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Introduction to Digital Logic

Lecture 9

Sequential Circuits

Storage Elements and Sequential Circuit
Analysis

Overview

« Storage Elements and Analysis
— Introduction to sequential circuits
— Types of sequential circuits
— Storage elements
* Latches
* Flip-flops
— Sequential circuit analysis
« State tables
« State diagrams
— Circuit and System Timing
* Sequential Circuit Design
— Specification
— Assignment of State Codes
— Implementation

Introduction to Sequential Circuits

Inputs Outputs
* A Sequential Combina

circuit contains: Storage

— Storage elements: | Elements{

Latches or Flip-Flops
— Combinatorial Logic:
* Implements a multiple-output

switching function

Inputsare signals from the outside.
Outputsare signals to the outside.
Other inputs, Stater Present Stat@re signals
from storage elements.
The remaining outputs, Next Statee inputs to
storage elements.

tional

.

.

Introduction to Sequential Circuits

Inputs Outputs
PS> combina- = P
tional
. . . Storage
* Combinatorial Logic Element
— Next state function Sy

Next State = f(Inputs, State)
—Output function (Mealy)
Outputs = g(Inputs, State)
—Output function (Moore)
Outputs = h(State)
* Output function type depends on specification dfetes the
design significantly
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Types of Sequential Circuits

« Depends on the tinseat which:
— storage elements observe their inputs, and
— storage elements change their state

1 Synchronous

— Behavior defined from knowledge of its signalsliatrete
instances of time

— Storage elements observe inputs and can charigeosty in
relation to a timing signal (clock pulsttsm a cloch
2 _Asynchronous

— Behavior defined from knowledge of inputs an arstant of time
and the order in continuous time in which inputarde

— If clock just regarded as another input, all dicare
asynchronous!

Discrete Event Simulation

« In order to understand the time behavior of a
sequential circuit we use discrete event simulation
¢ Rules:
— Gates modeled by an iddaistantaneous) function and
a fixed gate delay
— Any change in input valués evaluated to see if it
causes a change in output value

— Changes in output values are scheduled for thd fixe
gate delay after the input change

— At the time for a scheduled output change, thpuut
value is changed along with any inputs it drives

Simulated NAND Gate

* Example: A 2-Input NAND gate with a 0.5 ns. delay

F(Instantaneous)
A
F
B

* Assume A and B have been 1 for a long time
* Attime t=0, A changes to a 0 at t= 0.8 ns, back.t

ay

t(ns)] A B | F(l) F Comment

- |1 1 0| 0 | A=B=1foralong time
0 |1=0]| 1|10 0] 0 |F(Instantaneous) changes to 1
0.5 0Oj1]1 10 0| F changes to 1 after a 0.5 ns del
08| 1™0|1|1=>01 F(Instantaneous) changes to 0

013 1 1 0| 1=> 0| F changes to 0 after a 0.5 ns del

Ry

Gate Delay Models

» Suppose gates with delays are
represented fan= 0.2 nsn= 0.4 ns,
n= 0.5 ns, respectively:

B

Circuit Delay Model

« Consider a simple
2-input multiplexer:
» With function:
Y=Afor S=0
Y=Bfor S=1

< nlnm>

» “Glitch” is due to delay of inverter

Storing State

¢ What if A con-
nected to Y?

¢ Circuit becomes:

« With function:

Y=BforS=1, and
Y(t) dependent on
Y(t-0.9)forS=0

< wnnw

signals!
Y is stored value in shaded are:
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Storing State (Continued)

« Simulation example as input signals change witteti
Changes occur every 100 ns, so that the tenthsdelags
are negligible.

Time| B | S | Y |Comment
1 0 | 0 ]Y “remembers” 0
1 1] 1|Y=BwhenS=1
1 0 | 1 |NowyY “remembers"’B=1forS=0
0 0 | 1 |NochangeinY when B changes
0 1 0|Y=BwhenS=1
0 0 | O ]Y“remembers"B=0forS=0
1 0 | 0 |NochangeinY when B changes

—

* Y represent the s

atd the circuit, not just an output.

Storing State (Continued)

* Suppose we pIactJ—

an inverter in the
“feedback path.” &' O

S o
B

» The following behavior results:

* The circuit is said

B S|Y Comment
to be_unstable 0 1] 0(vY=Bwhens=1
e For S =0, the 1 1]
circuit has become | 1 | 0 | 1 | Now Y “remembers” A
what is called an 1] 0] 0] Y11nslater
oscillator. Can be 1 0 1 1Y,1.1ns later
used as crude clockL1 1 0 | 0 [Y.1.1nslater

Basic (NAND) S —R Latch

Basic (NOR) S —R Latch

S (set) Q R (reset)
« “Cross-Coupling”  Cross-coupling two Q
two NAND gates gives NOR gates gives the
theS -RLatch: o) S —R Latch: —
. . R (reset) . . S (set) Q
« which has the time ¢ Which has the time
sequence behaviog; .\ .[RTS[ 0[O [Comment seque_nct'e Timeg R | S| Q|Q |Comment
1[1[ 2] ?[Stored state unknown behavior: 0| 0 ?[ ?|Stored state unknown
1{0[ 1] O0|“Set"Qto1l 0 1]1] 0/"Set’Qtol
1|1 1| O|NowQ “remembers” 1 0| 0] 1] O|NowQ “remembers”1
«S=0,R=0is 011/ 0| 1|"Reset"Qto0 1/0] 0] 1|Reset’Qto0
. 1/1] 0] 1 |Now Q “remembers” 0 0 0 | 0/] 1 |[NowQ “remembers” 0
fodeenas 0]0| 1| 1 [Both go high 1 1| 0] O |Bothgo low
input pattern 1]1[ 2 2 [Unstable! 0 | o [ 2l[ 2 ]unstable!
15 16
Clocked S - R Latch
. Addingtwo NAND S
R Latch ; Q
] — gates to the basic
S - R NAND latch C
R—T | gives the clocked —
S —R latch: Q
o | R
on « Has a time sequence behavior similar to the ftclatch
0 o I i ‘ N s except thathe S and R inputs are only observed when the

line C is high.
« C means “control” or “clock”.
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Clocked S - R Latch (continued)

e The Clocked S-R Latch can be described by a table:

S

Q Q) Q(t+1) Comment
c 0 No change
_ 0 Clear Q
R Q 1 setQ

Indeterminate
1 No change
0 Clear Q
1 SetQ

??7? Indeterminate

* The table describes
what happens after the
clock [at time (t+1)]
based on:

— current inputs (S,R) and
— current state Q(t).

R
0
1
0
1 ???
0
1
0
1

PP PPOOOO
PP, OOR PR OOIWOW

D Latch

 Adding an inverter _,

to the S-R Latch, Q

gives the D Latch: ¢

Note that there are
no “indeterminate”

states! The graphic symbol for a
Q D| Q(t+1) Comment D Latch is:

0 0 0 No change —ID QoI
01 1 SetQ

10 0 Clear Q dec op-
11 1 No Change

ol

20|

Flip-Flops

* The latch timing problem

» Master-slave flip-flop

 Edge-triggered flip-flop

« Standard symbols for storage elements
* Direct inputs to flip-flops

* Flip-flop timing

21

The Latch Timing Problem

In a sequential circuit, paths may exist through
combinational logic:

— From one storage element to another

— From a storage element back to the same storage

element

The combinational logic between a latch output
and a latch input may be as simple as an
interconnect

input D whenever the clock input C has value 1

For a clocked D-latch, the output Q depends on the

22

The Latch Timing Problem (continued)
Consider the following circuit:

D;D Q Y

ClockHc¢ op-

Suppose that initially Y = 0.

Clock ™1
Y smmm

As long as C = 1, the value of Y continues to cledng

The changes are based on the delay present toogne
through the connection from Y back to Y.

This behavior is clearly unacceptable.
Desired behaviory changes only ongeer clock pulse

23

The Latch Timing Problem (continued)

* A solution to the latch timing problem is to
breakthe closed path from Y to Y within the
storage element

» The commonly-used, path-breaking
solutions replace the clocked D-latch with:

—a master-slave flip-flop
—an edge-triggered flip-flop

24|
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S-R Master-Slave Flip-Flop

Consists of two clocked _ | Y
S-R latches in series Q
with the clock on the
second latch inverted

The input is observed

by the first latch with C = 1
The output is changed by the second latch withGC =
The path from input to output is broken by thdeti#nce in
clocking values (C =1 and C = 0).

The behavior demonstrated by the example withiizedr
by Y given previously is prevented since the clouakst
change from 1 to 0 before a change in Y based carD
occur.

Pyl
Q
Pl
Q
Ll

25
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Flip-Flop Problem

« The change in the flip-flop output is delayed bg t
pulse width which makes the circuit slower or

« S and/or R are permitted to change while C =1
— Suppose Q =0 and S goes to 1 and then back it Rw
remaining at 0
« The master latch setsto 1
* A1lis transferred to the slave
— Suppose Q =0 and S goes to 1 and back to 0 ané®R g
to 1 and back to 0
« The master latch sets and then resets
* A0 is transferred to the slave
— This behavior is calleils catching

27

Flip-Flop Solution

« Use edge-triggering instead of master-slave

« An edge-triggered flip-flop ignores the pulse while
it is at a constant level and triggers only during
transitionof the clock signal

« Edge-triggered flip-flops can be built directly at
the electronic circuit level, or

« A master-slavé® flip-flop which also exhibits
edge-triggered behaviean be used

28|

Edge-Triggered D Flip-Flop

The edge-triggered
D flip-flop is the

same as the master- c c 9
slave D flip-flop

PP Q% oo

It can be formed by:

— Replacing the first clocked S-R latch with a cled!D latch or

— Adding a D input and inverter to a master-slave fip-flop
The delay of the S-R master-slave flip-flop carabeided
since the 1s-catching behavior is not present ith
replacing S and R inputs
The change of the D flip-flop output is associatéth the
negative edge at the end of the pulse
It is called anegative-edge triggered flip-flop

29

Positive-Edge Triggered D Flip-Flop

¢ Formed by D D o—s ol—o
adding inverter . ¢
to clock input ¢ Q Qp—2

« Q changes to the value on D applied at the pesitiv
clock edge within timing constraints to be
specified

« Our choice as the standard flip-flégr most
sequential circuits

30|
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Standard Symbols for Storage Element Direct Inputs

1°ZJ

—1s - 9s - o -—p -
» At power up or at reset, all or part J;
Tr P 9= P e P —c P of a sequential circuit usually is o S ol—
SR SR Duwith 1 Control D with 0 Control initialized to a known state before
(a) Latches . . .
« Master-Slave: it begins operation
Postponed output —5— 5 10 0 T « This initialization is often done P P
indicators {:C\m 1 -5 ] 4 B -+ outside of the clocked behavior T
N R ° ° of the circuit, i.e., asynchronously.
TLTriggered SR LI Triggered SR I LTriggered D LI Triggered D

Direct R and/or S inputs that control the statéheflatches

(b) Master-Slave Flip-Flops

* Edge-Triggered: within the flip-flops are used for this initializan.
P‘é’?aT'C ° ° * For the example flip-flop shown
Indicator \>c b d>c b — 0 applied to R resets the flip-flop to the 0 state

Triggored D LTriggered 0 — 0 applied to S sets the flip-flop to the 1 state

(c) Edge-Triggered Flip-Flops

31

Flip-Flop Timing Parameters Flip-Flop Timing Parameters (continued)

* tg- setup time

* t,- hold time * t,- setup time

* t, - clock — Master-slave - Equal to the width of the triggenndse
pulse width — Edge-triggered - Equal to a time interval that is
* t,- propa- q | generally much less than the width of the the &igty
gation delay (a) Pulse-riggered (positive pulse) pulse
= oy - High-to-Low b | * t, - hold time - Often equal to zero

— tp - Low-to-High

: o * t,x - propagation delay
— b - MaX (b, oy,

— Same parameters as for gates except

— Measured from clock edge that triggers the output
change to the output change

b) Edge-triggered (negative edge)

33

Sequential Circuit Analysis Example 1
» General Model In
puts ) Outputs * Input X(t -]

— Current State =% Combina- = P ® *T D) ] >p o +A
attime (1) is [Srorage tL'ggflc' * Output: y(t) DSl G
stored inan |g t . .
artay of ements State.. (A, B(t) —
flip-flops. * What is the Output LD_ —l,

— Next State at time (t+1) ¢ Functior? r—dbe o
is a Boolean function of
State and Inputs. _ 4:E'_T_D— y

— Outputs at time (t) are a Boolean function of * What Is the Next State
State (t) and (sometimes) Inputs (t). Functior?
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Example 1(continued) Example 1(continued)
* Boolean equations * Where in time are inputs, outputs and states
for the functions: x**-:D‘LD 5 ole-a defined?
I __D-,_ b c Q A J-\;\HHHH HHH‘\ TEETE g e e e e
Next State RESET.
At+1) = A@x(D) + BOX() ] oo AR
B(t+1) = A(t)x(t) | x. Ny LT
_ D Q B N . 0{m L
y(®) =XOB(®) + A®) —dbc o O *vg_n ———
L PSSO N L
@Ly S Y e e s I
T — M
Quiput t o1+ 12 143
State Table Characteristics Example 1: State Table

« The state table can be filled in using the neatesand

« Sate table— a multiple variable table with the output equations:
following four sections: o At+1) = A(x(t) + BOx(t)

— Present Sate — the values of the state variables for each * B(t+1) = ADx(D)
allowed state. y(®) = x (OB + AD)

— Input — the input combinations allowed.
— Next-state — the value of the state at time (t+1) based on Present State Input | Next State| Outpu
the present staend the input A((‘)) B(()t) X(g A(”;) B(t+01) v(t)o
— Output — the value of the output as a function of the ) 1 0 1 0
present statend (sometimes) the input 0 1 0 0 0 1
» From the viewpoint of a truth table: 0 1 1 1 1 0
. 10 0 0 0 1
— the inputs are Input, Present State 1 0 1 1 0 0
— and the outputs are Output, Next State 11 0 0 0 1
11 1 1 0 0
39 40,
Example 1: Alternate State Table State Diagrams

« 2-dimensional table that matches well to a K-niRqgsent . o .
state rows and input columns in Gray code order. * The sequential circuit function can be represented

— A(t+1) = AQ)X() + BOX(®) in gra_phical form as a state diagrarith the
— B(t+1) = A ()x(t) following components:
- y(t) = x ®)(B(®) + A®) — A circlewith the state name in it for each state

— Adirected ardrom the Present State the Next State
for each state transition

Present Next State Output ; )
State x(t)=0 x(t)=1 |x(t)=0 x(t)=1 — Alabel on each directed andth the Inputvalues

A) B) |AMDB(t+1)  A@+DB@+D)| vty which causes the state transitiand
00 00 01 0 o0 — Alabel:
01 00 11 1 0 » On each circlevith the outputvalue produced, or
10 00 10 1 0 » On each directed awith the outputalue produced.
11 00 10 1 0

a1 42|
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State Diagrams

* Label form:
—On circlewith output included:
* state/output
* Moore type output depends only on state
—On directed arwith the outpuincluded:
* input/output
* Mealy type output depends on state and
input

43

Example 1. State Diagram

x=0/y=0,

« Which type? . .
 Diagram gets ‘
confusing for ;-
large circuits

* For small circuits,
usually easier to
understand than
the state table

44

Moore and Mealy Models

« Sequential Circuits or Sequential Machines are
also calledrinite Sate Machines (FSMs).  Two
formal models exist:

= Mealy Model
« Named after G. Mealy

» Outputs are a function of
inputs AND states

« Usually specified on the
state transition arcs.

= Moore Model
* Named after E.F. Moore.
» Outputs are a function
ONLY of states
« Usually specified on the
states.

« In contemporary design, models are sometimes
mixed Moore and Mealy

45

Moore and Mealy Example Diagrams

* Mealy Model State Diagram

maps inputs and state outputs x=1/y=0

x=0/y=0

* Moore Model State Diagram 0 x=1/y=1

maps statet® outputs

48

Moore and Mealy Example Tables

« Mealy Model state table maps inputs and
state to outputs

Present| Next State | Output
State | x=0 x=1 | x=0 x=1
0 0o 1 0 0o
1 0o 1 0o 1

* Moore Model state table maps state to

outputs Present| Next State| Output
State | x=0 x=1
0 0o 1 0
1 0o 2 0
2 0 2 1

a7

Example 2: Sequential Circuit Analysis

» Logic Dia%DD LS

—PCRQP
—

Clock CRQP
Reset—e——

48|
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Example 2: Flip-Flop Input Equations

* Variables
—Inputs: None
—Outputs: Z
—State Variables: A, B, {1

* Initialization:
—Reset to (0,0,0)

« Equations
A(t+1) = B()C(t)
B(t+1) = B(Y)C(t) + BE)C()
C(t+1) = AB)C()

49

Example 2: State Table

X' = X(t+1) ABC | ABC |Z
000[ 001 |0
A(t+1) = BE)C(H) 001[ 010 |0
B(t+1) = B()C(H) +BMHC(H | 010 | 011 |0
C(t+1) = A(H)C(t) 011| 100 |1
100| 000 |0
101] 010 |0
110 010 |0
111 100 |1

50|

Example 2: State Diagram

» Which states are used?

* What is the function of
the circuit?

51

Circuit and System Level Timing

« Consider a system
comprised of ranks
of flip-flops
connected by logic:

If the clock periods
too short, some

data changes will not
propagate through the
circuit to flip-flop
inputs before the setup

time interval begins

GEC ae]l [Po] [P
o o] ool loo] |oe

Circuit and System Level Timing(continued

« Timing components along a path from flip-flop to
flip-flop

% b }

Ftpd,FF } tpd,comB % ‘ls*’{"lslacr?‘
(a) Edge-triggered (positive edge)
|
I~ tp ‘
C
*‘tpd<FF’~eIpd,COMB'~*tslack % ts }

(b) Pulse-triggered (negative pulse)

53

Circuit and System Level Timing(continued)

« New Timing Components

—t, - clock period - The interval between occurrences of
specific clock edge in a periodic clock

— tha,coms - total delay of combinational logic along the
path from flip-flop output to flip-flop input

— tyack- €Xtra time in the clock period in addition to the
sum of the delays and setup time on a path

« Can be either positive or negative

* Must be greater than or equal to zero on all pthsorrect
operation

54|
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Circuit and System Level Timing(continued)

¢ Timing Equations
to = Giack (o, rrt toa,comst B
— For t,,greater than or equal to zero,
to=max (by ret tacoms+ O
for all paths from flip-flop output to flip-flop iput
« Can be calculated more precisely by uspg &nd
tp y values instead of ¢ values, but requires
consideration of inversions on paths

55

Calculation of Allowable t,; comg

* Compare the allowable combinational delay for ec#jc
circuit:
a) Using edge-triggered flip-flops
b) Using master-slave flip-flops
* Parameters
—tgr{max) = 1.0 ns
—t(max) = 0.3 ns for edge-triggered flip-flops
—ty=t, = 1.0 ns for master-slave flip-flops
— Clock frequency = 250 MHz

56|

Calculation of Allowable ty; ovg (continued)

* Calculations: 3= 1/clock frequency = 4.0 ns
— Edge-triggered: 48 1.0 +t,5 comg* 0.3, 1,4 com=2.7ns
—Master-slave: 4.8 1.0 +t,4 comg+ 1.0, tha,comps2.0ns
» Comparison: Suppose that for a gate, averageQ.3 ns
— Edge-triggered: Approximately 9 gates allowed qath
— Master-slave: Approximately 6 to 7 gates allowadgath

57
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