Introduction to Digital Logic

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr naydin@ieee.org

Course Outline

- Alphanumeric, and Gray Codes
 Binary Logic, Gates, Boolean Algebra, Standard Forms
 Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level
 Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level
 Circuit Optimization
 Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates,
 High-Impedance Outputs
 Implementation Technology and Logic Design, Design Concepts and Automation,
 The Design Space, Design Procedure, The major design steps
 Programmable Implementation Technologies: Read-Only Memories, Programmable
 Logic Arrays, Programmable Array Logic, Technology mapping to programmable
 logic devices
 Combinational Functions and Circuits
 Arithmetic Functions and Circuits

- Arithmetic Functions and Circuits
 Sequential Circuits Storage Elements and Sequential Circuit Analysis
 Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
- Counters, register cells, buses, & serial operations Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM) Memory Basics

Introduction to Digital Logic

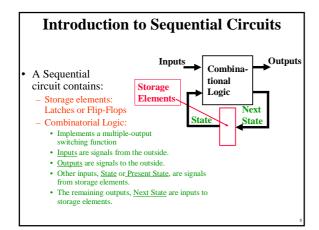
Lecture 9

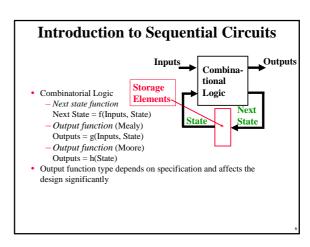
Sequential Circuits

Storage Elements and Sequential Circuit Analysis

Overview

- · Storage Elements and Analysis
 - Introduction to sequential circuits
 - Types of sequential circuits
 - Storage elements
 - Latches
 - Flip-flops
 - Sequential circuit analysis
 - · State tables
 - State diagram
- Circuit and System Timing
- Sequential Circuit Design
 - Specification
 - Assignment of State Codes
 - Implementation





Types of Sequential Circuits

- Depends on the times at which:
 - storage elements observe their inputs, and
 - storage elements change their state

1 Synchronous

- Behavior defined from knowledge of its signals at <u>discrete</u> instances of time
- Storage elements observe inputs and can change state only in relation to a timing signal (<u>clock pulses</u> from a <u>clock</u>)

2 Asynchronous

- Behavior defined from knowledge of inputs an any instant of time and the order in continuous time in which inputs change
- If clock just regarded as another input, all circuits are asynchronous!

Discrete Event Simulation

- In order to understand the time behavior of a sequential circuit we use <u>discrete event simulation</u>.
- · Rules:
 - Gates modeled by an \underline{ideal} (instantaneous) function and a $\underline{fixed\ gate\ delay}$
 - Any <u>change in input values</u> is evaluated to see if it causes a <u>change in output value</u>
 - Changes in output values are scheduled for the fixed gate delay after the input change
 - At the time for a scheduled output change, the output value is changed along with any inputs it drives

Simulated NAND Gate

• Example: A 2-Input NAND gate with a 0.5 ns. delay:

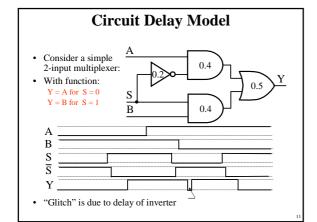


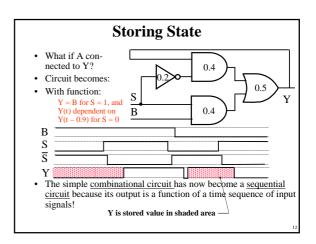
- · Assume A and B have been 1 for a long time
- At time t=0, A changes to a 0 at t= 0.8 ns, back to 1.

Γ	t (ns)	A	В	F(I)	F	Comment
ſ	- 00	1	1	0	0	A=B=1 for a long time
ſ	0	1⇒0	1	1 ← 0	0	F(Instantaneous) changes to 1
ſ	0.5	0	1	1	1 ← 0	F changes to 1 after a 0.5 ns delay
ſ	0.8	1 ← 0	1	1⇒0	1	F(Instantaneous) changes to 0
	0.13	1	1	0	1⇒0	F changes to 0 after a 0.5 ns delay

Gate Delay Models

• Suppose gates with delay n ns are represented for n = 0.2 ns, n = 0.4 ns, n = 0.5 ns, respectively:





Storing State (Continued)

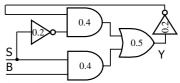
Simulation example as input signals change with time. Changes occur every 100 ns, so that the tenths of ns delays are negligible.

Time B S Y		Y	Comment	
	1	0	0	Y "remembers" 0
	1	1	1	Y = B when $S = 1$
	1	0	1	Now Y "remembers" B = 1 for S = 0
	0	0	1	No change in Y when B changes
	0	1	0	Y = B when $S = 1$
	0	0	0	Y "remembers" $B = 0$ for $S = 0$
1	1	0	0	No change in V when B changes

• Y represent the state of the circuit, not just an output.

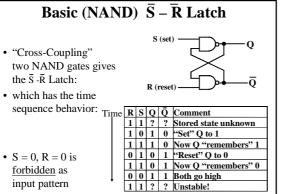
Storing State (Continued)

Suppose we place an inverter in the "feedback path."

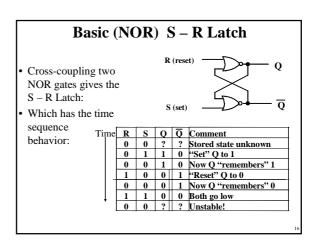


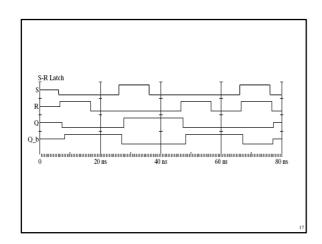
- The following behavior results:
- The circuit is said to be unstable.
- For S = 0, the circuit has become what is called an oscillator. Can be used as crude clock.

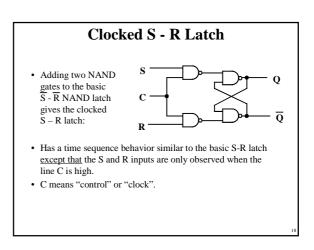
В	S	Y	Comment
0	1	0	Y = B when $S = 1$
1	1	1	
1	0	1	Now Y "remembers" A
1	0	0	Y, 1.1 ns later
1	0	1	Y, 1.1 ns later
1	0.	0	Y, 1.1 ns later



forbidden as input pattern







• The Clocked S-R Latch can be described by a table:

O(t) S R

1 0

1 1

1

1 1

Q(t+1)

1

???

Comment

No change

Indeterminate

Indeterminate

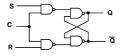
No change

Clear Q

Set Q

Clear Q

Set Q



- · The table describes what happens after the clock [at time (t+1)] based on:
 - current inputs (S,R) and
 - current state Q(t).



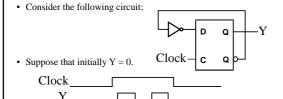
Flip-Flops

- The latch timing problem
- Master-slave flip-flop
- Edge-triggered flip-flop
- Standard symbols for storage elements
- Direct inputs to flip-flops
- Flip-flop timing

The Latch Timing Problem

- · In a sequential circuit, paths may exist through combinational logic:
 - From one storage element to another
 - From a storage element back to the same storage
- The combinational logic between a latch output and a latch input may be as simple as an interconnect
- For a clocked D-latch, the output Q depends on the input D whenever the clock input C has value 1

The Latch Timing Problem (continued)



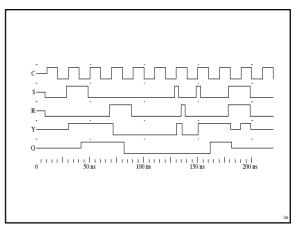
- As long as C = 1, the value of Y continues to change!
- The changes are based on the delay present on the loop through the connection from Y back to Y.
- · This behavior is clearly unacceptable.
- · Desired behavior: Y changes only once per clock pulse

The Latch Timing Problem (continued)

- A solution to the latch timing problem is to break the closed path from Y to Y within the storage element
- The commonly-used, path-breaking solutions replace the clocked D-latch with:
 - a master-slave flip-flop
 - an edge-triggered flip-flop

S-R Master-Slave Flip-Flop

- Consists of two clocked S-R latches in series with the clock on the second latch inverted
- The input is observed by the first latch with C = 1
- The output is changed by the second latch with $C=\mathbf{0}$
- The path from input to output is broken by the difference in clocking values (C = 1 and C = 0).
- The behavior demonstrated by the example with D driven by Y given previously is prevented since the clock must change from 1 to 0 before a change in Y based on D can occur.



Flip-Flop Problem

- The change in the flip-flop output is delayed by the pulse width which makes the circuit slower or
- S and/or R are permitted to change while C = 1
 - Suppose Q = 0 and S goes to 1 and then back to 0 with R remaining at 0 $\,$
 - The master latch sets to 1
 - A 1 is transferred to the slave
 - Suppose Q = 0 and S goes to 1 and back to 0 and R goes to 1 and back to 0
 - The master latch sets and then resets
 - A 0 is transferred to the slave
 - This behavior is called *1s catching*

Flip-Flop Solution

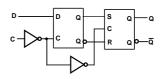
- Use edge-triggering instead of master-slave
- An *edge-triggered* flip-flop ignores the pulse while it is at a constant level and triggers only during a <u>transition</u> of the clock signal
- Edge-triggered flip-flops can be built directly at the electronic circuit level, or
- A <u>master-slave</u> D flip-flop which also exhibits <u>edge-triggered behavior</u> can be used.

Edge-Triggered D Flip-Flop

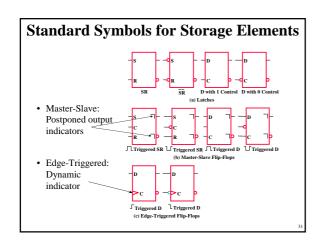
- The edge-triggered D flip-flop is the same as the master-slave D flip-flop
- It can be formed by:
 - Replacing the first clocked S-R latch with a clocked D latch or
 Adding a D input and inverter to a master-slave S-R flip-flop
- The delay of the S-R master-slave flip-flop can be avoided since the 1s-catching behavior is not present with D replacing S and R inputs
- The change of the D flip-flop output is associated with the negative edge at the end of the pulse
- It is called a negative-edge triggered flip-flop

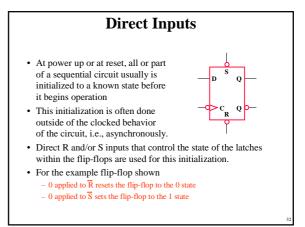
Positive-Edge Triggered D Flip-Flop

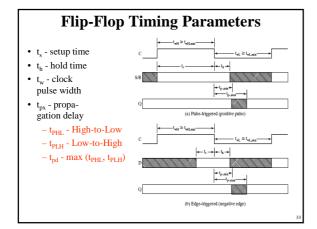
 Formed by adding inverter to clock input

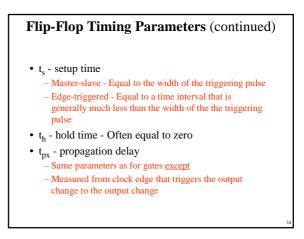


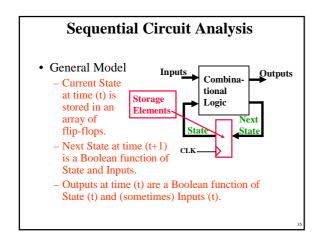
- Q changes to the value on D applied at the positive clock edge within timing constraints to be specified
- Our choice as the <u>standard flip-flop</u> for most sequential circuits

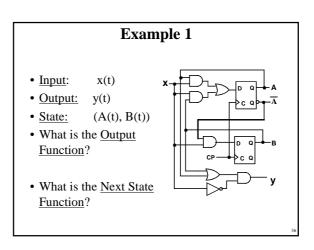


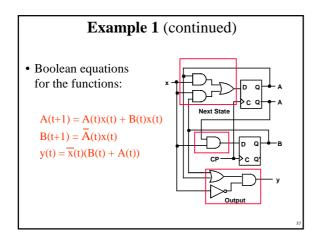






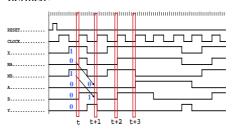






Example 1 (continued)

 Where in time are inputs, outputs and states defined?



38

State Table Characteristics

- *State table* a multiple variable table with the following four sections:
 - Present State the values of the state variables for each allowed state.
 - *Input* the input combinations allowed.
 - Next-state the value of the state at time (t+1) based on the <u>present state</u> and the <u>input</u>.
 - Output the value of the output as a function of the present state and (sometimes) the <u>input</u>.
- From the viewpoint of a truth table:
 - the inputs are Input, Present State
 - and the outputs are Output, Next State

Example 1: State Table

- The state table can be filled in using the next state and output equations:
- A(t+1) = A(t)x(t) + B(t)x(t)
- $B(t+1) = \overline{A}(t)x(t)$
- y(t) = x(t)(B(t) + A(t))

Present State	Input	Next State	Output
A(t) B(t)	x(t)	A(t+1) B(t+1)	y(t)
0 0	0	0 0	0
0 0	1	0 1	0
0 1	0	0 0	1
0 1	1	1 1	0
1 0	0	0 0	1
1 0	1	1 0	0
1 1	0	0 0	1
1 1	1	1 0	0

Example 1: Alternate State Table

- 2-dimensional table that matches well to a K-map. Present state rows and input columns in Gray code order.
 - A(t+1) = A(t)x(t) + B(t)x(t)
 - $-B(t+1) = \overline{A}(t)x(t)$
 - $-y(t) = \overline{x}(t)(B(t) + A(t))$

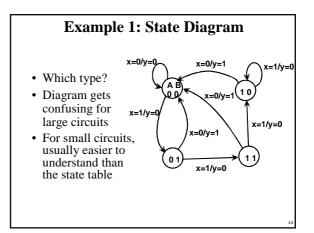
Present	Next	Output		
State	x(t)=0	x(t)=1	x(t)=0	x(t)=1
A(t) B(t)	A(t+1)B(t+1)	A(t+1)B(t+1)	y(t)	y(t)
0 0	0 0	0 1	0	0
0 1	0 0	1 1	1	0
1 0	0 0	1 0	1	0
1 1	0 0	1 0	1	0

State Diagrams

- The sequential circuit function can be represented in graphical form as a <u>state diagram</u> with the following components:
 - A <u>circle</u> with the state name in it for each state
 - A <u>directed arc</u> from the <u>Present State</u> to the <u>Next State</u> for each state transition
 - A label on each <u>directed arc</u> with the <u>Input</u> values which causes the <u>state transition</u>, and
 - A label:
 - On each <u>circle</u> with the <u>output</u> value produced, or
 - \bullet On each $\underline{\text{directed arc}}$ with the $\underline{\text{output}}$ value produced.

State Diagrams

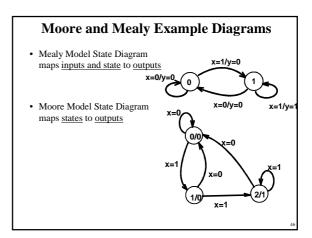
- Label form:
 - -On <u>circle</u> with output included:
 - state/output
 - Moore type output depends only on state
 - -On <u>directed arc</u> with the <u>output</u> included:
 - input/output
 - Mealy type output depends on state and input



Moore and Mealy Models

- Sequential Circuits or Sequential Machines are also called Finite State Machines (FSMs). Two formal models exist:
- Moore Model
 - Named after E.F. Moore.
 - Outputs are a function ONLY of states
 - Usually specified on the
- Mealy Model
 - Named after G. Mealy Outputs are a function of

 - inputs AND states
 Usually specified on the state transition arcs.
- In contemporary design, models are sometimes mixed Moore and Mealy



Moore and Mealy Example Tables

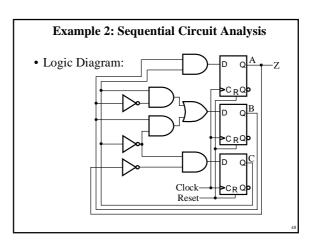
• Mealy Model state table maps inputs and state to outputs

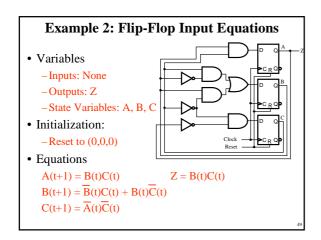
Present	Next State	Output		
State	x=0 x=1	x=0 x=1		
0	0 1	0 0		
1	0 1	0 1		

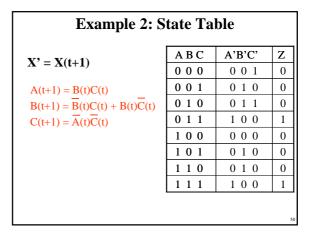
• Moore Model state table maps state to

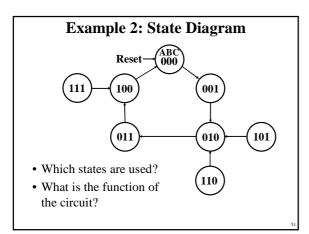
outputs

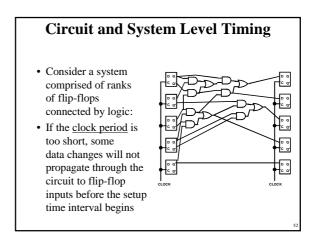
Present	Next State	Output			
State	x=0 x=1				
0	0 1	0			
1	0 2	0			
2	0 2	1			











Circuit and System Level Timing (continued) • Timing components along a path from flip-flop to flip-flop C - t_{pd,FF} | ← t_{pd,COMB} ← t_{d,coMB} ←

• New Timing Components - t_p - clock period - The interval between occurrences of a specific clock edge in a periodic clock - t_{pd,COMB} - total delay of combinational logic along the path from flip-flop output to flip-flop input - t_{slack} - extra time in the clock period in addition to the sum of the delays and setup time on a path • Can be either positive or negative • Must be greater than or equal to zero on all paths for correct operation

Circuit and System Level Timing (continued)

- Timing Equations
 - $t_{p} = t_{slack} + (t_{pd,FF} + t_{pd,COMB} + t_{s})$
 - For t_{slack} greater than or equal to zero,
 - $t_{p} \geq max \ (t_{pd,FF} + t_{pd,COMB} + t_{s})$
 - for all paths from flip-flop output to flip-flop input
- Can be calculated more precisely by using t_{PHL} and t_{PLH} values instead of t_{pd} values, but requires consideration of inversions on paths

Calculation of Allowable $t_{pd,COMB}$

- Compare the allowable combinational delay for a specific circuit:
 - a) Using edge-triggered flip-flopsb) Using master-slave flip-flops
- Darameters
 - $-t_{pd,FF}(max) = 1.0 \text{ ns}$
 - $-t_s(max) = 0.3$ ns for edge-triggered flip-flops
 - $-t_s = t_{wH} = 1.0$ ns for master-slave flip-flops
 - Clock frequency = 250 MHz

Calculation of Allowable $t_{pd,COMB}$ (continued)

- Calculations: $t_p = 1/\text{clock frequency} = 4.0 \text{ ns}$
 - Edge-triggered: $4.0 \ge 1.0 + t_{pd,COMB} + 0.3$, $t_{pd,COMB} \le 2.7 \text{ ns}$
 - $\, Master-slave; \, 4.0 \geq 1.0 + \, t_{pd,COMB} + 1.0, \qquad t_{pd,COMB} \leq 2.0 \, \, \text{ns}$
- Comparison: Suppose that for a gate, average $t_{pd} = 0.3 \text{ ns}$
- Edge-triggered: Approximately 9 gates allowed on a path
- Master-slave: Approximately 6 to 7 gates allowed on a path