Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr
naydin@ieee.org

Introduction to Digital Logic

[

o~ wn

Course Outline

Digital Computers, Number Systems, Arithmetic @piens, Decimal,
Alphanumeric, and Gray Codes

Binary Logic, Gates, Boolean Algebra, Standard Borm

Circuit Optimization, Two-Level Optimization, Mdpanipulation, Multi-Level
Circuit Optimization

Additional Gates and Circuits, Other Gate Types]iisive-OR Operator and Gateq,
High-Impedance Outputs

Implementation Technology and Logic Design, Desipncepts and Automation,
The Design Space, Design Procedure, The majorriesigs

Programmable Implementation Technologies: Redg-@emories, Programmable
Logic Arrays, Programmable Array Logic, Technologgpping to programmable
logic devices

Combinational Functions and Circuits

Arithmetic Functions and Circuits

Sequential Circuits Storage Elements and Sequéitiait Analysis

10. Sequential Circuits, Sequential Circuit DesigriSRiagrams, State Tables

11. Counters, register cells, buses, & serial opmrati

12. Sequencing and Control, Datapath and Control, Atgoic State Machines (ASM)
13. Memory Basics

Lecture 8

Circuits

Introduction to Digital Logic

Arithmetic Functions and

Overview

Iterative combinational circuits
Binary adders
— Half and full adders
— Ripple carry and carry lookahead adders
Binary subtraction
Binary adder-subtractors
— Signed binary numbers
— Signed binary addition and subtraction
— Overflow
Binary multiplication
Other arithmetic functions
— Design by contraction

* Arithmetic functions
— Operate on binary vectors

function
¢ Cell - subfunction block

(1D) or multipledimensions

Iterative Combinational Circuits

— Use the same subfunction in each bit position

¢ Can design functional block for subfunction and
repeat to obtain functional block for overall

« lterative array- an array of interconnected cells
 An iterative array can be in a singlenension

Block Diagram of a 1D lIterative Array

AniBni AL‘ jx Alo Bio
Xn1 X Xy
X =] e < X
vh] celnt [Yoy L Yo | Celll | ¥y | CellO | Yg
Cpa Cy Co

« Example: n =32
— Number of inputs = ?
— Truth table rows = ?
— Equations with up to ? input variables
— Equations with huge number of terms
— Design impractical!
« lterative array takes advantage of the reguléoitpake
design feasible

Copyright 2000 N. AYDIN. All rights
reserved.

Functional Blocks: Addition

Binary addition used frequently
Addition Development:

functional block,

— Full-Adder (FA), a 3-input bit-wise addition
functional block,

— Ripple Carry Adderan iterative array to
perform binary additionand

structure to improve performance.

— Half-Adder(HA), a 2-input bit-wise addition

— Carry-Look-Ahead AddgCLA), a hierarchical

Functional Block: Half-Adder

* A 2-input, 1-bit width binary adder that perforthe
following computations:
X

0 1 1
4Y *0 +#1 +0 +1
cs 00 01 01 10

« A half adder adds two bits to produce a two-bitisu

¢ The sum is expressed as a Xxvlc s
sum bit, S and a carry hiC

0 0f O 0

« The half adder can be specified o1l 0o 1
as a truth table for S and &

1 0|1 0 1

1 111 0

Logic Simplification: Half-Adder

¢ The K-Map for S, C is:

¢ This is a pretty trivial map!

By inspection:
S=x+xO=x0vY

S=(X+Y)QX +Y)

and
cC=XxXL

C=(xm)

* These equations lead to several implementations.

Five Implementations: Half-Adder

* We can deri_ve fgllowing sets of equations for -helder:
(@) S=XIV+X ¥ (d)s=(X+Y)C
c=XL _ C=(X+Y)
(b) S=(X+Y)QX +Y) (e)s=x0v
c=x c=XI

(©) S=(C+X1¥)
c=XL
* (a), (b), and (e) are SOP, POS, and XOR implementat
for S.

* In (c), theC function is used as a term in the AND-NOR
implementation o, and in (d), th& function is used in a
POS term foiS.

Implementations: Half-Adder

* The most common half X —4
adder implementation is (e) Y*?Dis
s=x0Ov ;Di

C
c=XI
« A NAND only implementation is: [c
s=(x+Y)T X
C=((xm) s

Functional Block: Full-Adder

« Afull adder is similar to a half adder, but indés a carry-
in bit from lower stages. Like the half-addeicamputes
a sum bit, S and a carry bit, C.

— For a carry-in (2) of Z 0 0 0 0
0, it is the same as X 0 0 1 1
the half-adder: +Y +0 +1 +0 +1

cs 00 01 01 10

— For a carry-in

(2Z) of 1: z 1 1 1 1
X 0 0 1 1
+Y +0 +1 40 +1
cs 01 10 10 11

5

Copyright 2000 N. AYDIN. All rights
reserved.

Logic Optimization: Full-Adder

¢ Full-Adder Truth Table:

PRrPRPRPOOOO(X
rroorrooX
rOrORrRORO
PRROROOO
POORORRO

¢ Full-Adder K-Map:

S Y Cc Y

Equations: Full-Adder

¢ From the K-Map, we get:
S=XYZ+XY Z+XYZ+XYZ
C=XY+XZ+YZ
¢ The S function is the three-bit XOR function (Odd
Function):
s=x0OvOz

* The Carry bit Cis 1 if both X and Y are 1 (the sarﬁ) or
if the sum is 1 and a carry-in (Z) occurs. Thusa@ be
re-written as:

CcC=xXy+(Xx0Ov)z

¢ Theterm X-Y igarry generate
* Theterm XJY is carry propagate

Implementation: Full Adder

¢ Full Adder Schematic

e Here X,Y,and Z,and C
(from the previous pages)
are A, B, Gand G,
respectively. Also,
G = generate and
P = propagate.
* Note: This is really a combination
of a 3-bit odd function (for S)) and Cui
Carry logic (for G):

(G = Generate) OR (P =Propagate AND=Carry In)
Co=G +P-Ci

Binary Adders

¢ To add multiple operands, we “bundle” logicalrsits
together into vectors and use functional blocks oparate
on the vectors

« Example: 4-bit ripple carry Description S;bzsclrigt Name
adder: Adds input vectors Camyn 0110 c
A(3:0) and B(3:0) to get d
asum vector S(3:0) Augen 10111 A

Addend 0011 B;

* Note: carry out of cell i Sum 1110 s
becomes carry in of cell
i+1 Carry out 0011 G

4-bit Ripple-Carry Binary Adder

« A four-bit Ripple Carry Adder made from four 1-
bit Full Adders:

By As B, A By A Bo Ao

[T OTT o1
r{ Ff = Ff = Ff =] Ff [

Ca S S S S

Carry Propagation & Delay

* One problem with the addition of binary numberghis
length of time to propagate the ripple carry frdra east
significant bit to the most significant bit.

« The gate-level propagation path for a 4-bit ripgaery
adder of the last example:

* Note: The "long path" is from #or B, though the circuit
to S,

Copyright 2000 N. AYDIN. All rights
reserved.

Carry Lookahead

¢ Given Stage i from a Full Adder, we know that
there will be a carry generateden A = B;="1",
whether or not there is a carry-in.

« Alternately, there will be
carry propagated the
“half-sum” is "1" and a
carry-in, G occurs.

* These two signal conditions
are calledyeneratedenoted
as G, andpropagate denoted
as Rrespectively and are
identified in the circuit:

AiBi a

Carry Lookahead (continued)

* In the ripple carry adder:

— Gi, Pi, and Si are loc&b each cell of the adder
— Ciis also local each cell

« In the carry lookahead adder, in order to redhedength

of the carry chain, Ci is changed to a more globatfion
spanning multiple cells

« Defining the equations for the Full Adder in teofithe P

and G:
R=A 0B G =AiB,
S =R OC; Ci+1=Gi+RC;

20|

Carry Lookahead Development

* C,,, can be removed from the cells and used to
derive a set of carry equations spanning multiple
cells.

» Beginning at the cell 0 with carry in,C
C1=Gy+ R Cy
C=G;+ P, Ci= G+ PGy + P, Cp)
=G, + P,Gy + PP, Cy
C3=G,+ P,Cy= G+ Py(G + PGy + PPy Cp)
=Gy + PGy + PP Gy + P,PyP, Cy
Cy=G3+ P;C3= G5+ PG, + PP,G,
+ P3P,P1Gg + P3P,P, P, Cy

21

Group Carry Lookahead Logic

Figure 5-6 in the text shows the implementatiothese

equations for four bits. This could be extendethtwe than foul

bits; in practice, due to limited gate fan-in, sesftension is no

feasible.

Instead, the concept is extended another levebbgidering

group generat€G,) andgroup propagatéP, ;) functions:
Go3=G3+P3G+P3P, Gy P3P P Ry Gy

Po-3=P3P PPy
Using these two equations:

C4 =Go-3+Po-3Co
Thus, it is possible to have four 4-bit adders arse of the sam:
carry lookahead circuit to speed up 16-bit addition

>

22

CELEC

23

Unsigned Subtraction

* Algorithm:
— Subtract the subtrahend N from the minuend M
— If no end borrow occurs, then N, and the result is a
non-negative number and correct.
— If an end borrow occurs, the N > M and the diffee
M - N + 2is subtracted from™@and a minus sign is
appended to the result.

« Examples: 0 1
1001 0100
-0111 -0111
0010 1101
10000
-1101
(=) 0011

24|

Copyright 2000 N. AYDIN. All rights
reserved.

Unsigned Subtraction(continued)

¢ The subtraction,2- N, is taking the 2's
complement of N

¢ To do both unsigned addition and unsigned

subtraction requires: || ’% ¥
Quite complex! Ty j2az]
Goal: Shared simpler o
logic for both addition
and subtraction
Introduce complements
as an approach

Binary adder ‘ Binary subtractor

i

Selective
2's complementer

Complement

o 1
s Quadruple 2-to-1
multiplexer

Subtract/Add

Result

25

Complements

« Two complements:

— Diminished Radix Complement of N
¢ (r-1)'s complement for radix r
* 1's complement for radix 2
« Defined as (t-1)-N

— Radix Complement
* r's complement for radix r
« 2's complement in binary
« Defined ast-N

« Subtraction is done by adding the complement ef t
subtrahend

« If the result is negative, takes its 2's completnen

26|

=)

Binary 1's Complement

e Forr=2,N=0111001% n=8 (8 digits):
(m—1) =256 -1=255 or 1111111}
¢ The 1's complement of 01110Q14 then:
11111111
— 01110011
10001100
Since the 2—1 factor consists of all 1's and since
1-0=1and %1 =0, the one's complement is

obtained by complementing each individual bit
(bitwise NOT).

27

Binary 2's Complement

» Forr=2,N=0111001% n=8 (8 digits),
we have:
() = 256, or 100000009
e The 2's complement of 01110011 is then:
100000000
—01110011
10001101

« Note the result is the 1's complement plus 1,
a fact that can be used in designing
hardware

28|

Alternate 2's Complement Method

* Given: ann-bit binary number, beginning at the leag
significant bit and proceeding upward:
— Copy all least significant 0’s
— Copy the first 1
— Complement all bits thereafter.
e 2's Complement Example:
10010100
— Copy underlined bits:
100
— and complement bits to the left:
0110100

—

29

Subtraction with 2's Complement

« For n-digit, unsignediumbers M and N, find M
N in base 2:

— Add the 2's complement of the subtrahend N to the
minuend M:

M+ (@2"-N)=M-N+2"

— If M >N, the sum produces end carfywhich is
discarded; from above, MN remains.

— If M <N, the sum does not produce an end cardy an
from above, is equal td'2 (N - M), the 2's
complement of (N-M).

— To obtain the resutt (N — M) , take the 2's
complement of the sum and place # its left.

30|

Copyright 2000 N. AYDIN. All rights
reserved.

Unsigned 2’s Complement Subtraction Example 1

« Find 01010109— 0100001}

01010100 ! 01010100
— 01000011-25°9M™0 4 10111101
00010001

 The carry ofl indicates that no correction of
the result is required.

31

Unsigned 2’s Complement Subtraction Example 2

« Find 01000011— 01010100

01000011 0 01000011
— 010101002's comp+ 10101100
1110111125 0mp,
00010001

» The carry of0 indicates that a correction of
the result is required.

* Result = —(00010001)

32,

Subtraction with Diminished Radix Complement

« For n-digit, unsignedumbers M and N, find M N in
base 2:
— Add the 1's complement of the subtrahend N tartimeiend M:
M+ (@2"-1-N)=M-N+21-1
— If M >N, the result is excess by 21. The end carry@when
discarded removesd'2leaving a result short by 1. To fix this
shortage, whenever and end carry occurs, addnkih$B
position. This is called thend-around carry
— If M <N, the sum does not produce an end cardy iom above,
isequalto 2-1-(N-M), the 1's complement of
(N=M).
— To obtain the resutt (N — M) , take the 1's complement of the sum
and place & to its left.

33

Unsigned 1's Complement Subtraction - Example

« Find 01010109— 0100001}
1

01010100 0101010
— 01000011Y'S€MP + 10111100
00010000
+1
00010001
» The end-around carry occurs.

34

=

Unsigned 1's Complement Subtraction Example 2

* Find 01000011- 010101009

01000011 0 01000011
— 010101001s comp+ 10101011
111011101’ comp,
00010001

» The carry of 0 indicates that a correction of
the result is required.

« Result = — (00010001)

35

Signed Integers

 Positive numbers and zero can be representeddigned
n-digit, radixr numbers. We need a representation for
negative numbers.

To represent a sign (+ or —) we need exactly oarerhit
of information (1 binary digit gives'2 2 elements which
is exactly what is needed).

Since computers use binary numbers, by conventioa,
most significant bit is interpreted as a sign bit:

SGo- BAG

where:
S= 0 for Positive numbers

S=1 for Negative numbers
and a= 0 or 1 represent the magnitude in some form.

36|

Copyright 2000 N. AYDIN. All rights
reserved.

*Signed-Magnitude here the n-1 digits are
interpreted as a positive magnitude.

are two possibilities here:
— Signed 1's Complement

» Uses 1's Complement Arithmetic
— Signed 2's Complement

* Uses 2's Complement Arithmetic

Signed Integer Representations

«Signed-Complementhere the digits are interpreted
as the rest of the complement of the number. €Ther

37

Signed Integer Representation Example
e r=2,n=3
Number | Sign-Mag. | 1's Comp. | 2's Comp.
+3 011 011 011
+2 010 010 010
+1 001 001 001
+0 000 000 000
-0 100 111 —
-1 101 110 111
-2 110 101 110
-3 111 100 101
-4 — — 100
38

Signed-Magnitude Arithmetic

« If the parity of the three signs is 0O:
1. Add the magnitudes.
2. Check for overflow (a carry out of the MSB)

first operand.
« If the parity of the three signs is 1:
1. Subtract the second magnitude from the first.
2. If a borrow occurs:
— take the two’s complement of result

sign of the first operand.
3. Overflow will never occur.

3. The sign of the result is the same as the digineo

» and make the result sign the complement of the

39

Sign-Magnitude Arithmetic Examples

* Example 1: 0010 (+2)
+0101 (+5)
111 (7)
1(borrow)
010 (+2)
+1101 +(-5)
101=>2scomp=2011(-3)
010 (-2)
-0101 -(5)
111 (-7)

« Example 2:

Example 3:

40

« Addition:
1. Add the numbers including the sign bits,

or using an end-around carry (1's Complement).

and the sign of the result is different, an ovevflias
occurred.

¢ Subtraction:

Form the complement of the number you are
subtracting and follow the rules for addition.

Signed-Complement Arithmetic

discarding a carry out of the sign bits (2's Comgglet)

2. If the sign bits were the same for both numbers

3. The sign of the result is computed in step 1.

a1

Signed 2's Complement Examples

e Example1: 1101 (-3)

+0011 (+3)
10000 (0)

e Example2: 1101 (-3) 1101 (-3)
-0011 -(+3) 1101(3)
1010 (6) 11010 (-6)

42|

Copyright 2000 N. AYDIN. All rights
reserved.

Signed 1's Complement Examples

e Example 1: 1101 (-2)
+0011 (+3)
10000=>0000%#=>0001

* Example2: 1101 (-2)

~0011-(+3)
1010 (-5)

43

2’'s Complement Adder/Subtractor

Subtraction can be done by addition of the 2's Gement.
1. Complement each bit (1's Complement.)
2. Add 1 to the result.

The circuit shown computes A + Band A —B:

For S =1, subtract,

the 2’'s complement &, 4,
of B is formed by using

XORs to form the 1's
comp and adding the 1
applied to G.

For S=0, add, B is
passed through
unchanged L M i i

44

Overflow Detection

Overflowoccurs ifn + 1 bits are required to contain the
result from an n-bit addition or subtraction
Overflow can occur for:
— Addition of two operands with the same sign
— Subtraction of operands with different signs
Signed number overflow cases with correct resgit s

0O 0 11
+0 -1 -0 +1
o 0 1 1

Detection can be performed by examining the resgtts
which should match the signs of the top operand

45

Overflow Detection

« Signed number cases with carrigsandC,_; shown for correct result
signs:

00 00 11 11

0 0 1 1
+0 -1 -0 +1
0 0 1 1

« Signed number cases with carries shown for ernameesult signs
(indicating overflow):

01 01 10 10
0 0 1 1
+0 -1 -0 +1
1 1 0 0

¢ Simplest way to implement overflow= C.®C,_,

* This works correctly only if 1's complement and #eition of the
carry in of 1 is used to implement the complemémt@iOtherwise fails
for-10...0

48

Binary Multiplication

 The binary digit multiplication table is
trivial:
0 b=1
0
1

(axb) b
a=0
a=1

o o

* This is simply the Boolean AND function.

« Form larger products the same way we
form larger products in base 10.

a7

Review - Decimal Example: (237 x 149)

* Partial products are: 23, 237x 4, and

237x1

* Note that the partial product 2 37
summation fon digit, base 10 X1 4 9
numbers requires addingup 2 1 3 3
to n digits (with carries). 9 4 8 -

« Note alson x mdigit + 23 7 - -
multiply generates up 3531 3

to anm + ndigit result.

48|

Copyright 2000 N. AYDIN. All rights
reserved.

Binary Multiplication Algorithm

We execute radix 2 multiplication by:
— Computing partial products, and
— Justifying and summing the partial products. (same
decimal)
To compute partial products:
— Multiply the row of multiplicand digits by each ttiplier
digit, one at a time.
— With binary numbers, partial products are verypeh
They are either:
« all zero (if the multiplier digit is zero), or
« the same as the multiplicand (if the multipliegitlis one).
Note: No carries are added in partial product
formation!

49

Example: (101 x 011) Base 2

« Partial products are: 1(11, 101x 1, and
101x0

10

* Note that the partial product <« 0 1
summation fon digit, base 2
numbers requires adding up Lo
to n digits (with carries) in 101
a column. 0 00

« Note alsan x mdigit 0 01 11

multiply generates up to an + ndigit
result (same as decimal).

50|

Multiplier Boolean Equations

We can also make anx m “block” multiplier and
use that to form partial products.

Example: 2 2 — The logic equations for each
partial-product binary digit are shown below:

We need to "add" the columns to get

the product bits PO, P1, P2, and P3. b, b
Note that some X a a,
columns may (ag+by) (ap-by)

generate carries. + (By-b) (a-hg
P, P, P, P,

51

Multiplier Arrays Using Adders

« An implementation of the 22
multiplier array is Ao
shown:

Ay
B, By

A A

AB, AB,
AB. AR,

52,

Multiplier Using Wide Adders

A more “structured” way to develop arx m
multiplier is to sum partial products using adder
trees

The partial products are formed usingrexnm
array of AND gates

Partial products are summed using m — 1 adders of
width n bits

Example: 4-bit by 3-bit adder
Following figure shows a 4 x 3 = 12 element array
of AND gates and two 4-bit adders

53

54|

Copyright 2000 N. AYDIN. All rights

reserved.

Cellular Multiplier Array

Column Sum from above

¢ Another way to imple- o)

ment multipliers is to US&; «;
ann x mcellular array
structure of uniform

elements as shown: T,

e Each element computes a
single bit product equal cary(; 1)
to a-q, and implements
a single bit full adder

—=— a[j]

Column Sum to below

Carry [j, (k-1)]

55

Other Arithmetic Functions

« Convenient to design the functional blocks
by contraction- removal of redundancy
from circuit to which input fixing has been
applied

 Functions

—Incrementing
—Decrementing
—Multiplication by Constant
—Division by Constant
—Zero Fill and Extension

56|

Design by Contraction

« Contraction is a technique for simplifying
the logic in a functional block to implement
a different function

—The new function must be realizable from the
original function by applying rudimentary
functions to its inputs

—Contraction is treated here only for application
of Os and 1s (not for X and X)

— After application of Os and 1s, equations or the
logic diagram are simplified by using rules
given on pages 224 - 225 of the text.

57

Design by Contraction Example

« Contraction of a ripple carry adder to incremefen = 3
— Set B =001

L &% |

S

,,
W
e e

— The middle cell can be repeated to make an inaramevithn > 3.

58|

Incrementing & Decrementing

¢ Incrementing
— Adding a fixed value to an arithmetic variable
— Fixed value is often 1, callesbunting (up
—Examples: A+ 1,B+4
— Functional block is callethcrementer

« Decrementing
— Subtracting a fixed value from an arithmetic Vialea
— Fixed value is often 1, calleunting (dowih
—Examples: A-1,B-4
— Functional block is calledecrementer

59

Multiplication/Division by 2"

* (a) gﬂ;lltg)éicatio%&

—Shift leftby 2 & C o8 G G

¢ (b) Division
by 100 2 1
— Shift right by 2 H“*\‘
—Remainder G G a Iy Ci G
preserved ®

60|

Copyright 2000 N. AYDIN. All rights
reserved.

10

Multiplication by a Constant

 Multiplication of B(3:0) by 101
 See text Figure 5-13 (a) for contraction

Zero Fill

« Zero fill - filling an m-bit operand with Os to
become am-bit operand witm > m

representation
bits:
0000000001110101

bits:
1111111111110101

« Extension increase in the number of bits at the
MSB end of an operand by using a complement

— Copies the MSB of the operand into the new postion
— Positive operand example - 01110101 extended to 16

— Negative operand example - 11110101 extended to 16

63

Copyright 2000 N. AYDIN. All rights
reserved.

'13 BJ '11 Bf z i '13 BJ B 8o « Filling usually is applied to the MSB end of
the operand, but can also be done on the
cany 4-bit Adder LSB end
output Sum » Example: 11110101 filled to 16 bits
l i l l l —MSB end: 0000000011110101
Cs Cs c, Cq c, C, Co —LSB end: 1111010100000000
Extension

11

