Introduction to Digital Logic

Prof. Nizamettin AYDIN
naydin@yildiz.edu.tr
naydin@ieee.org

Course Outline

Digital Computers, Number Systems, Arithmetic Operations, Decimal,
Alphanumeric, and Gray Codes
Binary Logic, Gates, Boolean Algebra, Standard Forms
Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, High-Impedance Outputs
Implementation Technology and Logic Design, Design Concepts and Automation, The Design Space, Design Procedure, The major design steps
Programmable Implementation Technologies: Read-Only Memories, Programmable
Logic Arrays, Programmable Array Logic,Technology mapping to programmable logic devices
Combinational Functions and Circuit
Arithmetic Functions and Circuits
Sequential Circuits Storage Elements and Sequential Circuit Analysis
Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
Counters, register cells, buses, \& serial operations
Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM) Memory Basics

Introduction to Digital Logic

Lecture 9

Sequential Circuits

Storage Elements and Sequential Circuit Analysis

Overview

- Storage Elements and Analysis

Introduction to sequential circuits

- Types of sequential circuits

Storage elements

- Latches
- Flip-flops

Sequential circuit analysis

- State tables
- State diagrams
- Circuit and System Timing
- Sequential Circuit Design
- Specification
- Assignment of State Codes
- Implementation

Introduction to Sequential Circuits

- Combinatorial Logic
- Next state function

Next State $=f($ Inputs, State $)$

- Output function (Mealy)

Outputs $=g$ (Inputs, State)

- Output function (Moore)

Outputs $=h($ State $)$

- Output function type depends on specification and affects the design significantly

Types of Sequential Circuits

- Depends on the times at which:
storage elements observe their inputs, and
storage elements change their state
1 Synchronous
Behavior defined from knowledge of its signals at discrete instances of time
Storage elements observe inputs and can change state only in relation to a timing signal (clock pulses from a clock)
2 Asynchronous
Behavior defined from knowledge of inputs an any instant of time
and the order in continuous time in which inputs change
If clock just regarded as another input, all circuits are
asynchronous!

Discrete Event Simulation

- In order to understand the time behavior of a sequential circuit we use discrete event simulation.
- Rules:
- Gates modeled by an ideal (instantaneous) function and a fixed gate delay
- Any change in input values is evaluated to see if it causes a change in output value
- Changes in output values are scheduled for the fixed gate delay after the input change
- At the time for a scheduled output change, the output value is changed along with any inputs it drives

Simulated NAND Gate

- Example: A 2-Input NAND gate with a 0.5 ns . delay:

- Assume A and B have been 1 for a long time
- At time $\mathrm{t}=0$, A changes to a 0 at $\mathrm{t}=0.8 \mathrm{~ns}$, back to 1

$\mathbf{t}(\mathrm{ns})$	A	B	$\mathrm{F}(\mathrm{I})$	F	Comment
$-\infty$	1	1	0	0	$\mathrm{~A}=\mathrm{B}=1$ for a long time
0	$1 \Rightarrow 0$	1	$1 \Leftarrow 0$	0	F(Instantaneous) changes to 1
0.5	0	1	1	$1 \Leftarrow 0$	F changes to 1 after a 0.5 ns delay
0.8	$1 \Leftarrow 0$	1	$1 \Rightarrow 0$	1	F(Instantaneous) changes to 0
0.13	1	1	0	$1 \Rightarrow 0$	F changes to 0 after a 0.5 ns delay

Gate Delay Models

- Suppose gates with delay $n \mathrm{~ns}$ are represented for $n=0.2 \mathrm{~ns}, n=0.4 \mathrm{~ns}$, $n=0.5 \mathrm{~ns}$, respectively:

Storing State

- What if A connected to Y?
- Circuit becomes:
- With function:

\qquad
$\mathrm{Y}(\mathrm{t})$ dependent on
$\mathrm{Y}(\mathrm{t}-0.9)$ for $\mathrm{S}=0$

B

Y

- The simple combinational circuit has now become a sequential circuit because its output is a function of a time sequence of input signals!

Y is stored value in shaded area

Storing State (Continued)

- Simulation example as input signals change with time Changes occur every 100 ns , so that the tenths of ns delays are negligible.

Time	\mathbf{B}	\mathbf{S}	\mathbf{Y}
\mathbf{Y}	Comment		
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	\mathbf{Y} "remembers" $\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{Y}=\mathbf{B}$ when $\mathbf{S}=\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	Now \mathbf{N} "remembers" $\mathbf{B}=\mathbf{1}$ for $\mathbf{S}=\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	No change in \mathbf{Y} when \mathbf{B} changes
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{Y}=\mathbf{B}$ when $\mathbf{S}=\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\mathbf{Y} "remembers" $\mathbf{B}=\mathbf{0}$ for $\mathbf{S}=\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	No change in \mathbf{Y} when \mathbf{B} changes

- Y represent the state of the circuit, not just an output.

Clocked S - R Latch

- Adding two NAND gates to the basic $\bar{S}-\overline{\mathrm{R}}$ NAND latch gives the clocked S-R latch:

- Has a time sequence behavior similar to the basic S-R latch except that the S and R inputs are only observed when the line C is high.
- C means "control" or "clock".

Clocked S - R Latch (continued)

- The Clocked S-R Latch can be described by a table:

- The table describes what happens after the clock [at time ($\mathrm{t}+1$)] based on:

$\mathrm{Q}(\mathbf{t})$	\mathbf{S}	\mathbf{R}	$\mathrm{Q}(\mathbf{t} \mathbf{1})$	Comment
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	No change
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	Clear \mathbf{Q}
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	Set \mathbf{Q}
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$? ? ?$	Indeterminate
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	No change
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	Clear \mathbf{Q}
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	Set \mathbf{Q}
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$? ? ?$	Indeterminate

D Latch

- Adding an inverter to the S-R Latch, gives the D Latch:
- Note that there are no "indeterminate" states!

The graphic symbol for a D Latch is:

Flip-Flops

- The latch timing problem
- Master-slave flip-flop
- Edge-triggered flip-flop
- Standard symbols for storage elements
- Direct inputs to flip-flops
- Flip-flop timing

The Latch Timing Problem

- In a sequential circuit, paths may exist through combinational logic:
- From one storage element to another
- From a storage element back to the same storage element
- The combinational logic between a latch output and a latch input may be as simple as an interconnect
- For a clocked D-latch, the output Q depends on the input D whenever the clock input C has value 1

The Latch Timing Problem (continued)

- Consider the following circuit
- Suppose that initially $\mathrm{Y}=0$.

Clock \qquad Y \qquad , \qquad
\qquad

- The changes are based on the delay present on the loop through the connection from Y back to Y
- This behavior is clearly unacceptable.
- Desired behavior: Y changes only once per clock pulse

The Latch Timing Problem (continued)

- A solution to the latch timing problem is to break the closed path from Y to Y within the storage element
- The commonly-used, path-breaking solutions replace the clocked D-latch with:
- a master-slave flip-flop
- an edge-triggered flip-flop

S-R Master-Slave Flip-Flop

- Consists of two clocked S-R latches in series with the clock on the second latch inverted
- The input is observed by the first latch with $\mathrm{C}=1$

- The output is changed by the second latch with $\mathrm{C}=0$
- The path from input to output is broken by the difference in clocking values $(\mathrm{C}=1$ and $\mathrm{C}=0)$.
- The behavior demonstrated by the example with D driven by Y given previously is prevented since the clock must change from 1 to 0 before a change in Y based on D can occur.

Flip-Flop Problem

- The change in the flip-flop output is delayed by the pulse width which makes the circuit slower or
- S and/or R are permitted to change while $\mathrm{C}=1$
- Suppose $\mathrm{Q}=0$ and S goes to 1 and then back to 0 with R remaining at 0
- The master latch sets to 1
- A 1 is transferred to the slave
- Suppose $\mathrm{Q}=0$ and S goes to 1 and back to 0 and R goes
to 1 and back to 0
- The master latch sets and then resets
- A 0 is transferred to the slave
- This behavior is called 1 s catching

Flip-Flop Solution

- Use edge-triggering instead of master-slave
- An edge-triggered flip-flop ignores the pulse while it is at a constant level and triggers only during a transition of the clock signal
- Edge-triggered flip-flops can be built directly at the electronic circuit level, or
- A master-slave D flip-flop which also exhibits edge-triggered behavior can be used.

Edge-Triggered D Flip-Flop

- The edge-triggered D flip-flop is the same as the masterslave D flip-flop
- It can be formed by:

- Replacing the first clocked S-R latch with a clocked D latch or
- Adding a D input and inverter to a master-slave S-R flip-flop
- The delay of the S-R master-slave flip-flop can be avoided since the 1 s -catching behavior is not present with D replacing S and R inputs
- The change of the D flip-flop output is associated with the negative edge at the end of the pulse
- It is called a negative-edge triggered flip-flop

Positive-Edge Triggered D Flip-Flop

- Formed by adding inverter to clock input

- Q changes to the value on D applied at the positive clock edge within timing constraints to be specified
- Our choice as the standard flip-flop for most sequential circuits

Standard Symbols for Storage Elements

- Master-Slave: Postponed output indicators

- Edge-Triggered:

Dynamic indicator

Direct Inputs

- At power up or at reset, all or part of a sequential circuit usually is initialized to a known state before it begins operation
- This initialization is often done outside of the clocked behavior of the circuit, i.e., asynchronously.
- Direct R and/or S inputs that control the state of the latches within the flip-flops are used for this initialization.
- For the example flip-flop shown
- 0 applied to $\overline{\mathrm{R}}$ resets the flip-flop to the 0 state
- 0 applied to $\overline{\mathrm{S}}$ sets the flip-flop to the 1 state

Flip-Flop Timing Parameters

- t_{s} - setup time
- t_{h} - hold time
- t_{w} - clock
pulse width
- t_{px} - propagation delay
$-t_{\text {PHL }}$ - High-to-Low
$-t_{\text {PLH }}$ - Low-to-High
$-t_{\mathrm{pd}}-\max \left(\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}\right)$

Flip-Flop Timing Parameters (continued)

- t_{s} - setup time
- Master-slave - Equal to the width of the triggering pulse
- Edge-triggered - Equal to a time interval that is
generally much less than the width of the the triggering pulse
- t_{h} - hold time - Often equal to zero
- t_{px} - propagation delay
- Same parameters as for gates except
- Measured from clock edge that triggers the output change to the output change

Sequential Circuit Analysis

- General Model
- Current State at time (t) is stored in an array of flip-flops
- Next State at time $(\mathrm{t}+1)$ is a Boolean function of State and Inputs.
- Outputs at time (t) are a Boolean function of State (t) and (sometimes) Inputs (t).

Example 1

- Input: $x(t)$
- Output: $y(t)$
- State: (A(t), B(t))
- What is the Output Function?
- What is the Next State Function?

State Table Characteristics

- State table - a multiple variable table with the following four sections:
- Present State - the values of the state variables for each allowed state.
- Input - the input combinations allowed.
- Next-state - the value of the state at time ($\mathrm{t}+1$) based on the present state and the input.
- Output - the value of the output as a function of the present state and (sometimes) the input.
- From the viewpoint of a truth table:
- the inputs are Input, Present State
- and the outputs are Output, Next State

Example 1 (continued)

- Where in time are inputs, outputs and states defined?

Example 1: State Table

- The state table can be filled in using the next state and output equations:
- $\mathrm{A}(\mathrm{t}+1)=\mathrm{A}(\mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{B}(\mathrm{t}) \mathrm{x}(\mathrm{t})$
- $\mathrm{B}(\mathrm{t}+1)=\overline{\mathrm{A}}(\mathrm{t}) \mathrm{x}(\mathrm{t})$
- $\mathrm{y}(\mathrm{t})=\overline{\mathrm{x}}(\mathrm{t})(\mathrm{B}(\mathrm{t})+\mathrm{A}(\mathrm{t}))$

Present State	Input	Next State	Output
$\mathbf{A}(\mathrm{t}) \mathbf{B}(\mathrm{t})$	x(t)	$\mathbf{A}(\mathbf{t}+\mathbf{1}) \mathbf{B}(\mathbf{t}+\mathbf{1})$	$\mathrm{y}(\mathrm{t})$
0 0	0	00	0
0 0	1	$0 \quad 1$	0
01	0	0	1
01	1	11	0
10	0	0	1
10	1	10	0
11	0	0	1
11	1	10	0

Example 1: Alternate State Table

- 2-dimensional table that matches well to a K-map. Present state rows and input columns in Gray code order
$-\mathrm{A}(\mathrm{t}+1)=\mathrm{A}(\mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{B}(\mathrm{t}) \mathrm{x}(\mathrm{t})$
$-\mathrm{B}(\mathrm{t}+1)=\mathrm{A}(\mathrm{t}) \mathrm{x}(\mathrm{t})$
$-\mathrm{y}(\mathrm{t})=\bar{x}(\mathrm{t})(\mathrm{B}(\mathrm{t})+\mathrm{A}(\mathrm{t}))$

Present State A(t) B(t)	Next State		Output	
	$\mathbf{x}(\mathrm{t})=0$	$\mathbf{x}(\mathrm{t})=1$	$\mathbf{x}(\mathrm{t})=0$	$x(t)=1$
	$A(t+1) B(t+1)$	$A(t+1) B(t+1)$	$\mathbf{y}(\mathrm{t})$	$\mathrm{y}(\mathrm{t})$
00	00	01	0	0
01	00	11	1	0
10	00	10	1	0
11	00	10	1	0

State Diagrams

- The sequential circuit function can be represented in graphical form as a state diagram with the following components:
- A circle with the state name in it for each state
- A directed arc from the Present State to the Next State for each state transition
- A label on each directed arc with the Input values which causes the state transition and
- A label:
- On each circle with the output value produced, or
- On each directed arc with the output value produced.

State Diagrams

- Label form:
-On circle with output included:
- state/output
- Moore type output depends only on state
-On directed arc with the output included:
- input/output
- Mealy type output depends on state and input

Example 1: State Diagram

- Which type?
- Diagram gets confusing for large circuits
- For small circuits, usually easier to understand than the state table

Moore and Mealy Models

- Sequential Circuits or Sequential Machines are also called Finite State Machines (FSMs). Two formal models exist:
- Moore Model
- Mealy Model
- Named after E.F. Moore.
- Outputs are a function ONLY of states
- Usually specified on the states.
- Named after G. Mealy inputs AND states
- Usually specified on the state transition arcs.
- Outputs are a function of
- In contemporary design, models are sometimes mixed Moore and Mealy

Moore and Mealy Example Diagrams

- Mealy Model State Diagram maps inputs and state to outputs

- Moore Model State Diagram maps states to outputs

Moore and Mealy Example Tables

- Mealy Model state table maps inputs and state to outputs

Present	Next State		Output	
State	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$
$\mathbf{0}$	0	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	0	1	0	1

- Moore Model state table maps state to outputs

Present	$\begin{array}{c}\text { Next State } \\ \text { State }\end{array}$		Output
$\mathbf{x = 0}$	$\mathbf{x}=1$		

Example 2: Sequential Circuit Analysis

- Logic Diagram:

Example 2: Flip-Flop Input Equations

- Variables
- Inputs: None
-Outputs: Z
-State Variables: A, B, C
- Initialization:
-Reset to $(0,0,0)$
- Equations
$\mathrm{A}(\mathrm{t}+1)=\mathrm{B}(\mathrm{t}) \mathrm{C}(\mathrm{t})$

$B(t+1)=\overline{\mathrm{B}}(\mathrm{t}) \mathrm{C}(\mathrm{t})+\mathrm{B}(\mathrm{t}) \overline{\mathrm{C}}(\mathrm{t})$
$\mathrm{C}(\mathrm{t}+1)=\overline{\mathrm{A}}(\mathrm{t}) \overline{\mathrm{C}}(\mathrm{t})$
$\mathrm{Z}=\mathrm{B}(\mathrm{t}) \mathrm{C}(\mathrm{t})$
$\overline{\mathrm{C}}(\mathrm{t})$

Example 2: State Table

$\mathbf{X}^{\prime}=\mathbf{X}(\mathbf{t}+\mathbf{1})$
$\mathrm{A}(\mathrm{t}+1)=\mathrm{B}(\mathrm{t}) \mathrm{C}(\mathrm{t})$
$B(t+1)=\bar{B}(t) C(t)+B(t) \bar{C}(t)$
$\mathrm{C}(\mathrm{t}+1)=\overline{\mathrm{A}}(\mathrm{t}) \overline{\mathrm{C}}(\mathrm{t})$

Example 2: State Table			
$\mathbf{X}^{\prime}=\mathbf{X}(\mathbf{t}+1)$	A B C	A'B'C'	Z
	000	001	0
$\begin{aligned} & \mathrm{A}(\mathrm{t}+1)=\mathrm{B}(\mathrm{t}) \mathrm{C}(\mathrm{t}) \\ & \mathrm{B}(\mathrm{t}+1)=\overline{\mathrm{B}}(\mathrm{t}) \mathrm{C}(\mathrm{t})+\mathrm{B}(\mathrm{t}) \overline{\mathrm{C}}(\mathrm{t}) \\ & \mathrm{C}(\mathrm{t}+1)=\overline{\mathrm{A}}(\mathrm{t}) \overline{\mathrm{C}}(\mathrm{t}) \end{aligned}$	001	010	0
	010	011	0
	$\begin{array}{lll}01 & 1\end{array}$	100	1
	100	000	0
	101	010	0
	110	010	0
	111	100	1

Circuit and System Level Timing

- Consider a system comprised of ranks of flip-flops connected by logic:
- If the clock period is too short, some data changes will not propagate through the circuit to flip-flop inputs before the setup time interval begins

Circuit and System Level Timing (continued)

- Timing components along a path from flip-flop to flip-flop

Circuit and System Level Timing (continued)

- New Timing Components
$-t_{p}$ - clock period - The interval between occurrences of a specific clock edge in a periodic clock
$-\mathrm{t}_{\mathrm{pd}, \mathrm{COMB}}$ - total delay of combinational logic along the path from flip-flop output to flip-flop input
$-\mathrm{t}_{\text {slack }}$ - extra time in the clock period in addition to the sum of the delays and setup time on a path
- Can be either positive or negative
- Must be greater than or equal to zero on all paths for correct operation

Circuit and System Level Timing (continued)

- Timing Equations $\mathrm{t}_{\mathrm{p}}=\mathrm{t}_{\text {slack }}+\left(\mathrm{t}_{\mathrm{pd}, \mathrm{FF}}+\mathrm{t}_{\mathrm{pd}, \mathrm{COMB}}+\mathrm{t}_{\mathrm{s}}\right)$
- For $t_{\text {slack }}$ greater than or equal to zero,
$\mathrm{t}_{\mathrm{p}} \geq \max \left(\mathrm{t}_{\mathrm{pd}, \mathrm{FF}}+\mathrm{t}_{\mathrm{pd}, \text { COMB }}+\mathrm{t}_{\mathrm{s}}\right)$
for all paths from flip-flop output to flip-flop input
- Can be calculated more precisely by using $\mathrm{t}_{\mathrm{PHL}}$ and $t_{\text {PLH }}$ values instead of $t_{p d}$ values, but requires consideration of inversions on paths

Calculation of Allowable $t_{\text {pd, COMB }}$

- Compare the allowable combinational delay for a specific circuit:
a) Using edge-triggered flip-flops
b) Using master-slave flip-flops
- Parameters
$-\mathrm{t}_{\mathrm{pd}, \mathrm{FF}}(\mathrm{max})=1.0 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{s}}(\max)=0.3 \mathrm{~ns}$ for edge-triggered flip-flops
$-\mathrm{t}_{\mathrm{s}}=\mathrm{t}_{\mathrm{wH}}=1.0 \mathrm{~ns}$ for master-slave flip-flops
- Clock frequency $=250 \mathrm{MHz}$

Calculation of Allowable $\mathbf{t}_{\text {pd,COMB }}$ (continued)

- Calculations: $\mathrm{t}_{\mathrm{p}}=1 /$ clock frequency $=4.0 \mathrm{~ns}$ - Edge-triggered: $4.0 \geq 1.0+\mathrm{t}_{\mathrm{pd}, \mathrm{COMB}}+0.3, \quad \mathrm{t}_{\mathrm{pd}, \mathrm{COMB}} \leq 2.7 \mathrm{~ns}$ - Master-slave: $4.0 \geq 1.0+\mathrm{t}_{\mathrm{pd}, \mathrm{COMB}}+1.0, \quad \mathrm{t}_{\mathrm{pd}, \mathrm{COMB}} \leq 2.0 \mathrm{~ns}$
- Comparison: Suppose that for a gate, average $t_{p d}=0.3 \mathrm{~ns}$
- Edge-triggered: Approximately 9 gates allowed on a path
- Master-slave: Approximately 6 to 7 gates allowed on a path

