Introduction to Digital Logic

Prof. Nizamettin AYDIN
naydin@yildiz.edu.tr
naydin@ieee.org

Introduction to Digital Logic

Lecture 8

Arithmetic Functions and Circuits

Course Outline

Digital Computers, Number Systems, Arithmetic Operations, Decimal,
Alphanumeric, and Gray Codes
Binary Logic, Gates, Boolean Algebra, Standard Forms
Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, High-Impedance Outputs
Implementation Technology and Logic Design, Design Concepts and Automation, The Design Space, Design Procedure, The major design steps
6. Programmable Implementation Technologies: Read-Only Memories, Programmable

Logic Arrays, Programmable Array Logic,Technology mapping to programmable logic devices
Combinational Functions and Circuits
Arithmetic Functions and Circuits
Sequential Circuits Storage Elements and Sequential Circuit Analysis
Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
Counters, register cells, buses, \& serial operations
Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
Memory Basics

Overview

- Iterative combinational circuits
- Binary adders
- Half and full adders
- Ripple carry and carry lookahead adders
- Binary subtraction
- Binary adder-subtractors
- Signed binary numbers
- Signed binary addition and subtraction
- Overflow
- Binary multiplication
- Other arithmetic functions
- Design by contraction

Iterative Combinational Circuits

- Arithmetic functions
- Operate on binary vectors
- Use the same subfunction in each bit position
- Can design functional block for subfunction and repeat to obtain functional block for overall function
- Cell - subfunction block
- Iterative array - an array of interconnected cells
- An iterative array can be in a single dimension (1D) or multiple dimensions

Block Diagram of a 1D Iterative Array

- Example: $\mathrm{n}=32$
- Number of inputs = ?
- Truth table rows = ?
- Equations with up to? input variables
- Equations with huge number of terms

Design impractical!

- Iterative array takes advantage of the regularity to make design feasible

Functional Blocks: Addition

- Binary addition used frequently
- Addition Development:
- Half-Adder (HA), a 2-input bit-wise addition functional block,
- Full-Adder (FA), a 3-input bit-wise addition functional block,
- Ripple Carry Adder, an iterative array to perform binary addition, and
- Carry-Look-Ahead Adder (CLA), a hierarchical structure to improve performance.

Functional Block: Half-Adder

- A 2-input, 1-bit width binary adder that performs the following computations:

$$
\begin{array}{rrrrr}
X & 0 & 0 & 1 & 1 \\
+Y & +0 & +1 & +0 & +1 \\
\hline \mathbf{C S} & 00 & 01 & 01 & 10
\end{array}
$$

- A half adder adds two bits to produce a two-bit sum
- The sum is expressed as a sum bit, S and a carry bit, C
- The half adder can be specified as a truth table for S and $\mathrm{C} \Rightarrow$

X	Y	C	S
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0
0	1	0	1
1	0	0	1
1	1	1	0

Logic Simplification: Half-Adder

- The K-Map for S, C is:
- This is a pretty trivial map!

By inspection:
$\mathbf{S}=\mathbf{X} \cdot \overline{\mathbf{Y}}+\overline{\mathbf{X}} \cdot \mathbf{Y}=\mathbf{X} \oplus \mathbf{Y}$

$\mathbf{S}=(\mathbf{X}+\mathbf{Y}) \cdot \overline{(\mathbf{X}}+\overline{\mathbf{Y}})$
and
$\mathbf{C}=\mathbf{X} \cdot \mathbf{Y}$
$\mathbf{C}=\overline{(\overline{(X \cdot Y)})}$

- These equations lead to several implementations.

Five Implementations: Half-Adder

- We can derive following sets of equations for a half-adder:
(a) $S=X \cdot \bar{Y}+\bar{X} \cdot Y$
(d) $\underline{\mathbf{S}}=(\underline{X}+\underline{Y}) \cdot \overline{\mathbf{C}}$
$\mathbf{C}=\mathbf{X} \cdot \mathbf{Y}$
$\bar{C}=(\overline{\mathbf{X}}+\overline{\mathbf{Y}})$
(b) $\underset{\mathbf{C}}{\mathbf{S}}=(\mathbf{X}+\mathbf{Y}) \cdot(\overline{\mathbf{X}}+\overline{\mathbf{Y}})$
(e) $S=X \oplus Y$
c) $\mathbf{S}=\underline{\mathbf{X} \cdot \mathbf{Y}}(\mathbf{C}+\overline{\mathbf{X}} \cdot \overline{\mathbf{Y}})$
$\mathbf{C}=\mathbf{X} \cdot \mathbf{Y}$
- (a), (b), and (e) are SOP, POS, and XOR implementations for S.
- In (c), the \mathbf{C} function is used as a term in the AND-NOR implementation of \mathbf{S}, and in (d), the $\overline{\mathbf{C}}$ function is used in a POS term for \mathbf{S}.

Implementations: Half-Adder

- The most common half adder implementation is (e)

$$
\begin{aligned}
& \mathbf{S}=\mathbf{X} \oplus \mathbf{Y} \\
& \mathbf{C}=\mathbf{X} \cdot \mathbf{Y}
\end{aligned}
$$

- A NAND only implementation is:

$$
\begin{aligned}
& \mathbf{S}=(\mathbf{X}+\mathbf{Y}) \cdot \overline{\mathbf{C}} \\
& \mathbf{C}=\overline{(\overline{(\mathbf{X} \cdot \mathbf{Y})})}
\end{aligned}
$$

Functional Block: Full-Adder

- A full adder is similar to a half adder, but includes a carryin bit from lower stages. Like the half-adder, it computes a sum bit, S and a carry bit, C.

- For a carry-in (Z) of	\mathbf{Z}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
0, it is the same as	\mathbf{X}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
the half-adder:	$\mathbf{+ Y}$	$\mathbf{+ 0}$	$\mathbf{+ 1}$	$\mathbf{+ 0}$	$\underline{+1}$
	$\mathbf{C S}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{0 1}$	$\mathbf{1 0}$
- For a carry- in	\mathbf{Z}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
(Z) of 1 :	\mathbf{X}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
	$\mathbf{+ Y}$	$\mathbf{+ 0}$	$\mathbf{+ 1}$	$\mathbf{+ 0}$	$\underline{\mathbf{+ 1}}$
	$\mathbf{C S}$	$\mathbf{0 1}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 1}$

Logic Optimization: Full-Adder

- Full-Adder Truth Table:

- Full-Adder K-Map:

Equations: Full-Adder

- From the K-Map, we get:

$$
\begin{aligned}
& \mathbf{S}=\mathbf{X} \overline{\mathbf{Y}} \mathbf{Z}+\overline{\mathbf{X}} \mathbf{Y} \overline{\mathbf{Z}}+\overline{\mathbf{X}} \mathbf{Y} \mathbf{Z}+\mathbf{X Y Z} \\
& \mathbf{C}=\mathbf{X} \mathbf{Y}+X \mathbf{Z}+\mathbf{Y} \mathbf{Z}
\end{aligned}
$$

- The S function is the three-bit XOR function (Odd Function):

$$
\mathbf{S}=\mathbf{X} \oplus \mathbf{Y} \oplus \mathbf{Z}
$$

- The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or if the sum is 1 and a carry-in (Z) occurs. Thus C can be re-written as:

$$
\mathbf{C}=\mathbf{X Y}+(\mathbf{X} \oplus \mathbf{Y}) \mathbf{Z}
$$

- The term $\mathrm{X} \cdot \mathrm{Y}$ is carry generate.
- The term $\mathrm{X} \oplus \mathrm{Y}$ is carry propagate.
Implementation: Full Adder
- Full Adder Schematic
- Here X, Y, and Z , and C
(from the previous pages)
are $\mathrm{A}, \mathrm{B}, \mathrm{C}_{\mathrm{i}}$ and C_{o},
respectively. Also,
$\mathrm{G}=$ generate and
$\mathrm{P}=$ propagate.
- Note: This is really a combination
of a 3-bit odd function (for S$)$) and
Carry logic (for $\left.\mathrm{C}_{\mathrm{o}}\right)$:
$\left(\mathrm{G}=\mathrm{Generate)}\right.$ OR ($\mathrm{P}=$ Propagate AND $\mathrm{C}_{\mathrm{i}}=$ Carry In)
$\mathrm{Co}=\mathrm{G}+\mathrm{P} \cdot \mathrm{Ci}$

Binary Adders

- To add multiple operands, we "bundle" logical signals together into vectors and use functional blocks that operate on the vectors
- Example: 4-bit ripple carry adder: Adds input vectors $\mathrm{A}(3: 0)$ and $\mathrm{B}(3: 0)$ to get a sum vector $S(3: 0)$
- Note: carry out of cell i becomes carry in of cell i +1

Description	$\begin{array}{\|c} \hline \text { Subscript } \\ \mathbf{3 2 1 0} \end{array}$	Name
Carry In	0110	C_{i}
Augend	1011	$\mathrm{A}_{\mathbf{i}}$
Addend	$\underline{0011}$	B_{i}
Sum	1110	S_{i}
Carry out	0011	$\mathrm{C}_{\text {i+1 }}$

4-bit Ripple-Carry Binary Adder

- A four-bit Ripple Carry Adder made from four 1bit Full Adders:

Carry Propagation \& Delay

- One problem with the addition of binary numbers is the length of time to propagate the ripple carry from the least significant bit to the most significant bit.
- The gate-level propagation path for a 4-bit ripple carry adder of the last example:

- Note: The "long path" is from A_{0} or B_{0} though the circuit to S_{3}.

Carry Lookahead

- Given Stage i from a Full Adder, we know that there will be a carry generated when $\mathrm{A}_{\mathrm{i}}=\mathrm{B}_{\mathrm{i}}=" 1 "$, whether or not there is a carry-in.
- Alternately, there will be carry propagated if the "half-sum" is "1" and a carry-in, C_{i} occurs.
- These two signal conditions are called generate, denoted as G_{i}, and propagate, denoted as P_{i} respectively and are identified in the circuit:

Carry Lookahead (continued)

- In the ripple carry adder:

Gi, Pi, and Si are local to each cell of the adder

- Ci is also local each cell
- In the carry lookahead adder, in order to reduce the length of the carry chain, Ci is changed to a more global function spanning multiple cells
- Defining the equations for the Full Adder in term of the P_{i} and G_{i} :

$$
\begin{array}{lc}
\mathbf{P}_{\mathbf{i}}=\mathbf{A}_{\mathbf{i}} \oplus \mathbf{B}_{\mathbf{i}} & \mathbf{G}_{\mathbf{i}}=\mathbf{A}_{\mathbf{i}} \mathbf{B}_{\mathbf{i}} \\
\mathbf{S}_{\mathbf{i}}=\mathbf{P}_{\mathbf{i}} \oplus \mathbf{C}_{\mathbf{i}} & \mathbf{C}_{\mathbf{i}+1}=\mathbf{G}_{\mathbf{i}}+\mathbf{P}_{\mathbf{i}} \mathbf{C}_{\mathbf{i}}
\end{array}
$$

Carry Lookahead Development

- $\mathrm{C}_{\mathrm{i}+1}$ can be removed from the cells and used to derive a set of carry equations spanning multiple cells.
- Beginning at the cell 0 with carry in C_{0} :
$C_{1}=G_{0}+P_{0} C_{0}$
$C_{2}=G_{1}+P_{1} C_{1}=G_{1}+P_{1}\left(G_{0}+P_{0} C_{0}\right)$
$=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}$
$\mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{C}_{2}=\mathrm{G}_{2}+\mathrm{P}_{2}\left(\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{0}\right)$ $=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}$
$C_{4}=G_{3}+P_{3} C_{3}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}$
$+\mathbf{P}_{\mathbf{3}} \mathbf{P}_{\mathbf{2}} \mathbf{P}_{\mathbf{1}} \mathbf{G}_{\mathbf{0}}+\mathbf{P}_{\mathbf{3}} \mathbf{P}_{\mathbf{2}} \mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{0}} \mathbf{C}_{\mathbf{0}}$

Unsigned Subtraction

- Algorithm:
- Subtract the subtrahend N from the minuend M
- If no end borrow occurs, then $\mathrm{M} \geq \mathrm{N}$, and the result is a
non-negative number and correct.
- If an end borrow occurs, the $\mathrm{N}>\mathrm{M}$ and the difference $\mathrm{M}-\mathrm{N}+2^{\mathrm{n}}$ is subtracted from 2^{n}, and a minus sign is appended to the result

Unsigned Subtraction (continued)

- The subtraction, $2^{\mathrm{n}}-\mathrm{N}$, is taking the 2 's complement of N
- To do both unsigned addition and unsigned subtraction requires:
- Quite complex!
- Goal: Shared simpler logic for both addition and subtraction
- Introduce complements as an approach

Binary 1's Complement

- For $r=2, N=01110011_{2}, n=8$ (8 digits):
$\left(\mathrm{r}^{\mathrm{n}}-1\right)=256-1=255_{10}$ or 11111111_{2}
- The 1 's complement of 01110011_{2} is then:

11111111
$-\underline{01110011}$
10001100

- Since the $2^{\mathrm{n}}-1$ factor consists of all 1 's and since $1-0=1$ and $1-1=0$, the one's complement is obtained by complementing each individual bit (bitwise NOT).

Complements

- Two complements:
- Diminished Radix Complement of N
- $(r-1$)'s complement for radix r
- 1's complement for radix 2
- Defined as $\left(\mathrm{r}^{\mathrm{n}}-1\right)-\mathrm{N}$
- Radix Complement
- r's complement for radix r
- 2 's complement in binary
- Defined as $\mathrm{r}^{\mathrm{n}}-\mathrm{N}$
- Subtraction is done by adding the complement of the subtrahend
- If the result is negative, takes its 2's complement

Binary 2's Complement

- For $r=2, N=01110011_{2}, n=8$ (8 digits), we have:
$\left(\mathrm{r}^{\mathrm{n}}\right)=256_{10}$ or 100000000_{2}
- The 2 's complement of 01110011 is then:

$$
\begin{array}{r}
100000000 \\
-\frac{01110011}{10001101}
\end{array}
$$

- Note the result is the 1's complement plus 1 , a fact that can be used in designing hardware

Alternate 2's Complement Method

- Given: an n-bit binary number, beginning at the least significant bit and proceeding upward:
- Copy all least significant 0's
- Copy the first 1
- Complement all bits thereafter.
- 2's Complement Example:

10010100

- Copy underlined bits:

100

- and complement bits to the left:

01101100

Subtraction with 2's Complement

- For n -digit, unsigned numbers M and N , find $\mathrm{M}-$ N in base 2:
- Add the 2 's complement of the subtrahend N to the minuend M :

$$
\mathrm{M}+\left(2^{\mathrm{n}}-\mathrm{N}\right)=\mathrm{M}-\mathrm{N}+2^{\mathrm{n}}
$$

- If $\mathrm{M} \geq \mathrm{N}$, the sum produces end carry r^{n} which is discarded; from above, $\mathrm{M}-\mathrm{N}$ remains.
- If $\mathrm{M}<\mathrm{N}$, the sum does not produce an end carry and, from above, is equal to $2^{n}-(N-M)$, the 2 's complement of ($\mathrm{N}-\mathrm{M}$).
- To obtain the result - $(\mathrm{N}-\mathrm{M})$, take the 2 's complement of the sum and place a - to its left.

Unsigned 2's Complement Subtraction Example 1

- Find $01010100_{2}-01000011_{2}$

- The carry of 1 indicates that no correction of the result is required.

Subtraction with Diminished Radix Complement

- For n-digit, unsigned numbers M and N, find $M-N$ in base 2:

Add the 1's complement of the subtrahend N to the minuend M : $\mathrm{M}+\left(2^{\mathrm{n}}-1-\mathrm{N}\right)=\mathrm{M}-\mathrm{N}+2^{\mathrm{n}}-1$
If $\mathrm{M} \geq \mathrm{N}$, the result is excess by $2^{\mathrm{n}}-1$. The end carry 2^{n} when discarded removes 2^{n}, leaving a result short by 1 . To fix this shortage, whenever and end carry occurs, add 1 in the LSB position. This is called the end-around carry.

- If $\mathrm{M}<\mathrm{N}$, the sum does not produce an end carry and, from above, is equal to $2^{\mathrm{n}}-1-(\mathrm{N}-\mathrm{M})$, the 1 's complement of ($\mathrm{N}-\mathrm{M}$)
To obtain the result $-(\mathrm{N}-\mathrm{M})$, take the 1 's complement of the sum and place a - to its left.

Unsigned 2's Complement Subtraction Example 2

- Find $01000011_{2}-01010100_{2}$

$$
\begin{aligned}
& 0100001101000011 \\
& -\underline{01010100} \xrightarrow{2 ’ s c o m p}+\underline{10101100} \\
& 11101111 \text { 2's comp } \\
& 00010001
\end{aligned}
$$

- The carry of 0 indicates that a correction of the result is required.
- Result $=-(00010001)$

Unsigned 1's Complement Subtraction - Example 1

- Find $01010100_{2}-01000011_{2}$

$-\underline{01000011} \xrightarrow{\text { 1's comp }}+$	01010100
	$\underline{10111100}$
	00010000
	+1
	00010001

- The end-around carry occurs.

Unsigned 1's Complement Subtraction Example 2

- Find $01000011_{2}-01010100_{2}$

$$
-\underline{01000011} \begin{array}{r}
\mathbf{0}_{0} 01000011 \\
-\underline{01010100} \\
\text { l's comp } \\
+\frac{10101011}{111011101} \\
\\
\\
\\
\text { l's comp }
\end{array}
$$

- The carry of 0 indicates that a correction of the result is required.
- Result $=-(00010001)$

Signed Integers

- Positive numbers and zero can be represented by unsigned n -digit, radix r numbers. We need a representation for negative numbers.
- To represent a sign (+ or -) we need exactly one more bit of information (1 binary digit gives $2^{1}=2$ elements which is exactly what is needed).
- Since computers use binary numbers, by convention, the most significant bit is interpreted as a sign bit:

$$
\mathrm{s} \mathrm{a}_{\mathrm{n}-2} \ldots \mathrm{a}_{2} \mathrm{a}_{1} \mathrm{a}_{0}
$$

where:
$\mathrm{S}=0$ for Positive numbers
$\mathrm{S}=1$ for Negative numbers
and $\mathrm{a}_{\mathrm{i}}=0$ or 1 represent the magnitude in some form.

Signed Integer Representations

-Signed-Magnitude - here the $\mathrm{n}-1$ digits are interpreted as a positive magnitude.
-Signed-Complement - here the digits are interpreted as the rest of the complement of the number. There are two possibilities here:

- Signed l's Complement
- Uses 1's Complement Arithmetic
- Signed 2's Complement
- Uses 2's Complement Arithmetic

Signed Integer Representation Example

- $\mathrm{r}=2, \mathrm{n}=3$

Number	Sign -Mag.	1's Comp.	2's Comp.
+3	011	011	011
+2	010	010	010
+1	001	001	001
+0	000	000	000
-0	100	111	-
-1	101	110	111
-2	110	101	110
-3	111	100	101
-4	-	-	100

Signed-Magnitude Arithmetic

- If the parity of the three signs is 0 :

1. Add the magnitudes.
2. Check for overflow (a carry out of the MSB)
3. The sign of the result is the same as the sign of the first operand.

- If the parity of the three signs is 1 :

1. Subtract the second magnitude from the first.
2. If a borrow occurs:

- take the two's complement of result
- and make the result sign the complement of the sign of the first operand.

3. Overflow will never occur.

Sign-Magnitude Arithmetic Examples

- Example 1: $0010(+2)$

$$
+\begin{gathered}
+0101(+5) \\
0111(7) \\
1 \text { (borrow) }
\end{gathered}
$$

- Example 2: 0010 (+2)

$$
+1101+(-5)
$$

$$
1101 \Rightarrow 2 \mathrm{~s} \text { comp } \Rightarrow>1011(-3)
$$

Example 3: 1010 (-2)

$$
-0101-(5)
$$

1111 (-7)

Signed-Complement Arithmetic

- Addition:

1. Add the numbers including the sign bits, discarding a carry out of the sign bits (2 's Complement), or using an end-around carry (1's Complement).
2. If the sign bits were the same for both numbers and the sign of the result is different, an overflow has occurred.
3. The sign of the result is computed in step 1 .

- Subtraction:

Form the complement of the number you are subtracting and follow the rules for addition.

Signed 2's Complement Examples

- Example 1: 1101 (-3)
$+\underline{0011(+3)}$ 10000 (0)
- Example 2: 1101 (-3) $1101(-3)$ $-\underline{0011-(+3) \quad \underline{1101(-3)}}$ 1010 (-6) 11010 (-6)

Signed 1's Complement Examples

- Example 1: 1101 (-2)
$+\underline{0011(+3)}$
10000 => $0000+1$ => 0001
- Example 2: 1101 (-2)

$$
-\frac{0011-(+3)}{1010(-5)}
$$

2's Complement Adder/Subtractor

- Subtraction can be done by addition of the 2 's Complement.

1. Complement each bit (1's Complement.)
2. Add 1 to the result.

- The circuit shown computes $\mathrm{A}+\mathrm{B}$ and $\mathrm{A}-\mathrm{B}$:
- For $S=1$, subtract, the 2's complement of B is formed by using XORs to form the 1's comp and adding the 1 applied to C_{0}.
- For $S=0$, add, B is passed through unchanged

Overflow Detection

- Signed number cases with carries C_{n} and C_{n-1} shown for correct result signs:
- Overflow occurs if $n+1$ bits are required to contain the result from an n-bit addition or subtraction
- Overflow can occur for:
- Addition of two operands with the same sign
- Subtraction of operands with different signs
- Signed number overflow cases with correct result sign

$$
\begin{array}{rrrr}
0 & 0 & 1 & 1 \\
+\underline{0} & -\underline{1} & -\underline{0} & +\frac{1}{1}
\end{array}
$$

- Detection can be performed by examining the result signs which should match the signs of the top operand

00	00	11	11
0	0	1	1
$+\underline{0}$	$-\frac{1}{0}$	$-\underline{0}$	$+\frac{1}{1}$

- Signed number cases with carries shown for erroneous result signs (indicating overflow):

$$
\begin{array}{rrrr}
01 & 01 & 10 & 10 \\
0 & 0 & 1 & 1 \\
+\underline{0} & -\frac{1}{1} & -\frac{0}{0} & +\frac{1}{0}
\end{array}
$$

- Simplest way to implement overflow $V=C_{n} \oplus C_{n}$
- This works correctly only if 1 's complement and the addition of the carry in of 1 is used to implement the complementation! Otherwise fails for $-10 \ldots 0$

Binary Multiplication

- The binary digit multiplication table is trivial:

$$
\begin{array}{ccc}
(\mathbf{a} \times \mathbf{b}) & \mathbf{b}=\mathbf{0} & \mathbf{b}=\mathbf{1} \\
\mathbf{a}=\mathbf{0} & 0 & 0 \\
\mathbf{a}=\mathbf{1} & \mathbf{0} & \mathbf{1}
\end{array}
$$

- This is simply the Boolean AND function.
- Form larger products the same way we form larger products in base 10 .

Review - Decimal Example: $(237 \times 149)_{10}$

- Partial products are: $237 \times 9,237 \times 4$, and 237×1
- Note that the partial product summation for n digit, base 10 numbers requires adding up to n digits (with carries).

$9481-$
+2371
35313

 to an $m+n$ digit result.

Binary Multiplication Algorithm

- We execute radix 2 multiplication by:
- Computing partial products, and
- Justifying and summing the partial products. (same as decimal)
- To compute partial products:
- Multiply the row of multiplicand digits by each multiplier digit, one at a time.
- With binary numbers, partial products are very simple!

They are either:

- all zero (if the multiplier digit is zero), or
- the same as the multiplicand (if the multiplier digit is one).
- Note: No carries are added in partial product formation!

Example: (101 x 011) Base 2

- Partial products are: $101 \times 1,101 \times 1$, and 101×0

101 summation for n digit, base 2 101
$\times 101$ numbers requires adding up $1 \quad 0 \quad 1$ to n digits (with carries) in a column.

- Note also $n \times m$ digit
 multiply generates up to an $m+n$ digit result (same as decimal).

Multiplier Boolean Equations

- We can also make an $n \times m$ "block" multiplier and use that to form partial products.
- Example: 2×2 - The logic equations for each partial-product binary digit are shown below:
- We need to "add" the columns to get the product bits P0, P1, P2, and P3.
- Note that some columns may generate carries.

Multiplier Using Wide Adders

- A more "structured" way to develop an $n \times m$ multiplier is to sum partial products using adder trees
- The partial products are formed using an $n \times m$ array of AND gates
- Partial products are summed using $m-1$ adders of width n bits
- Example: 4-bit by 3-bit adder
- Following figure shows a $4 \times 3=12$ element array of AND gates and two 4-bit adders

Multiplier Arrays Using Adders

- An implementation of the 2×2 multiplier array is shown:

Cellular Multiplier Array

- Another way to implement multipliers is to use an $n \times m$ cellular array structure of uniform elements as shown:
- Each element computes a single bit product equal to $\mathrm{a}_{\mathrm{i}} \cdot \mathrm{b}_{\mathrm{j}}$, and implements a single bit full adder

Other Arithmetic Functions

- Convenient to design the functional blocks by contraction - removal of redundancy from circuit to which input fixing has been applied
- Functions
- Incrementing
-Decrementing
-Multiplication by Constant
- Division by Constant
-Zero Fill and Extension

Design by Contraction

- Contraction is a technique for simplifying the logic in a functional block to implement a different function
- The new function must be realizable from the original function by applying rudimentary functions to its inputs
- Contraction is treated here only for application of 0 s and 1 s (not for X and X)
- After application of 0 s and 1 s , equations or the logic diagram are simplified by using rules given on pages 224-225 of the text.

Design by Contraction Example

- Contraction of a ripple carry adder to incrementer for $n=3$
- Set B $=001$

- The middle cell can be repeated to make an incrementer with $n>3$.

Incrementing \& Decrementing

- Incrementing
- Adding a fixed value to an arithmetic variable
- Fixed value is often 1, called counting (up)
- Examples: A + 1, B + 4
- Functional block is called incrementer
- Decrementing
- Subtracting a fixed value from an arithmetic variable
- Fixed value is often 1, called counting (down)
- Examples: A - 1, B - 4
- Functional block is called decrementer

Multiplication/Division by $\mathbf{2 n}^{\text {n }}$

- (a) Multiplication by 100
- Shift left by 2

- (b) Division
by 100
-Shift right by 2
-Remainder
preserved

Multiplication by a Constant

- Multiplication of $\mathrm{B}(3: 0)$ by 101
- See text Figure 5-13 (a) for contraction

Zero Fill

- Zero fill - filling an m-bit operand with 0 s to become an \boldsymbol{n}-bit operand with $n>m$
- Filling usually is applied to the MSB end of the operand, but can also be done on the LSB end
- Example: 11110101 filled to 16 bits
-MSB end: 0000000011110101
-LSB end: 1111010100000000

Extension

- Extension - increase in the number of bits at the MSB end of an operand by using a complement representation
- Copies the MSB of the operand into the new positions
- Positive operand example - 01110101 extended to 16 bits:

0000000001110101

- Negative operand example - 11110101 extended to 16 bits:

1111111111110101

