
31

English++

Anatomy of the Linux Kernel
The Linux® kernel is the core of a large and complex operating system, and while it

is huge, it is well organized in terms of subsystems and layers. In this article, you can

explore the general structure of the Linux kernel and get to know its major subsystems

and core interfaces. Where possible, you get links to other IBM articles to help you

dig deeper.

Given that the goal of this article is to introduce you to the Linux kernel and explore its

architecture and major components, let’s start with a short tour of Linux kernel history,

then look at the Linux kernel architecture from 30,000 feet, and, finally, examine its

major subsystems. The Linux kernel is over six million lines of code, so this introduction

is not exhaustive. Use the pointers to more content to dig in further.

A short tour of Linux history
While Linux is arguably the most popular open source operating system, its history

is actually quite short considering the timeline of operating systems. In the early

days of computing, programmers developed on the bare hardware in the hardware’s

language. The lack of an operating system meant that only one application (and one

user) could use the large and expensive device at a time. Early operating systems

were developed in the 1950s to provide a simpler development experience. Examples

include the General Motors Operating System (GMOS) developed for the IBM 701 and

the FORTRAN Monitor System (FMS) developed by North American Aviation for the

IBM 709.

In the 1960s, the Massachusetts Institute of Technology (MIT) and a host of companies

developed an experimental operating system called Multics (or Multiplexed Information

and Computing Service) for the GE-645. One of the developers of this operating system,

AT&T, dropped out of Multics and developed their own operating system in 1970

called Unics. Along with this operating system was the C language, for which C was

developed and then rewritten to make operating system development portable.

Twenty years later, Andrew Tanenbaum created a microkernel version of UNIX®,

called MINIX (for minimal UNIX), that ran on small personal computers. This open

source operating system inspired Linus Torvalds’ initial development of Linux in the

early 1990s

Linux quickly evolved from a single-person project to a world-wide development

project involving thousands of developers. One of the most important decisions for

Linux was its adoption of the GNU General Public License (GPL). Under the GPL, the

Linux kernel was protected from commercial exploitation, and it also benefited from

operating system

the software that manages

the sharing of the resourc-

es of a computer and

provides programmers

with an interface used to

access those resources

32

English++

the user-space development of the GNU project (of Richard Stallman, whose source

dwarfs that of the Linux kernel). This allowed useful applications such as the GNU

Compiler Collection (GCC) and various shell support.

Introduction to the Linux kernel
Now on to a high-altitude look at the GNU/Linux operating system architecture. You

can think about an operating system from two levels.

At the top is the user, or application, space. This is where the user applications are

executed. Below the user space is the kernel space. Here, the Linux kernel exists.

There is also the GNU C Library (glibc). This provides the system call interface that

connects to the kernel and provides the mechanism to transition between the user-space

application and the kernel. This is important because the kernel and user application

occupy different protected address spaces. And while each user-space process occupies

its own virtual address space, the kernel occupies a single address space. For more

information, see the links in the resources section.

The Linux kernel can be further divided into three gross levels. At the top is the system

call interface, which implements the basic functions such as read and write. Below the

system call interface is the kernel code, which can be more accurately defined as the

architecture-independent kernel code. This code is common to all of the processor ar-

chitectures supported by Linux. Below this is the architecture-dependent code, which

forms what is more commonly called a BSP (Board Support Package). This code serves

as the processor and platform-specific code for the given architecture.

Properties of the Linux kernel
When discussing the architecture of a large and complex system, you can view the

system from many perspectives. One goal of an architectural decomposition is to

provide a way to understand the source better and that’s what we’ll do here.

The Linux kernel implements a number of important architectural attributes. At a high

level, and at lower levels, the kernel is layered into a number of distinct subsystems.

Linux can also be considered monolithic because it lumps all of the basic services into

the kernel. This differs from a microkernel architecture, where the kernel provides

basic services such as communication, I/O, and memory and process management,

and more specific services are plugged in to the microkernel layer. Each has its own

advantages, but I’ll steer clear of that debate.

Over time, the Linux kernel has become efficient in terms of both memory and CPU

usage, as well as extremely stable. But the most interesting aspect of Linux, given its

buffer

a region of memory used

to temporarily hold

data while it is being

moved from one place

to another

VFS(Virtual File System)

an abstraction layer

on top of a more concrete

file system

33

English++

size and complexity, is its portability. Linux can be compiled to run on a huge number

of processors and platforms with different architectural constraints and needs. One

example is the ability of Linux to run on a process with a memory management unit

(MMU), as well as those that provide no MMU. The uClinux port of the Linux kernel

provides for non-MMU support. See the resources section for more details.

Major subsystems of the Linux kernel
Now let’s look at some of the major components of the Linux kernel using the breakdown.

System call interface
The SCI is a thin layer that provides the means to perform function calls from user

space into the kernel. As discussed previously, this interface can be architecture

dependent, even within the same processor family. The SCI is actually an interesting

function-call multiplexing and demultiplexing service. You can find the SCI

implementation in ./linux/kernel, as well as architecture-dependent portions in

./linux/arch. More details for this component are available in the resources section.

Process management
Process management is focused on the execution of processes. In the kernel, these

are called threads and represent an individual virtualization of the processor (thread

code, data, stack, and CPU registers). In user space, the term process is typically used,

though the Linux implementation does not separate the two concepts (processes and

threads). The kernel provides an application program interface (API) through the SCI

to create a new process (fork, exec, or Portable Operating System Interface [POSIX]

functions), stop a process (kill, exit), and communicate and synchronize between

them (signal, or POSIX mechanisms).

Also in process management there is a need to share the CPU between the active

threads. The kernel implements a novel scheduling algorithm that operates in constant

time, regardless of the number of threads vying for the CPU. This is called the O(1)

scheduler, denoting that the same amount of time is taken to schedule one thread as

it is to schedule many. The O(1) scheduler also supports multiple processors (called

Symmetric MultiProcessing, or SMP). You can find the process management sources

in ./linux/kernel and architecture-dependent sources in ./linux/arch). You can learn

more about this algorithm in the resources section.

Memory management
Another important resource that’s managed by the kernel is memory. For efficiency,

given the way that the hardware manages virtual memory, memory is managed in

Linux kernel

Unix-like

 operating system kernel

kernel

the central component

of most computer

operating systems (OS).

Its functions include

managing the system’s

resources

(the communication

between hardware and

software components

34

English++

what are called pages (4KB in size for most architectures). Linux includes the means

to manage the available memory, as well as the hardware mechanisms for physical

and virtual mappings.

But memory management is much more than managing 4KB buffers. Linux provides

abstractions over 4KB buffers, such as the slab allocator. This memory management

scheme uses 4KB buffers as its base, but then allocates structures from within, keeping

track of which pages are full, partially used, and empty. This allows the scheme to

dynamically grow and shrink based on the needs of the greater system.

Supporting multiple users of memory, there are times when the available memory

can be exhausted. For this reason, pages can be moved out of memory and onto the

disk. This process is called swapping because the pages are swapped from memory

onto the hard disk. You can find the memory management sources in ./linux/mm.

Virtual file system
The virtual file system (VFS) is an interesting aspect of the Linux kernel because it

provides a common interface abstraction for file systems. The VFS provides a switching

layer between the SCI and the file systems supported by the kernel.

At the top of the VFS is a common API abstraction of functions such as open, close,

read, and write. At the bottom of the VFS are the file system abstractions that define

how the upper-layer functions are implemented. These are plug-ins for the given file

system (of which over 50 exist). You can find the file system sources in ./linux/fs.

Below the file system layer is the buffer cache, which provides a common set of functions

to the file system layer (independent of any particular file system). This caching layer

optimizes access to the physical devices by keeping data around for a short time (or

speculatively read ahead so that the data is available when needed). Below the buffer

cache are the device drivers, which implement the interface for the particular physical

device.

Network stack
The network stack, by design, follows a layered architecture modeled after the protocols

themselves. Recall that the Internet Protocol (IP) is the core network layer protocol that

sits below the transport protocol (most commonly the Transmission Control Protocol,

or TCP). Above TCP is the sockets layer, which is invoked through the SCI.

The sockets layer is the standard API to the networking subsystem and provides a user

interface to a variety of networking protocols. From raw frame access to IP protocol

data units (PDUs) and up to TCP and the User Datagram Protocol (UDP), the sockets

GPL

a widely used

free software license,

originally written by

Richard Stallman for the

GNU project

Minix

free/open source, Unix-like

operating system (OS)

based on a microkernel

architecture

35

English++

layer provides a standardized way to manage connections and move data between

endpoints. You can find the networking sources in the kernel at ./linux/net.

Device drivers
The vast majority of the source code in the Linux kernel exists in device drivers that

make a particular hardware device usable. The Linux source tree provides a drivers

subdirectory that is further divided by the various devices that are supported, such as

Bluetooth, I2C, serial, and so on. You can find the device driver sources in ./linux/drivers.

Architecture-dependent code
While much of Linux is independent of the architecture on which it runs, there are

elements that must consider the architecture for normal operation and for efficiency.

The /linux/arch subdirectory defines the architecture-dependent portion of the kernel

source contained in a number of subdirectories that are specific to the architecture

(collectively forming the BSP). For a typical desktop, the i386 directory is used. Each

architecture subdirectory contains a number of other subdirectories that focus on a

particular aspect of the kernel, such as boot, kernel, memory management, and others.

You can find the architecture-dependent code in ./linux/arch.

Interesting features of the Linux kernel
If the portability and efficiency of the Linux kernel weren’t enough, it provides some

other features that could not be classified in the previous decomposition.

Linux, being a production operating system and open source, is a great test bed for

new protocols and advancements of those protocols. Linux supports a large number of

networking protocols, including the typical TCP/IP, and also extension for high-speed

networking (greater than 1 Gigabit Ethernet [GbE] and 10 GbE). Linux also supports

protocols such as the Stream Control Transmission Protocol (SCTP), which provides

many advanced features above TCP (as a replacement transport level protocol).

Linux is also a dynamic kernel, supporting the addition and removal of software

components on the fly. These are called dynamically loadable kernel modules, and

they can be inserted at boot when they’re needed (when a particular device is found

requiring the module) or at any time by the user.

A recent advancement of Linux is its use as an operating system for other operating

systems (called a hypervisor). Recently, a modification to the kernel was made called

the Kernel-based Virtual Machine (KVM). This modification enabled a new interface

to user space that allows other operating systems to run above the KVM-enabled

kernel. In addition to running another instance of Linux, Microsoft® Windows® can

GNU

a computer operating

system composed

entirely of free software,

initiated in 1984

by Richard Stallman

36

English++

also be virtualized. The only constraint is that the underlying processor must support

the new virtualization instructions. See the resource section for more information.

Going further
This article just scratched the surface of the Linux kernel architecture and its features

and capabilities. You can check out the Documentation directory that is provided in

every Linux distribution for detailed information about the contents of the kernel.

Resources
• The GNU site (http://www.gnu.org/licenses) describes the GNU GPL that covers

the Linux kernel and most useful applications provided with it. Also described is

a less restrictive form of the GPL called the Lesser GPL (LGPL).

• UNIX (http://en.wikipedia.org/wiki/Unics), MINIX (http://en.wikipedia.org/wiki/

Minix) and Linux (http://en.wikipedia.org/wiki/Linux) are covered in Wikipedia,

along with a detailed family tree of the operating systems.

• The GNU C Library (http://www.gnu.org/software/libc/), or glibc, is the implementation

of the standard C library. It’s used in the GNU/Linux operating system, as well as the

GNU/Hurd (http://directory.fsf.org/hurd.html) microkernel operating system.

• uClinux (http://www.uclinux.org/) is a port of the Linux kernel that can execute

on systems that lack an MMU. This allows the Linux kernel to run on very small

embedded platforms, such as the Motorola DragonBall processor used in the PalmPilot

 Personal Digital Assistants (PDAs).

• “Kernel command using Linux system calls” (http://www.ibm.com/developer-

works/linux/library/l-system-calls/) (developerWorks, March 2007) covers the SCI,

which is an important layer in the Linux kernel, with user-space support from

glibc that enables function calls between user space and the kernel.

• “Inside the Linux scheduler” (http://www.ibm.com/developerworks/linux/library/l-

scheduler/) (developerWorks, June 2006) explores the new O(1) scheduler introduced

in Linux 2.6 that is efficient, scales with a large number of processes (threads),

and takes advantage of SMP systems.

• “Access the Linux kernel using the /proc filesystem” (http://www.ibm.com/devel-

operworks/linux/library/l-proc.html) (developerWorks, March 2006) looks at the

/proc file system, which is a virtual file system that provides a novel way for user-

space applications to communicate with the kernel. This article demonstrates /

proc, as well as loadable kernel modules.

• “Server clinic: Put virtual filesystems to work” (http://www.ibm.com/developer-

works/linux/library/l-sc12.html) (developerWorks, April 2003) delves into the VFS

layer that allows Linux to support a variety of different file systems through a

common interface. This same interface is also used for other types of devices,

such as sockets.

buffer cache

 a collection of

data duplicating

original values stored

elsewhere or computed

earlier, where the original

data is expensive to fetch

(owing to longer access

time) or to compute,

compared to the cost of

reading the cache

37

English++

• “Inside the Linux boot process” (http://www.ibm.com/developerworks/linux/library/

l-linuxboot/index.html) (developerWorks, May 2006) examines the Linux boot process,

which takes care of bringing up a Linux system and is the same basic process

whether you’re booting from a hard disk, floppy, USB memory stick, or over the

network.

• “Linux initial RAM disk (initrd) overview” (http://www.ibm.com/developerworks/

linux/library/l-initrd.html) (developerWorks, July 2006) inspects the initial RAM disk,

which isolates the boot process from the physical medium from which it’s booting.

• “Better networking with SCTP” (http://www.ibm.com/developerworks/linux/

library/l-sctp/) (developerWorks, February 2006) covers one of the most interesting

networking protocols, Stream Control Transmission Protocol, which operates like

TCP but adds a number of useful features such as messaging, multi-homing, and

multi-streaming. Linux, like BSD, is a great operating system if you’re interested

in networking protocols.

• “Anatomy of the Linux slab allocator” (http://www.ibm.com/developerworks/linux/

library/l-linux-slab-allocator/) (developerWorks, May 2007) covers one of the most

interesting aspects of memory management in Linux, the slab allocator. This

mechanism originated in SunOS, but it’s found a friendly home inside the Linux

kernel.

• “Virtual Linux” (http://www.ibm.com/developerworks/linux/library/l-linuxvirt/)

(developerWorks, December 2006) shows how Linux can take advantage of

processors with virtualization capabilities.

• “Linux and symmetric multiprocessing” (http://www.ibm.com/developerworks/

library/l-linux-smp/) (developerWorks, March 2007) discusses how Linux can also

take advantage of processors that offer chip-level multiprocessing.

• “Discover the Linux Kernel Virtual Machine” (http://www.ibm.com/developerworks/

linux/library/l-linux-kvm/) (developerWorks, April 2007) covers the recent introduction

of virtualization into the kernel, which turns the Linux kernel into a hypervisor for

other virtualized operating systems.

• Check out Tim’s book GNU/Linux Application Programming (http://www.charlesriver.

com/Books/BookDetail.aspx?productID=91525) for more information on programming

Linux in user space.

• In the developerWorks Linux zone (http://www.ibm.com/developerworks/linux/),

find more resources for Linux developers, including Linux tutorials (http://www.ibm.

com/developerworks/views/linux/libraryview.jsp?type_by=Tutorials), as well as our

readers’ favorite Linux articles and tutorials (http://www.ibm.com/developerworks/

linux/library/l-top-10.html) over the last month.

• Stay current with developerWorks technical events and Webcasts (http://www.ibm.

com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art).

Unix

a computer operating

system originally

developed in 1969

by a group of AT&T

employees at Bell Labs

including Ken Thompson,

Dennis Ritchie

and Douglas Ilroy

