



7

Interesting features of the Linux kernel

• Linux, being a production operating system and 
open source, is a great test bed for new protocols 
and advancements of those protocols. 

• Linux supports a large number of networking 
protocols, 
– including the typical TCP/IP, and also extension for 

high-speed networking (greater than 1 Gigabit Ethernet 
[GbE] and 10 GbE). 

• Linux also supports protocols such as the Stream 
Control Transmission Protocol (SCTP), 
– which provides many advanced features above TCP (as 

a replacement transport level protocol).

37

Interesting features of the Linux kernel

• Linux is also a dynamic kernel, supporting the addition and removal 
of software components on the fly. 
– These are called dynamically loadable kernel modules 

– They can be inserted at boot when they’re needed (when a particular 
device is found requiring the module) or at any time by the user.

• A recent advancement of Linux is its use as an operating system for 
other operating systems (called a hypervisor). 

• Recently, a modification to the kernel was made called the Kernel-
based Virtual Machine (KVM). 
– This modification enabled a new interface to user space that allows 

other operating systems to run above the KVM-enabled kernel. 

• In addition to running another instance of Linux, Microsoft® 
Windows® can also be virtualized. 
– The only constraint is that the underlying processor must support the 

new virtualization instructions.

38

Some resouces

• The GNU site (http://www.gnu.org/licenses) describes the 
GNU GPL that covers the Linux kernel and most useful 
applications provided with it. Also described is a less 
restrictive form of the GPL called the Lesser GPL (LGPL).

• UNIX (http://en.wikipedia.org/wiki/Unics), MINIX 
(http://en.wikipedia.org/wiki/Minix) and Linux 
(http://en.wikipedia.org/wiki/Linux) are covered in 
Wikipedia, along with a detailed family tree of the operating 
systems.

• The GNU C Library (http://www.gnu.org/software/libc/), or 
glibc, is the implementation of the standard C library. It’s 
used in the GNU/Linux operating system, as well as the
GNU/Hurd (http://directory.fsf.org/hurd.html) microkernel 
operating system.

39

Some resouces

• uClinux (http://www.uclinux.org/) is a port of the Linux 
kernel that can execute on systems that lack an MMU. This 
allows the Linux kernel to run on very small embedded 
platforms, such as the Motorola DragonBall processor used 
in the PalmPilot Personal Digital Assistants (PDAs).

• “Kernel command using Linux system calls” 
(http://www.ibm.com/developerworks/linux/library/l-
system-calls/ ) (developerWorks, March 2007) covers the 
SCI, which is an important layer in the Linux kernel, with 
user-space support from glibc that enables function calls 
between user space and the kernel.

• “Inside the Linux scheduler” 
(http://www.ibm.com/developerworks/linux/library/lschedul
er/) (developerWorks, June 2006) explores the new O(1) 
scheduler introduced in Linux 2.6 that is efficient, scales 
with a large number of processes (threads), and takes 
advantage of SMP systems.

40

Some resouces

• “Access the Linux kernel using the /proc filesystem” 
(http://www.ibm.com/developerworks/linux/library/l-
proc.html) (developerWorks, March 2006) looks at the
/proc file system, which is a virtual file system that 
provides a novel way for userspace applications to 
communicate with the kernel. This article demonstrates 
/proc, as well as loadable kernel modules.

• “Server clinic: Put virtual filesystems to work” 
(http://www.ibm.com/developerworks/linux/library/l-
sc12.html ) (developerWorks, April 2003) delves into 
the VFS layer that allows Linux to support a variety of 
different file systems through a common interface. This 
same interface is also used for other types of devices,
such as sockets.

41

Some resouces

• “Inside the Linux boot process” 
(http://www.ibm.com/developerworks/linux/library/l-linuxboot/index.html) 
(developerWorks, May 2006) examines the Linux boot process, which takes 
care of bringing up a Linux system and is the same basic process whether 
you’re booting from a hard disk, floppy, USB memory stick, or over the
network.

• “Linux initial RAM disk (initrd) overview” 
(http://www.ibm.com/developerworks/linux/library/l-initrd.html) 
(developerWorks, July 2006) inspects the initial RAM disk, which isolates 
the boot process from the physical medium from which it’s booting.

• “Better networking with SCTP” 
(http://www.ibm.com/developerworks/linux/library/l-sctp/) 
(developerWorks, February 2006) covers one of the most interesting
networking protocols, Stream Control Transmission Protocol, which 
operates like TCP but adds a number of useful features such as messaging, 
multi-homing, and multi-streaming. Linux, like BSD, is a great operating 
system if you’re interested in networking protocols.

42



8

Some resouces

• “Anatomy of the Linux slab allocator” 
(http://www.ibm.com/developerworks/linux/library/l-linux-slab-
allocator/) (developerWorks, May 2007) covers one of the most
interesting aspects of memory management in Linux, the slab 
allocator. This mechanism originated in SunOS, but it’s found a 
friendly home inside the Linux kernel.

• “Virtual Linux” 
(http://www.ibm.com/developerworks/linux/library/l-linuxvirt/)
(developerWorks, December 2006) shows how Linux can take 
advantage of processors with virtualization capabilities.

• “Linux and symmetric multiprocessing” 
(http://www.ibm.com/developerworks/library/l-linux-smp/) 
(developerWorks, March 2007) discusses how Linux can also take 
advantage of processors that offer chip-level multiprocessing.

43

Some resouces

• “Discover the Linux Kernel Virtual Machine” 
(http://www.ibm.com/developerworks/linux/librar
y/l-linux-kvm/) (developerWorks, April 2007) 
covers the recent introduction of virtualization 
into the kernel, which turns the Linux kernel into 
a hypervisor for other virtualized operating 
systems.

• Check out Tim’s book GNU/Linux Application 
Programming 
(http://www.charlesriver.com/Books/BookDetail.a
spx?productID=91525) for more information on 
programming Linux in user space.

44

Some resouces

• In the developerWorks Linux zone 
(http://www.ibm.com/developerworks/linux/),
find more resources for Linux developers, 
including Linux tutorials 
(http://www.ibm.com/developerworks/views/linux
/libraryview.jsp?type_by=Tutorials), as well as 
our readers’ favorite Linux articles and tutorials 
(http://www.ibm.com/developerworks/linux/librar
y/l-top-10.html) over the last month.

• Stay current with developerWorks technical 
events and Webcasts 
(http://www.ibm.com/developerworks/offers/tech
briefings/?S_TACT=105AGX03&S_CMP=art).

45

Some resouces

• In the developerWorks Linux zone 
(http://www.ibm.com/developerworks/linux/),
find more resources for Linux developers, 
including Linux tutorials 
(http://www.ibm.com/developerworks/views/linux
/libraryview.jsp?type_by=Tutorials), as well as 
our readers’ favorite Linux articles and tutorials 
(http://www.ibm.com/developerworks/linux/librar
y/l-top-10.html) over the last month.

• Stay current with developerWorks technical 
events and Webcasts 
(http://www.ibm.com/developerworks/offers/tech
briefings/?S_TACT=105AGX03&S_CMP=art).

46

Grammar revision

• -ing form: as noun and after prepositions

• We can use the -ing form of the verb as a noun. 

• It can be the subject, object, or complement of a 
sentence. 

• For example:

– {Managing the computer's resources is an important 
function of the operating system.}

– {The operating system starts running the user interface 
as soon as the PC is switched on.}

– {Another function of the operating system is executing
and providing services for applications software.}

47

Grammar revision

• The -ing form is also used after prepositions.

• This includes to when it is a preposition and not 

part of the infinitive. 

• For example:

– {Without the user being aware of the details, the 

operating system manages the computer's resources.}

– {We begin by focusing on the interaction between a 

user and a PC operating system.}

– {We look forward to having cheaper and faster 

computers.}

48


