Introduction to Digital Logic

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr
naydin@ieee.org

Course Outline

1. Digital Computers, Number Systems, Arithmetic @piens, Decimal,
Alphanumeric, and Gray Codes

2. Binary Logic, Gates, Boolean Algebra, Standard Borm

3. Circuit Optimization, Two-Level Optimization, Mdganipulation, Multi-Level
Circuit Optimization

4. Additional Gates and Circuits, Other Gate Types|iisive-OR Operator and Gateq,
High-Impedance Outputs

5. Implementation Technology and Logic Design, Designcepts and Automation,

The Design Space, Design Procedure, The majorriesigs

6. Programmable Implementation Techno_log%_les: Redg-@emories, Programmable
Logic Arrays, Programmable Array Logic, Technologgpping to programmable
logic devices

7. Combinational Functions and Circuits

8. Arithmetic Functions and Circuits

9. Sequential Circuits Storage Elements and Sequéitiait Analysis

10. Sequential Circuits, Sequential Circuit DesigriSBiagrams, State Tables

11. Counters, register cells, buses, & serial opmrati

12. Sequencing and Control, Datapath and Control, Aftgoic State Machines (ASM)

13. Memory Basics

Introduction to Digital Logic

Lecture 10

Sequential Circuits
Sequential Circuit Design

The Design Procedure

Specification
« Formulation
— Obtain a state diagram or state table
« State Assignment
— Assign binary codes to the states
Flip-Flop Input Equation Determination

— Select flip-flop types and derive flip-flop equats from next state entries
in the table

« Output Equation Determination

— Derive output equations from output entries intéte
Optimization

— Optimize the equations
Technology Mapping

— Find circuit from equations and map to flip-flognsd gate technology
Verification

— Verify correctness of final design

Specification

« Component Forms of Specification

— Written description

— Mathematical description

— Hardware description language*

— Tabular description*

— Equation description*

— Diagram describing operation (not just structure)*
 Relation to Formulation

with * above), then all or part of formulation mag
completed

— If a specification is rigorous at the binary le(miarked

Formulation: Finding a State Diagram

« A stateis an abstraction of the history of the past applie
inputs to the circuit (including power-up resesgstem
reset).

— The interpretation of “past inputs” is tied to #yschronous
operation of the circuit. E. g., an input valueh@tthan an

asynchronous reset) is measured only during thgdeld time
interval for an edge-triggered flip-flop.

« Examples:

— State A represents the fact that a 1 input hasroet among the
past inputs.

— State B represents the fact that a 0 followed thyhave occurred
as the most recent past two inputs.

Copyright 2000 N. AYDIN. All rights
reserved.

Formulation: Finding a State Diagram

In specifying a circuit, we use statessemember
meaningful propertiesf past input sequencésat are
essential to predicting future output values

A sequence recognizera sequential circuit that produces
a distinct output value whenever a prescribed patie
input symbols occur in sequence, i.e, recogrézemput
sequence occurence.

We will develop a procedure specific to sequence
recognizergo convert a problem statement into a state
diagram

Next, the state diagramwill be converted to a state table
from which the circuit will be designed.

Sequence Recognizer Procedure

« To develop a sequence recognizer state diagram:
— Begin in an initial state in which NONE of thetial portion of the
sequence has occurred (typically “reset” state).
— Add a state that recognizes that the first syrhbsloccurred.
— Add states that recognize each successive syrbotring.
— The final state represents the input sequencsifgpsless the
final input value) occurence.
Add state transition arcs which specify what hagpehen a
symbolnotin the proper sequence has occurred.
— Add other arcs on non-sequence inputs which tiendb states
that represent the input subsequence that hasredcur
« The last step is required because the circuit magstgnize the input
sequenceegardless of where it occurs within the overallsence
applied since “reset.”

State Assignment

Each of them states must be assigned a
unigue code
Minimum number of bits required issuch
that

n>Tlog, ml
where[xlis the smallest integerx
There are useful state assignments that use
more than the minimum number of bits

There are 2- munused states

Sequence Recognizer Example

« Example: Recognize the sequence 1101

— Note that the sequence 1111101 contains 110114rids'a proper
sub-sequence of the sequence.
¢ Thus, the sequential machine must remember tedtrai
two one's have occurred as it receives anothersymb

« Also, the sequence 1101101 contains 1101 as Inoth a
initial subsequence and a final subsequence witteso
overlap, i. €.1101101 or 110101

¢ And, the 1 in the middle, 11Q01, is in both
subsequences.

* The sequence 1101 must be recognized each tmcelits
in the input sequence.

Example: Recognize 1101

« Define states for the sequence to be recognized:
— assuming it starts with first symbol,
— continues through each symbol in the sequence tedongnized, and
— uses output 1 to mean the full sequence has ecturr
— with output O otherwise.

« Starting in the initial state (Arbitrarily named"):
— Add a state that

OO
recognizes the firstl:"

— State "A" is the initial state, and state "B"lhie state which represents
the fact that the "first" one in the input subseweehas occurred.

— The output symbol0" means that the full recognized sequence has
not yet occurred.

Example: Recognize 110{continued)

« After one more 1, we have:
1/0, 1/0
— Ciis the state obtained
when the input sequence

has two "1"s.
« Finally, after 110 and a 1, we have:

l/ 1/ O/O l/l

— Transition arcs are used to denote the outputitm@Mealy Model)
— Output 1 on the arc from D means the sequence leasrbeognized
— To what state should the arc from state D go? Rereentil01107

— Note that D is the last state but the output Lisctor the input applied
in D. This is the case wherMealy models assumed.

Copyright 2000 N. AYDIN. All rights
reserved.

Example: Recognize 110{continued)

° 1/0 1/0 e 0/0 e 1/1

¢ Clearly the final 1 in the recognized sequencel110
is a sub-sequence of 1101. It follows a 0 which is
not a sub-sequence of 1101. Thus it should
representhe same state reached from the initial
state after a first 1 is observetlVe obtain:

Example: Recognize 110{continued)

* The state have the following abstract meanings:

— A: No proper sub-sequence of the sequence has
occurred.

— B: The sub-sequence 1 has occurred.
— C: The sub-sequence 11 has occurred.
— D: The sub-sequence 110 has occurred.

— The 1/1 on the arc from D to B means that theldsis
occurred and thus, the sequence is recognized.

Example: Recognize 110{continued)

» The other arcs are added to each state for
inputs not yet listed. Which arcs are
missing?

— "0" arc from A
"0" arc from B
"arc from C

"arc from D.

33

Example: Recognize 110{continued)

« State transition arcs must represent the factathat
input subsequence has occurred. Thus we get:

« Note that the 1 arc from state C to state C imsplie
that State C meart@o or more 1's have occurred

Formulation: Find State Table

« From the State Diagramve can fill in the State Table

There are 4 states, one
input, and one output.
We will choose the form
with four rows, one for
each current state.

From State A, the 0 and
input transitions have

Present | Next State Output
been filled in along with State x=0 x=1 x=0 x=1
the outputs. A A B 0 o

B
C
D

Formulation: Find State Table

¢ From the state diagrgm
we complete the

state table
Present | Next State Output
State x=0 x=1| x=0 x=1
A A B 0 0
B A C 0 0
C D C 0 0
D A B 0 1

« What would the state diagram and state table look
like for the Moore model?

Copyright 2000 N. AYDIN. All rights
reserved.

Example: Moore Model for Sequence 1101

« For the Moore Model, outputs are associated with
states.

* We need to add a state "E" with output value 1 for
the final 1 in the recognized input sequence.

— This new state E, though similar to B, would gatean
output of 1 and thus be different from B.

« The Moore model for a sequence recognizer usually
hasmore stateshan the Mealy model.

Example: Moore Model (continued)

« We mark outputs on
states for Moore mode

« Arcs now show only
state transitions

¢ Add a new state E to
produce the output 1

« Note that the new state,
E produces the same behavior
in the future as state. But it gives a different output at the
present time. Thus these states do represdiffesent

abstractionof the input history

20|

Example: Moore Model (continued)

’ 0 ’ 1
0
« The state table is shown wv@ @ @
below

Present Next State | Output
State x=0 x=1

m{o|0|w (>
> > |0 (> >
Omo|0|w
ROl |O|IOK

21

State Assignment — Exampla

Present| Next State | Output
State | x=0 x=1] x=0 x=1

A A B 0 0

B A B 0 1

« How may assignments of codes with a
minimum number of bits?
—Two
A=0,B=1 or A=1,B=0
* Does it make a difference?
—Only in variable inversion, so small, if any.

22

State Assignment — Example 2

Present | Next State Output
State x=0 x=1 x=0 x=1
A A B 0 0
B A (] 0 0
C D C 0 0
D A B 0 1

* How may assignments of codes with a
minimum number of bits?

4x3x2x1=24

» Does code assignment make a difference in
cost?

23

State Assignment — Example Zcontinued)

e Assignment 1: A=00,B=01,C=10,D=11
« The resulting coded state table:

Present| Next State| Output
State |x=0x=1 x=0x=1

00 0001 O 0
01 00] 10| O 0
10 11/10] O 0
11 00/ 01| O 1

24|

Copyright 2000 N. AYDIN. All rights
reserved.

. . Find Fip -Flop Tnput and Output Equations:
State Assignment — Example Zcontinued) p-Top Inp UIpUt =g
Example 2 - Assignment 1
e Assignment2: A=00,B=01,C=11,D=10)
« The resulting coded state table: * Assume D flip-flops
= Interchange the bottom two rows of the state
table, to obtain K-maps for D, D,, and Z:

Present| Next State| Output b
State ([x=z0x=1/ x=0x=1 . X D2 X ‘ X
00 |00j01| 0] O 0|0 0l1 0|0
01 |00|11| 0 | O 0|1 olo 0|0
11 [10]/11] 0] 0 olol "2 ol11"> olol "
Y Y
10 |00 01| O 1 1911 Y, 110 1ol
Optimization: Example 2: Assignment 1 Find Flip -Fop Input and Output Equations:
Example 2 - Assignment 2
* Performing two-level optimization:
D, D 2 ¢ Assume D flip-flops
X > |x X + Obtain K-maps for R D,, and Z:
olo 0 olo
0 olo olo % x D2 |y £ Ix
Y2 Y2 Y2
v L010 v L9 v.10]0 0|0 ol1 0|0
M1l 1| o Yol o1, ol1 0lo,
— — 11| 2 o0l1 £ olo| ?
D,=Y,Y,+XY,Y, Y, Y, Y1
D, = XY,Y, + XYY, + XY,Y, 0]0 0|1 o]t
Z =XY,Y, Gate Input Cost = 22
Optimization: Example 2: Assignment 2 Map Technology
* Performing two-level optimization: S
. Library: = Initial Circuit:
D z
' X P X X — D Flip-flops
0] o|o with Reset
T 0]1 olo (not inverted) %} e
0f1 — NAND gates
(1]2 Y2 ol1 Y, olo Y2 with up to 4 j‘
Yy Y Y, inputs and
00 Yol 0 inverters
— X D
D, =Y,Y,+ XY, Gate Input Cost =9 ook L.
D,=X _ Select this state assignment for Reset R
Z =XY,Y, completion of the design

Copyright 2000 N. AYDIN. All rights
reserved.

Mapped Circuit - Final Result Sequential Design: Example 3

* Design a sequential modulo 3 accumulator for 2-bi
operands

« Definitions:

— Modulon adder - an adder that gives the result of the
addition as the remainder of the sum divideahby
« Example: 2 + 2 modulo 3 = remainder of 4/3 =1

— Accumulator - a circuit that “accumulates” the sofits

input operands over time - it adds each input opktan
the stored sum, which is initially 0.

« Stored sum: (Y,Y,), Input: (X, X,), Output: (,Z)
T

Clock

Reset

31

32,

Example 3(continued) Example 3(continued)
» Complete the state diagram:

» Complete the state diagram:
(00

(oo
S o C

Rese
01

& ® & ®

33

34

Example 3(continued) Example 3(continued)
» Complete the state table » Complete the state table
XXl 00 01 11 10 XXol 00 01 11 10
YiYo YiYo
Y, (t+1), | Ya(t), | Y(t+2), | Yy (t), Y, (t+1), | Ya(t), | Y(t+2), | Yy (t),
Yolt+1) | Yo(t+D) | Yo(t+1) | Y(t+1) Yolt+1) | Yo(t+D) | Yo(t+1) | Y(t+1)
A (00)| 00 X A (00)| 00 01 X 10
B (01) X B (01)] 01 10 X 00
(11| X X X X (11| X X X X
C (10) X C(10) 10 00 X 01
« State Assignment: (YY) = (Z,,Z,) « State Assignment: (YY) = (Z,,Z,)
« Codes are in gray code order to ease use of K-inapg next step Codes are in gray code order to ease use of K-maps next step

Copyright 2000 N. AYDIN. All rights
reserved.

Example 3(continued) Circuit - Final Result with AND, OR, NOT
 Find optimized flip-flop input equations for D fliflops
Dl Xl DO Xl X1”’—| | Y,
1, || D z,
x x DT
d —1=>C
X [x i x| "o X i Yo — T
X X
Y Y b
1 X 1 X % a S>+Ho on
e« D, = L + [~>C
* D:— Reset F‘Q o—‘
Clock
Other Flip-Flop Types J-K Flip-flop
¢ J-K and T flip-flops « Behavior

—Behavior
—Implementation
 Basic descriptors for understanding and using
different flip-flop types
—Characteristic tables
—Characteristic equations
—Excitation tables

¢ For actual use, see Reading Supplement - Design gnd
Analysis Using J-K and T Flip-Flops

39

— Same as S-R flip-flop with J analogous to S and K
analogous to R

— Exceptthat J = K = 1 is allowed, and

—For J = K = 1, the flip-flop changes to theposite state

— As a master-slave, has same “1s catching” behasior
S-R flip-flop

— If the master changes to the wrong state, the wtidl
be passed to the slave

* E.g., if master falsely set by J = 1, K = 1 cameseet it during
the current clock cycle

40

J-K Flip-flop (continued)

¢ Implementation * Symbol

— To avoid 1s catching
behavior, one solution J
used is to use an
edge-triggered D as

the core of the flip-flop —=C
— K O
J D
K
—-+C

a1

T Flip-flop

Behavior
—Has a single input T
» For T =0, no change to state
« For T = 1, changes to opposite state

Same as a J-K flip-flop with J =K =T
As a master-slave, has same “1s catching”
behavior as J-K flip-flop
Cannot be initialized to a known state using the T
input

— Reset (asynchronous or synchronous) essential

42|

Copyright 2000 N. AYDIN. All rights
reserved.

T Flip-flop (continued)

 Implementation = Symbol

— To avoid 1s catching
behavior, one solution — T —

used is to use an

edge-triggered D as
the core of the flip-flop

D

—+C

43

Basic Flip-Flop Descriptors

¢ Used in analysis

—Characteristic table defines the next state of
the flip-flop in terms of flip-flop inputs and
current state

—Characteristic equation defines the next state
of the flip-flop as a Boolean function of the flip-
flop inputs and the current state

¢ Used in design

—Excitation table defines the flip-flop input
variable values as function of the current state
and next state

44

D Flip-Flop Descriptors

« Characteristic Table
D Q(t+1) Operation

0 0 Reset
1 1 Set

« Characteristic Equation
Q(t+1) =D

« Excitation Table
Q(t+1) D Operation

0 0 Reset
1 1 Set

45

T Flip-Flop Descriptors

« Characteristic Table
T Q(t+l) Operation

0 Q1 Nochange
1 Qt Complement

« Characteristic Equation
Qt+1)=TOQ
« Excitation Table
Q(t+1) T Operation

Q(t) 0 Nochange
Q) 1 Complement

48

S-R Flip-Flop Descriptors

» Characteristic Table
S R|Q(t+1) Operation

0 0| Qt Nochange
01 0 Reset
10 1 Set

11 ? Undefined

* Characteristic Equation
Q(+1)=S+RQ,8=0
 Excitation Table
Q) Q(I+1)| SR Operation

0 0 0 X No change
0 1 10 Set

1 0 0 1 Reset
1 1

X 0 No change

a7

J-K Flip-Flop Descriptors

» Characteristic Table
J K| Q(t+1) Operation

0 0| Qf Nochange

01| 0 Reset
1 Set
11| QW Complement
» Characteristic Equation
Q(t+1)=JQ+KQ
« Excitation Table
Q) Q(t+1)|J K Operation

0 0 X No change
1 1 X Set

0 X 1 Reset

1 X 0 No Change

==

48|

Copyright 2000 N. AYDIN. All rights
reserved.

Flip-flop Behavior Example Flip-Flop Behavior Example (continued)

* Use the characteristic tables to find the outpaveforms for « Use the characteristic tables to find the outpaveforms for
the flip-flops shown: the flip-flops shown:
Clock__] Clock__ [| | L
o7 N sJ 1

R,K

QD—J | | E— S Qe | ——
>c b g B
o
;. B QJK_J L L
< b

49

Copyright 2000 N. AYDIN. All rights
reserved.

