
Copyright 2000 N. AYDIN. All rights
reserved. 1

1

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

naydin@ieee.org

Introduction to Digital Logic

2

Course Outline
1. Digital Computers, Number Systems, Arithmetic Operations, Decimal,

Alphanumeric, and Gray Codes
2. Binary Logic, Gates, Boolean Algebra, Standard Forms
3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level

Circuit Optimization
4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates,

High-Impedance Outputs
5. Implementation Technology and Logic Design, Design Concepts and Automation,

The Design Space, Design Procedure, The major design steps
6. Programmable Implementation Technologies: Read-Only Memories, Programmable

Logic Arrays, Programmable Array Logic,Technology mapping to programmable
logic devices

7. Combinational Functions and Circuits
8. Arithmetic Functions and Circuits
9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
11. Counters, register cells, buses, & serial operations
12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
13. Memory Basics

3

Lecture 8

Arithmetic Functions and Arithmetic Functions and
CircuitsCircuits

Introduction to Digital Logic

4

Overview

• Iterative combinational circuits
• Binary adders

– Half and full adders
– Ripple carry and carry lookahead adders

• Binary subtraction
• Binary adder-subtractors

– Signed binary numbers
– Signed binary addition and subtraction
– Overflow

• Binary multiplication
• Other arithmetic functions

– Design by contraction

5

Iterative Combinational Circuits

• Arithmetic functions
– Operate on binary vectors

– Use the same subfunction in each bit position

• Can design functional block for subfunction and
repeat to obtain functional block for overall
function

• Cell - subfunction block

• Iterative array- an array of interconnected cells

• An iterative array can be in a singledimension
(1D) or multipledimensions

6

Cell n-1
Xn-1

Yn-1

A n-1Bn-1

Cn-1

Xn

Yn
Cell 1

X1

Y1

A 1

C1

Cell 0
X0

Y0

B0

C0

X2

Y2

A 0B1

Block Diagram of a 1D Iterative Array

• Example: n = 32
– Number of inputs = ?

– Truth table rows = ?

– Equations with up to ? input variables

– Equations with huge number of terms

– Design impractical!

• Iterative array takes advantage of the regularity to make
design feasible

Copyright 2000 N. AYDIN. All rights
reserved. 2

7

Functional Blocks: Addition

• Binary addition used frequently
• Addition Development:

– Half-Adder(HA), a 2-input bit-wise addition
functional block,

– Full-Adder(FA), a 3-input bit-wise addition
functional block,

– Ripple Carry Adder, an iterative array to
perform binary addition, and

– Carry-Look-Ahead Adder(CLA), a hierarchical
structure to improve performance.

8

Functional Block: Half-Adder

• A 2-input, 1-bit width binary adder that performs the
following computations:

• A half adder adds two bits to produce a two-bit sum

• The sum is expressed as a
sum bit, S and a carry bit, C

• The half adder can be specified
as a truth table for S and C ⇒

X 0 0 1 1
+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

X Y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

9

Logic Simplification: Half-Adder

• The K-Map for S, C is:
• This is a pretty trivial map!

By inspection:

and

• These equations lead to several implementations.

Y

X

0 1

321

1

S Y

X

0 1

32 1

C

)YX()YX(S

YXYXYXS

++++⋅⋅⋅⋅++++====
⊕⊕⊕⊕====⋅⋅⋅⋅++++⋅⋅⋅⋅====

)(C

YXC

)YX(⋅⋅⋅⋅====
⋅⋅⋅⋅====

10

Five Implementations: Half-Adder

• We can derive following sets of equations for a half-adder:

• (a), (b), and (e) are SOP, POS, and XOR implementations
for S.

• In (c), the C function is used as a term in the AND-NOR
implementation of S, and in (d), the function is used in a
POS term forS.

YXC
)YX()YX(S)b(

⋅⋅⋅⋅====
++++⋅⋅⋅⋅++++====

YXC
YXYXS)a(

⋅⋅⋅⋅====
⋅⋅⋅⋅++++⋅⋅⋅⋅====

YXC
)(S)c(YXC

⋅⋅⋅⋅====
==== ⋅⋅⋅⋅++++

YXC
YXS)e(

⋅⋅⋅⋅====
⊕⊕⊕⊕====

)YX(C
C)YX(S)d(

++++====
⋅⋅⋅⋅++++====

C

11

Implementations: Half-Adder

• The most common half
adder implementation is (e)

• A NAND only implementation is:

YXC
YXS

⋅⋅⋅⋅====
⊕⊕⊕⊕====

)(C)YX(⋅⋅⋅⋅====

X
Y

C

S

X

Y

C

S

C)YX(S ⋅⋅⋅⋅++++====

12

Functional Block: Full-Adder

• A full adder is similar to a half adder, but includes a carry-
in bit from lower stages. Like the half-adder, it computes
a sum bit, S and a carry bit, C.

– For a carry-in (Z) of
0, it is the same as
the half-adder:

– For a carry- in
(Z) of 1:

Z 0 0 0 0
X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

Z 1 1 1 1
X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 1 1 0 1 0 1 1

Copyright 2000 N. AYDIN. All rights
reserved. 3

13

Logic Optimization: Full-Adder

• Full-Adder Truth Table:

• Full-Adder K-Map:

X Y Z C S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

X

Y

Z

0 1 3 2

4 5 7 6
1

1

1

1

S

X

Y

Z

0 1 3 2

4 5 7 6
1 11

1

C

14

Equations: Full-Adder

• From the K-Map, we get:

• The S function is the three-bit XOR function (Odd
Function):

• The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or
if the sum is 1 and a carry-in (Z) occurs. Thus C can be
re-written as:

• The term X·Y is carry generate.

• The term X⊕Y is carry propagate.

ZYZXYXC
ZYXZYXZYXZYXS

++++++++====
++++++++++++====

ZYXS ⊕⊕⊕⊕⊕⊕⊕⊕====

Z)YX(YXC ⊕⊕⊕⊕++++====

15

Implementation: Full Adder

• Full Adder Schematic

• Here X, Y, and Z, and C
(from the previous pages)
are A, B, Ci and Co,
respectively. Also,

G = generate and
P = propagate.

• Note: This is really a combination
of a 3-bit odd function (for S)) and
Carry logic (for Co):

(G = Generate) OR (P =Propagate AND Ci = Carry In)

Co = G + P · Ci

A i Bi

Ci

Ci+1

Gi

Pi

Si

16

Binary Adders

• To add multiple operands, we “bundle” logical signals
together into vectors and use functional blocks that operate
on the vectors

• Example: 4-bit ripple carry
adder: Adds input vectors
A(3:0) and B(3:0) to get
a sum vector S(3:0)

• Note: carry out of cell i
becomes carry in of cell
i + 1

Description Subscript
3 2 1 0

Name

Carry In 0 1 1 0 Ci

Augend 1 0 1 1 Ai
Addend 0 0 1 1 Bi

Sum 1 1 1 0 Si

Carry out 0 0 1 1 Ci+1

17

4-bit Ripple-Carry Binary Adder

• A four-bit Ripple Carry Adder made from four 1-
bit Full Adders:

B3 A 3

FA

B2 A 2

FA

B1

S3C4

C0

C3 C2 C1

S2 S1 S0

A 1

FA

B0 A 0

FA

18

Carry Propagation & Delay

• One problem with the addition of binary numbers is the
length of time to propagate the ripple carry from the least
significant bit to the most significant bit.

• The gate-level propagation path for a 4-bit ripple carry
adder of the last example:

• Note: The "long path" is from A0 or B0 though the circuit
to S3.

A3
B3

S3

B2

S2

B1

S1 S0

B0

A2 A1 A0

C4

C3 C2 C1 C0

Copyright 2000 N. AYDIN. All rights
reserved. 4

19

Carry Lookahead

• Given Stage i from a Full Adder, we know that
there will be a carry generatedwhen Ai = Bi = "1",
whether or not there is a carry-in.

• Alternately, there will be a
carry propagatedif the
“half-sum” is "1" and a
carry-in, Ci occurs.

• These two signal conditions
are called generate,denoted
as Gi, and propagate, denoted
as Pi respectively and are
identified in the circuit:

A i Bi

Ci

Ci+1

Gi

Pi

Si

20

Carry Lookahead (continued)

• In the ripple carry adder:
– Gi, Pi, and Si are localto each cell of the adder

– Ci is also local each cell

• In the carry lookahead adder, in order to reduce the length
of the carry chain, Ci is changed to a more global function
spanning multiple cells

• Defining the equations for the Full Adder in term of the Pi

and Gi:

iiiiii BAGBAP ====⊕⊕⊕⊕====

iii1iiii CPGCCPS ++++====⊕⊕⊕⊕==== ++++

21

Carry Lookahead Development

• Ci+1 can be removed from the cells and used to
derive a set of carry equations spanning multiple
cells.

• Beginning at the cell 0 with carry in C0:

C1 = G0 + P0 C0

C4 = G3 + P3 C3 = G3 + P3G2 + P3P2G1
+ P3P2P1G0 + P3P2P1P0 C0

C2 = G1 + P1 C1 = G1 + P1(G0 + P0 C0)
= G1 + P1G0 + P1P0 C0

C3 = G2 + P2 C2 = G2 + P2(G1 + P1G0 + P1P0 C0)
= G2 + P2G1 + P2P1G0 + P2P1P0 C0

22

Group Carry Lookahead Logic

• Figure 5-6 in the text shows the implementation of these
equations for four bits. This could be extended to more than four
bits; in practice, due to limited gate fan-in, such extension is not
feasible.

• Instead, the concept is extended another level by considering
group generate(G0-3) and group propagate(P0-3) functions:

• Using these two equations:

• Thus, it is possible to have four 4-bit adders use one of the same
carry lookahead circuit to speed up 16-bit addition

012330

0012312323330

PPPPP

GPPPPGPPGPGG

====
++++++++++++====

−−−−

−−−−

030304 CPGC −−−−−−−− ++++====

23 24

Unsigned Subtraction

• Algorithm:
– Subtract the subtrahend N from the minuend M

– If no end borrow occurs, then M ≥ N, and the result is a
non-negative number and correct.

– If an end borrow occurs, the N > M and the difference
M − N + 2n is subtracted from 2n, and a minus sign is
appended to the result.

• Examples: 0 1
1001 0100

−−−− 0111 −−−− 0111
0010 1101

10000
−−−− 1101

(−−−−) 0011

Copyright 2000 N. AYDIN. All rights
reserved. 5

25

Unsigned Subtraction (continued)
• The subtraction, 2n − N, is taking the 2’s

complement of N

• To do both unsigned addition and unsigned
subtraction requires:

• Quite complex!

• Goal: Shared simpler
logic for both addition
and subtraction

• Introduce complements
as an approach

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

26

Complements

• Two complements:
– Diminished Radix Complement of N

• (r − 1)’s complement for radix r

• 1’s complement for radix 2

• Defined as (rn − 1) − Ν

– Radix Complement
• r’s complement for radix r

• 2’s complement in binary

• Defined as rn − N

• Subtraction is done by adding the complement of the
subtrahend

• If the result is negative, takes its 2’s complement

27

Binary 1's Complement

• For r = 2, N = 011100112, n = 8 (8 digits):

(rn – 1) = 256 -1 = 25510 or 111111112
• The 1's complement of 011100112 is then:

11111111

– 01110011
10001100

• Since the 2n – 1 factor consists of all 1's and since
1 – 0 = 1 and 1 – 1 = 0, the one's complement is
obtained by complementing each individual bit
(bitwise NOT).

28

Binary 2's Complement

• For r = 2, N = 011100112, n = 8 (8 digits),
we have:
(rn) = 25610 or 1000000002

• The 2's complement of 01110011 is then:
100000000

– 01110011
10001101

• Note the result is the 1's complement plus 1,
a fact that can be used in designing
hardware

29

Alternate 2’s Complement Method

• Given: an n-bit binary number, beginning at the least
significant bit and proceeding upward:
– Copy all least significant 0’s
– Copy the first 1
– Complement all bits thereafter.

• 2’s Complement Example:
10010100

– Copy underlined bits:
100

– and complement bits to the left:
01101100

30

Subtraction with 2’s Complement

• For n-digit, unsignednumbers M and N, find M −
N in base 2:

– Add the 2's complement of the subtrahend N to the
minuend M:

M + (2n − N) = M − N + 2n

– If M > N, the sum produces end carry rn which is
discarded; from above, M − N remains.

– If M < N, the sum does not produce an end carry and,
from above, is equal to 2n − (N − M), the 2's
complement of (N − M).

– To obtain the result − (N – M) , take the 2's
complement of the sum and place a − to its left.

Copyright 2000 N. AYDIN. All rights
reserved. 6

31

Unsigned 2’s Complement Subtraction Example 1

• Find 010101002 – 010000112

01010100 01010100

– 01000011 + 10111101

00010001

• The carry of 1 indicates that no correction of
the result is required.

1

2’s comp

32

Unsigned 2’s Complement Subtraction Example 2

• Find 010000112 – 010101002

01000011 01000011
– 01010100 + 10101100

11101111
00010001

• The carry of 0 indicates that a correction of
the result is required.

• Result = – (00010001)

0

2’s comp
2’s comp

33

Subtraction with Diminished Radix Complement

• For n-digit, unsignednumbers M and N, find M − N in
base 2:
– Add the 1's complement of the subtrahend N to the minuend M:

M + (2n− 1 − N) = M − N + 2n− 1

– If M > N, the result is excess by 2n− 1. The end carry 2n when
discarded removes 2n, leaving a result short by 1. To fix this
shortage, whenever and end carry occurs, add 1 in the LSB
position. This is called the end-around carry.

– If M < N, the sum does not produce an end carry and, from above,
is equal to 2n − 1 − (N − M), the 1's complement of
(N − M).

– To obtain the result − (N – M) , take the 1's complement of the sum
and place a − to its left.

34

Unsigned 1’s Complement Subtraction - Example 1

• Find 010101002 – 010000112

01010100 01010100

– 01000011 + 10111100

00010000

+1

00010001

• The end-around carry occurs.

1

1’s comp

35

Unsigned 1’s Complement Subtraction Example 2

• Find 010000112 – 010101002

01000011 01000011
– 01010100 + 10101011

11101110
00010001

• The carry of 0 indicates that a correction of
the result is required.

• Result = – (00010001)

1’s comp

1’s comp

0

36

Signed Integers

• Positive numbers and zero can be represented by unsigned
n-digit, radix r numbers. We need a representation for
negative numbers.

• To represent a sign (+ or –) we need exactly one more bit
of information (1 binary digit gives 21 = 2 elements which
is exactly what is needed).

• Since computers use binary numbers, by convention, the
most significant bit is interpreted as a sign bit:

s an–2 … a2a1a0
where:
s= 0 for Positive numbers
s= 1 for Negative numbers

and ai = 0 or 1 represent the magnitude in some form.

Copyright 2000 N. AYDIN. All rights
reserved. 7

37

Signed Integer Representations

•Signed-Magnitude– here the n – 1 digits are
interpreted as a positive magnitude.

•Signed-Complement– here the digits are interpreted
as the rest of the complement of the number. There
are two possibilities here:

– Signed 1's Complement
• Uses 1's Complement Arithmetic

– Signed 2's Complement
• Uses 2's Complement Arithmetic

38

Signed Integer Representation Example

• r =2, n=3

Number Sign -Mag. 1's Comp. 2's Comp.
+3 011 011 011
+2 010 010 010
+1 001 001 001
+0 000 000 000
–0 100 111 —
–1 101 110 111
–2 110 101 110
–3 111 100 101
–4 — — 100

39

Signed-Magnitude Arithmetic

• If the parity of the three signs is 0:
1. Add the magnitudes.
2. Check for overflow (a carry out of the MSB)
3. The sign of the result is the same as the sign of the

first operand.

• If the parity of the three signs is 1:
1. Subtract the second magnitude from the first.
2. If a borrow occurs:

– take the two’s complement of result
• and make the result sign the complement of the

sign of the first operand.
3. Overflow will never occur.

40

• Example 1: 0 0 1 0 (+2)

+0 1 0 1 (+5)

0 1 1 1 (7)

1(borrow)

• Example 2: 0 0 1 0 (+2)

+1 1 0 1 +(-5)

1 1 0 1 => 2s comp =>1 0 1 1 (-3)

Example 3: 1 0 1 0 (-2)

− 0 1 0 1 -(5)

1 1 1 1 (-7)

Sign-Magnitude Arithmetic Examples

41

Signed-Complement Arithmetic

• Addition:
1. Add the numbers including the sign bits,

discarding a carry out of the sign bits (2's Complement),
or using an end-around carry (1's Complement).

2. If the sign bits were the same for both numbers
and the sign of the result is different, an overflow has
occurred.

3. The sign of the result is computed in step 1.

• Subtraction:
Form the complement of the number you are

subtracting and follow the rules for addition.

42

• Example 1: 1 1 0 1 (-3)

+0 0 1 1 (+3)

1 0 0 0 0 (0)

• Example 2: 1 1 0 1 (-3) 1 1 0 1 (-3)

−0 0 1 1 -(+3) 1 1 0 1 (-3)

1 0 1 0 (-6) 1 1 0 1 0 (-6)

Signed 2’s Complement Examples

Copyright 2000 N. AYDIN. All rights
reserved. 8

43

• Example 1: 1 1 0 1 (-2)

+0 0 1 1 (+3)

1 0 0 0 0 => 0 0 0 0+1 => 0 0 0 1

• Example 2: 1 1 0 1 (-2)

−0 0 1 1 -(+3)

1 0 1 0 (-5)

Signed 1’s Complement Examples

44

2’s Complement Adder/Subtractor

• Subtraction can be done by addition of the 2's Complement.

1. Complement each bit (1's Complement.)

2. Add 1 to the result.

• The circuit shown computes A + B and A – B:

• For S = 1, subtract,
the 2’s complement
of B is formed by using
XORs to form the 1’s
comp and adding the 1
applied to C0.

• For S = 0, add, B is
passed through
unchanged

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0

45

Overflow Detection

• Overflowoccurs if n + 1 bits are required to contain the
result from an n-bit addition or subtraction

• Overflow can occur for:
– Addition of two operands with the same sign

– Subtraction of operands with different signs

• Signed number overflow cases with correct result sign
0 0 1 11

+ 0 − 1 − 0 + 1
0 0 1 1

• Detection can be performed by examining the result signs
which should match the signs of the top operand

46

Overflow Detection
• Signed number cases with carries Cn and Cn−1 shown for correct result

signs:

0 0 0 0 1 1 1 1
0 0 1 11

+ 0 − 1 − 0 + 1
0 0 1 1

• Signed number cases with carries shown for erroneous result signs
(indicating overflow):

0 1 0 1 1 0 1 0
0 0 1 11

+ 0 − 1 − 0 + 1
1 1 0 0

• Simplest way to implement overflow V = Cn + Cn − 1
• This works correctly only if 1’s complement and the addition of the

carry in of 1 is used to implement the complementation! Otherwise fails
for − 10 ... 0

47

Binary Multiplication

• The binary digit multiplication table is
trivial:

• This is simply the Boolean AND function.

• Form larger products the same way we
form larger products in base 10.

(a × b) b = 0 b = 1

a = 0 0 0

a = 1 0 1

48

Review - Decimal Example: (237 × 149)10

• Partial products are: 237 × 9, 237 × 4, and
237 × 1

• Note that the partial product
summation for n digit, base 10
numbers requires adding up
to n digits (with carries).

• Note also n × m digit
multiply generates up
to an m + ndigit result.

2 3 7

× 1 4 9

2 1 3 3

9 4 8 -

+ 2 3 7 - -

3 5 3 1 3

Copyright 2000 N. AYDIN. All rights
reserved. 9

49

Binary Multiplication Algorithm

• We execute radix 2 multiplication by:
– Computing partial products, and
– Justifying and summing the partial products. (same as

decimal)

• To compute partial products:
– Multiply the row of multiplicand digits by each multiplier

digit, one at a time.
– With binary numbers, partial products are very simple!

They are either:
• all zero (if the multiplier digit is zero), or
• the same as the multiplicand (if the multiplier digit is one).

• Note: No carries are added in partial product
formation!

50

Example: (101 x 011) Base 2

• Partial products are: 101 × 1, 101 × 1, and
101 × 0

• Note that the partial product
summation for n digit, base 2
numbers requires adding up
to n digits (with carries) in
a column.

• Note also n × m digit
multiply generates up to an m + ndigit
result (same as decimal).

1 0 1

× 0 1 1

1 0 1

1 0 1

0 0 0

0 0 1 1 1 1

51

Multiplier Boolean Equations

• We can also make an n × m “block” multiplier and
use that to form partial products.

• Example: 2 × 2 – The logic equations for each
partial-product binary digit are shown below:

• We need to "add" the columns to get
the product bits P0, P1, P2, and P3.

• Note that some
columns may
generate carries.

b1 b0

×××× a1 a0

(a0
.... b1) (a0

.... b0)
+ (a1

.... b1) (a1
.... b0)

P3 P2 P1 P0

52

Multiplier Arrays Using Adders

• An implementation of the 2 × 2
multiplier array is
shown:

C0C3

HA HA

C2 C1

A 0

A 1
B1 B0

B1 B0

53

Multiplier Using Wide Adders

• A more “structured” way to develop an n × m
multiplier is to sum partial products using adder
trees

• The partial products are formed using an n × m
array of AND gates

• Partial products are summed using m – 1 adders of
width n bits

• Example: 4-bit by 3-bit adder

• Following figure shows a 4 × 3 = 12 element array
of AND gates and two 4-bit adders

54

Copyright 2000 N. AYDIN. All rights
reserved. 10

55

Cellular Multiplier Array

• Another way to imple-
ment multipliers is to use
an n × m cellular array
structure of uniform
elements as shown:

• Each element computes a
single bit product equal
to ai·bj, and implements
a single bit full adder

Carry [j, (k - 1)]

a[j]

b[k]

pp [j , k]

Cell [j , k]

Column Sum from above

Carry [j , k]

Column Sum to below

A B
Co

SFA
Ci

56

Other Arithmetic Functions

• Convenient to design the functional blocks
by contraction- removal of redundancy
from circuit to which input fixing has been
applied

• Functions
– Incrementing

– Decrementing

– Multiplication by Constant

– Division by Constant

– Zero Fill and Extension

57

Design by Contraction

• Contraction is a technique for simplifying
the logic in a functional block to implement
a different function
– The new function must be realizable from the

original function by applying rudimentary
functions to its inputs

– Contraction is treated here only for application
of 0s and 1s (not for X and X)

– After application of 0s and 1s, equations or the
logic diagram are simplified by using rules
given on pages 224 - 225 of the text.

58

Design by Contraction Example

• Contraction of a ripple carry adder to incrementer for n = 3
– Set B = 001

– The middle cell can be repeated to make an incrementer with n > 3.

59

Incrementing & Decrementing

• Incrementing
– Adding a fixed value to an arithmetic variable

– Fixed value is often 1, called counting (up)

– Examples: A + 1, B + 4

– Functional block is called incrementer

• Decrementing
– Subtracting a fixed value from an arithmetic variable

– Fixed value is often 1, called counting (down)

– Examples: A − 1, B − 4

– Functional block is called decrementer

60

Multiplication/Division by 2 n

• (a) Multiplication
by 100

– Shift left by 2

• (b) Division
by 100

– Shift right by 2

– Remainder
preserved

B0B1B2B3

C0C1

0 0

C2C3C4C5
(a)

B0B1B2B3

C0 C21 C22C1C2

00

C3

(b)

Copyright 2000 N. AYDIN. All rights
reserved. 11

61

Multiplication by a Constant

• Multiplication of B(3:0) by 101

• See text Figure 5-13 (a) for contraction
B 1B 2B 300 B 0B 1B 2B 3

Carry

output

4-bit Adder

Sum

B 0

C 0C 1C2C3C4C5C6

62

Zero Fill

• Zero fill - filling an m-bit operand with 0s to
become an n-bit operand with n > m

• Filling usually is applied to the MSB end of
the operand, but can also be done on the
LSB end

• Example: 11110101 filled to 16 bits
– MSB end: 0000000011110101

– LSB end: 1111010100000000

63

Extension

• Extension- increase in the number of bits at the
MSB end of an operand by using a complement
representation
– Copies the MSB of the operand into the new positions

– Positive operand example - 01110101 extended to 16
bits:

0000000001110101

– Negative operand example - 11110101 extended to 16
bits:

1111111111110101

