
Copyright 2000 N. AYDIN. All rights
reserved. 1

1

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

naydin@ieee.org

Introduction to Digital Logic

2

1. Digital Computers, Number Systems, Arithmetic Operations, Decimal,
Alphanumeric, and Gray Codes

2. Binary Logic, Gates, Boolean Algebra, Standard Forms
3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level

Circuit Optimization
4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates,

High-Impedance Outputs
5. Implementation Technology and Logic Design, Design Concepts and Automation,

The Design Space, Design Procedure, The major design steps
6. Programmable Implementation Technologies: Read-Only Memories, Programmable

Logic Arrays, Programmable Array Logic,Technology mapping to programmable
logic devices

7. Combinational Functions and Circuits
8. Arithmetic Functions and Circuits
9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
11. Counters, register cells, buses, & serial operations
12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
13. Memory Basics

Course Outline

3

Lecture 10

Sequential CircuitsSequential Circuits
Sequential Circuit Design

Introduction to Digital Logic

4

The Design Procedure

• Specification
• Formulation

– Obtain a state diagram or state table

• State Assignment
– Assign binary codes to the states

• Flip-Flop Input Equation Determination
– Select flip-flop types and derive flip-flop equations from next state entries

in the table

• Output Equation Determination
– Derive output equations from output entries in the table

• Optimization
– Optimize the equations

• Technology Mapping
– Find circuit from equations and map to flip-flops and gate technology

• Verification
– Verify correctness of final design

5

Specification

• Component Forms of Specification
– Written description

– Mathematical description

– Hardware description language*

– Tabular description*

– Equation description*

– Diagram describing operation (not just structure)*

• Relation to Formulation
– If a specification is rigorous at the binary level (marked

with * above), then all or part of formulation may be
completed

6

Formulation: Finding a State Diagram

• A stateis an abstraction of the history of the past applied
inputs to the circuit (including power-up reset or system
reset).

– The interpretation of “past inputs” is tied to the synchronous
operation of the circuit. E. g., an input value (other than an
asynchronous reset) is measured only during the setup-hold time
interval for an edge-triggered flip-flop.

• Examples:

– State A represents the fact that a 1 input has occurred among the
past inputs.

– State B represents the fact that a 0 followed by a 1 have occurred
as the most recent past two inputs.

Copyright 2000 N. AYDIN. All rights
reserved. 2

7

Formulation: Finding a State Diagram

• In specifying a circuit, we use statesto remember
meaningful propertiesof past input sequencesthat are
essential to predicting future output values.

• A sequence recognizeris a sequential circuit that produces
a distinct output value whenever a prescribed pattern of
input symbols occur in sequence, i.e, recognizesan input
sequence occurence.

• We will develop a procedure specific to sequence
recognizersto convert a problem statement into a state
diagram.

• Next, the state diagram, will be converted to a state table
from which the circuit will be designed.

8

Sequence Recognizer Procedure

• To develop a sequence recognizer state diagram:

– Begin in an initial state in which NONE of the initial portion of the
sequence has occurred (typically “reset” state).

– Add a state that recognizes that the first symbol has occurred.
– Add states that recognize each successive symbol occurring.
– The final state represents the input sequence (possibly less the

final input value) occurence.
– Add state transition arcs which specify what happens when a

symbol not in the proper sequence has occurred.
– Add other arcs on non-sequence inputs which transition to states

that represent the input subsequence that has occurred.
• The last step is required because the circuit must recognize the input

sequence regardless of where it occurs within the overall sequence
applied since “reset.”.

9

State Assignment

• Each of the m states must be assigned a
unique code

• Minimum number of bits required is n such
that

n ≥ log2 m
where x is the smallest integer ≥ x

• There are useful state assignments that use
more than the minimum number of bits

• There are 2n - m unused states

10

Sequence Recognizer Example

• Example: Recognize the sequence 1101

– Note that the sequence 1111101 contains 1101 and "11" is a proper
sub-sequence of the sequence.

• Thus, the sequential machine must remember that the first
two one's have occurred as it receives another symbol.

• Also, the sequence 1101101 contains 1101 as both an
initial subsequence and a final subsequence with some
overlap, i. e., 1101101 or 1101101.

• And, the 1 in the middle, 1101101, is in both
subsequences.

• The sequence 1101 must be recognized each time it occurs
in the input sequence.

11

Example: Recognize 1101

• Define states for the sequence to be recognized:
– assuming it starts with first symbol,

– continues through each symbol in the sequence to be recognized, and

– uses output 1 to mean the full sequence has occurred,

– with output 0 otherwise.

• Starting in the initial state (Arbitrarily named "A"):

– Add a state that
recognizes the first "1."

– State "A" is the initial state, and state "B" is the state which represents
the fact that the "first" one in the input subsequence has occurred.

– The output symbol "0" means that the full recognized sequence has
not yet occurred.

A B
1/0

12

• After one more 1, we have:
– C is the state obtained

when the input sequence
has two "1"s.

• Finally, after 110 and a 1, we have:

– Transition arcs are used to denote the output function (Mealy Model)

– Output 1 on the arc from D means the sequence has been recognized

– To what state should the arc from state D go? Remember: 1101101?

– Note that D is the last state but the output 1 occurs for the input applied
in D. This is the case when a Mealy modelis assumed.

Example: Recognize 1101 (continued)

A B1/0
C

1/0

A B1/0
C

1/0 0/0
D

1/1

Copyright 2000 N. AYDIN. All rights
reserved. 3

13

Example: Recognize 1101 (continued)

• Clearly the final 1 in the recognized sequence 1101
is a sub-sequence of 1101. It follows a 0 which is
not a sub-sequence of 1101. Thus it should
represent the same state reached from the initial
state after a first 1 is observed.We obtain:

1/1

DA B1/0 C
1/0 0/0

A B1/0 C
1/0 0/0

D 1/1

14

Example: Recognize 1101(continued)

• The state have the following abstract meanings:

– A: No proper sub-sequence of the sequence has
occurred.

– B: The sub-sequence 1 has occurred.

– C: The sub-sequence 11 has occurred.

– D: The sub-sequence 110 has occurred.

– The 1/1 on the arc from D to B means that the last 1 has
occurred and thus, the sequence is recognized.

1/1

A B
1/0

C
1/0

D
0/0

15

Example: Recognize 1101(continued)

• The other arcs are added to each state for
inputs not yet listed. Which arcs are
missing?
– "0" arc from A
– "0" arc from B
– "1" arc from C
– "0" arc from D.

1/1

A B
1/0

C
1/0

D
0/0

16

Example: Recognize 1101(continued)

• State transition arcs must represent the fact that an
input subsequence has occurred. Thus we get:

• Note that the 1 arc from state C to state C implies
that State C means two or more 1's have occurred.

C

1/1

A B1/0 1/0
D

0/0

0/0

0/0 1/0

0/0

17

Formulation: Find State Table

• From the State Diagram, we can fill in the State Table.

• There are 4 states, one
input, and one output.
We will choose the form
with four rows, one for
each current state.

• From State A, the 0 and 1
input transitions have
been filled in along with
the outputs.

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

Present
State

Next State
x=0 x=1

Output
x=0 x=1

A
B
C
D

1/0

B 0

0/0

A 0

18

Formulation: Find State Table

• From the state diagram,

we complete the
state table.

• What would the state diagram and state table look
like for the Moore model?

1/00/0

0/0

0/0

1/1

A B1/0
C

1/0
D

0/0

State
Present Next State

x=0 x=1
Output

x=0 x=1
A A B 0 0
B A C 0 0
C D C 0 0
D A B 0 1

Copyright 2000 N. AYDIN. All rights
reserved. 4

19

Example: Moore Model for Sequence 1101

• For the Moore Model, outputs are associated with
states.

• We need to add a state "E" with output value 1 for
the final 1 in the recognized input sequence.

– This new state E, though similar to B, would generate an
output of 1 and thus be different from B.

• The Moore model for a sequence recognizer usually
has more states than the Mealy model.

20

Example: Moore Model (continued)

• We mark outputs on
states for Moore model

• Arcs now show only
state transitions

• Add a new state E to
produce the output 1

• Note that the new state,
E produces the same behavior
in the future as state B. But it gives a different output at the
present time. Thus these states do represent a different

abstractionof the input history.

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

1
10

21

Example: Moore Model (continued)

• The state table is shown
below

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

110

Present
State

Next State
x=0 x=1

Output
y

A A B 0
B A C 0
C D C 0
D A E 0
E A C 1

22

• How may assignments of codes with a
minimum number of bits?
– Two

A = 0, B = 1 or A = 1, B = 0

• Does it make a difference?
– Only in variable inversion, so small, if any.

State Assignment – Example1

Present
State

Next State
x=0 x=1

Output
x=0 x=1

A A B 0 0
B A B 0 1

23

• How may assignments of codes with a
minimum number of bits?
4 × 3 × 2 × 1 = 24

• Does code assignment make a difference in
cost?

State Assignment – Example 2

Present
State

Next State
x=0 x=1

Output
x=0 x=1

A A B 0 0
B A C 0 0
C D C 0 0
D A B 0 1

24

• Assignment 1: A = 0 0, B = 0 1, C = 1 0, D = 1 1

• The resulting coded state table:

State Assignment – Example 2 (continued)

100 10 01 1

001 01 11 0

001 00 00 1

000 10 00 0

Output
x = 0 x = 1

Next State
x = 0 x = 1

Present
State

Copyright 2000 N. AYDIN. All rights
reserved. 5

25

• Assignment 2: A = 0 0, B = 0 1, C = 1 1, D = 1 0

• The resulting coded state table:

State Assignment – Example 2 (continued)

100 10 01 0

001 11 01 1

001 10 00 1

000 10 00 0

Output
x = 0 x = 1

Next State
x = 0 x = 1

Present
State

26

Find Flip -Flop Input and Output Equations:
Example 2 - Assignment 1

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

0

0

10

10

0

1

Y2

Y1

X

1

0

00

00

1

1

D1 D2 Z

� Assume D flip-flops
� Interchange the bottom two rows of the state

table, to obtain K-maps for D1, D2, and Z:

27

Optimization: Example 2: Assignment 1
• Performing two-level optimization:

D1 = Y1Y2 + XY1Y2

D2 = XY1Y2 + XY1Y2 + XY1Y2

Z = XY1Y2 Gate Input Cost = 22

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

0

0

10

10

0

1

Y2

Y1

X

1

0

00

00

1

1

D1 D2 Z

28

Find Flip -Flop Input and Output Equations:
Example 2 - Assignment 2

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

1

0

10

10

1

0

Y2

Y1

X

0

0

00

11

1

0

• Assume D flip-flops

• Obtain K-maps for D1, D2, and Z:

D1 D2 Z

29

Optimization: Example 2: Assignment 2
• Performing two-level optimization:

D1 = Y1Y2 + XY2 Gate Input Cost = 9
D2 = X Select this state assignment for
Z = XY1Y2 completion of the design

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

1

0

10

10

1

0

Y2

Y1

X

0

0

00

11

1

0

D1 D2 Z

30

• Library:
– D Flip-flops

with Reset
(not inverted)

– NAND gates
with up to 4
inputs and
inverters

� Initial Circuit:

Map Technology

Clock

D

D

C
R

Y2

Z

C
R

Y1

X

Reset

Copyright 2000 N. AYDIN. All rights
reserved. 6

31

Mapped Circuit - Final Result

Clock

D

D

C
R

Y2

Z

C
R

Y1

X

Reset

32

Sequential Design: Example 3

• Design a sequential modulo 3 accumulator for 2-bit
operands

• Definitions:
– Modulo n adder - an adder that gives the result of the

addition as the remainder of the sum divided by n
• Example: 2 + 2 modulo 3 = remainder of 4/3 = 1

– Accumulator - a circuit that “accumulates” the sum of its
input operands over time - it adds each input operand to
the stored sum, which is initially 0.

• Stored sum: (Y1,Y0), Input: (X1,X0), Output: (Z1,Z0)

33

Example 3 (continued)

• Complete the state diagram:

B/01C/10

A/00

00

01

Reset

34

Example 3 (continued)

• Complete the state diagram:

B/01C/10

A/00

00

01

Reset

35

Example 3 (continued)

• Complete the state table

• State Assignment: (Y1,Y0) = (Z1,Z0)

• Codes are in gray code order to ease use of K-maps in the next step

XC (10)

XXXX- (11)

XB (01)

X00A (00)

Y1(t+1),
Y0(t+1)

Y1(t+1),
Y0(t+1)

Y1(t+1),
Y0(t+1)

Y1(t+1),
Y0(t+1)

10110100X1X0

Y1Y0

36

Example 3 (continued)

• Complete the state table

• State Assignment: (Y1,Y0) = (Z1,Z0)

• Codes are in gray code order to ease use of K-maps in the next step

01X0010C (10)

XXXX- (11)

00X1001B (01)

10X0100A (00)

Y1(t+1),
Y0(t+1)

Y1(t+1),
Y0(t+1)

Y1(t+1),
Y0(t+1)

Y1(t+1),
Y0(t+1)

10110100X1X0

Y1Y0

Copyright 2000 N. AYDIN. All rights
reserved. 7

37

Example 3 (continued)

• Find optimized flip-flop input equations for D flip-flops

• D1 =

• D0 =

D0D1

Y0

Y1

X1

X0

Y0

Y1

X1

X

X0

X

X

X

X

X

X

X

X

X

XXXX

38

Circuit - Final Result with AND, OR, NOT

Clock

D

C
R

Y0

D

C
R

Y1
X1

Reset

Z1X0

Z0

39

Other Flip-Flop Types

• J-K and T flip-flops
– Behavior

– Implementation

• Basic descriptors for understanding and using
different flip-flop types
– Characteristic tables

– Characteristic equations

– Excitation tables

• For actual use, see Reading Supplement - Design and
Analysis Using J-K and T Flip-Flops

40

J-K Flip-flop

• Behavior
– Same as S-R flip-flop with J analogous to S and K

analogous to R

– Exceptthat J = K = 1 is allowed, and

– For J = K = 1, the flip-flop changes to the opposite state

– As a master-slave, has same “1s catching” behavior as
S-R flip-flop

– If the master changes to the wrong state, that state will
be passed to the slave

• E.g., if master falsely set by J = 1, K = 1 cannot reset it during
the current clock cycle

41

J-K Flip-flop (continued)

• Implementation
– To avoid 1s catching

behavior, one solution
used is to use an
edge-triggered D as
the core of the flip-flop

� Symbol

D

C
K

J

J

C

K

42

T Flip-flop

• Behavior
– Has a single input T

• For T = 0, no change to state

• For T = 1, changes to opposite state

• Same as a J-K flip-flop with J = K = T

• As a master-slave, has same “1s catching”
behavior as J-K flip-flop

• Cannot be initialized to a known state using the T
input
– Reset (asynchronous or synchronous) essential

Copyright 2000 N. AYDIN. All rights
reserved. 8

43

T Flip-flop (continued)

• Implementation
– To avoid 1s catching

behavior, one solution
used is to use an
edge-triggered D as
the core of the flip-flop

� Symbol

C

DT

T

C

44

Basic Flip-Flop Descriptors

• Used in analysis
–Characteristic table- defines the next state of

the flip-flop in terms of flip-flop inputs and
current state

–Characteristic equation- defines the next state
of the flip-flop as a Boolean function of the flip-
flop inputs and the current state

• Used in design
–Excitation table- defines the flip-flop input

variable values as function of the current state
and next state

45

D Flip-Flop Descriptors

• Characteristic Table

• Characteristic Equation
Q(t+1) = D

• Excitation Table

D

0
1

Operation

Reset
Set

0
1

Q(t 1)+

Q(t +1)

0
1

0
1

D Operation

Reset
Set

46

T Flip-Flop Descriptors

• Characteristic Table

• Characteristic Equation
Q(t+1) = T ⊕ Q

• Excitation Table

Q(t+1)

Q(t)

1

0

T

No change

Complement

Operation

Q(t)

No change

Complement

Operation

0

1

T Q(t 1)

Q(t)

Q(t)

+

47

S-R Flip-Flop Descriptors

• Characteristic Table

• Characteristic Equation
Q(t+1) = S + R Q, S.R = 0

• Excitation Table
Operation

No change

Set

Reset

No change

S

X

0

1

0

Q(t+1)

0

1

1

0

Q(t)

0

0

1

1

R

X

0

1

0

0

0

1

1

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0

1

?

Q(t+1)

Q(t)

48

J-K Flip-Flop Descriptors

• Characteristic Table

• Characteristic Equation
Q(t+1) = J Q + K Q

• Excitation Table
Q(t +1)

0

1

1
0

Q(t)

0

0

1
1

Operation

X

X

0
1

K

0

1

X
X

J

No change

Set

Reset
No Change

0

0

1
1

No change

Set

Reset

Complement

OperationJ

0

1

0
1

K

0

1

Q(t+1)

Q(t)

Q(t)

Copyright 2000 N. AYDIN. All rights
reserved. 9

49

Flip-flop Behavior Example

• Use the characteristic tables to find the output waveforms for
the flip-flops shown:

T

C

Clock

D,T

QD

QT

D

C

50

Flip-Flop Behavior Example (continued)

• Use the characteristic tables to find the output waveforms for
the flip-flops shown:

J
C

K

S
C
R

Clock

QSR

QJK

S,J

R,K

?

