Introduction to Digital Logic

Prof. Nizamettin AYDIN
naydin@yildiz.edu.tr
naydin@ieee.org

Course Outline

Digital Computers, Number Syste Alphanumeric, and Gray Codes

Alphanumeric, and Gray Code
Binary Logic, Gates, Boolean Algebra, Standard Forms
Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, High-Impedance Outputs
Implementation Technology and Logic Design, Design Concepts and Automation, The Design Space, Design Procedure, The major design steps
6. Programmable Implementation Technologies: Read-Only Memories, Programmable Logic Arrays, Programmable Array Logic,Technology mapping to programmable logic devices
Combinational Functions and Circuit
Arithmetic Functions and Circuits
Sequential Circuits Storage Elements and Sequential Circuit Analysis
Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
Counters, register cells, buses, \& serial operations
Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
Memory Basics

Introduction to Digital Logic

Lecture 7

Combinational Functions and Circuits

Overview

- Functions and functional blocks
- Rudimentary logic functions
- Decoding
- Encoding
- Selecting
- Implementing Combinational Functions Using:
- Decoders and OR gates
- Multiplexers (and inverter)
- ROMs
- PLAs
- PALs
- Lookup Tables

Functions and Functional Blocks

- The functions considered are those found to be very useful in design
- Corresponding to each of the functions is a combinational circuit implementation called a functional block.
- In the past, many functional blocks were implemented as SSI, MSI, and LSI circuits
- Today, they are often simply parts within a VLSI circuit

Rudimentary Logic Functions

- Functions of a single variable X
- Can be used on the inputs to functional blocks to implement other than the block's intended function

Multiple-bit Rudimentary Functions

- Multi-bit Examples:
 $-\mathrm{F}_{3}$

(b)
- A wide line is used to represent

a bus which is a vector signal
- In (b) of the example, $\mathrm{F}=\left(\mathrm{F}_{3}, \mathrm{~F}_{2}, \mathrm{~F}_{1}, \mathrm{~F}_{0}\right)$ is a bus.
- The bus can be split into individual bits as shown in (b)
- Sets of bits can be split from the bus as shown in (c) for bits 2 and 1 of F.
- The sets of bits need not be continuous as shown in (d) for bits 3,1 , and 0 of F .

Enabling Function

- Enabling permits an input signal to pass through to an output
- Disabling blocks an input signal from passing through to an output, replacing it with a fixed value
- The value on the output when it is disable can be Hi-Z (as for three-state buffers and transmission gates), 0 , or 1
- When disabled, 0 output
- When disabled, 1 output

- Enabling applications?

(b)

Decoding

- Decoding - the conversion of an n-bit input code to an m-bit output code with $\mathrm{n} \leq \mathrm{m} \leq 2^{n}$ such that each valid code word produces a unique output code
- Circuits that perform decoding are called decoders
- Here, functional blocks for decoding are - called n-to- m line decoders, where $m \leq 2^{n}$, and
- generate 2^{n} (or fewer) minterms for the n input variables

Decoder Examples

- 1-to-2-Line Decoder
- 2-to-4-Line Decoder

- Note that the 2-4-line
made up of 21 -to-2-
line decoders and 4 AND gat

Decoder Expansion

- General procedure given in book for any decoder with n inputs and 2^{n} outputs.
- This procedure builds a decoder backward from the outputs.
- The output AND gates are driven by two decoders with their numbers of inputs either equal or differing by 1 .
- These decoders are then designed using the same procedure until 2-to-1-line decoders are reached.
- The procedure can be modified to apply to decoders with the number of outputs $\neq 2^{\text {n }}$

Decoder Expansion - Example 1

- 3-to-8-line decoder
- Number of output ANDs $=8$
- Number of inputs to decoders driving output ANDs $=3$
- Closest possible split to equal
- 2-to-4-line decoder
- 1-to-2-line decoder
- 2-to-4-line decoder
- Number of output ANDs = 4
- Number of inputs to decoders driving output ANDs $=2$
- Closest possible split to equal - Two 1-to-2-line decoders

Decoder Expansion - Example 1

- Result

Decoder Expansion - Example 2

- 7-to-128-line decoder
- Number of output ANDs = 128
- Number of inputs to decoders driving output ANDs $=7$
- Closest possible split to equal
- 4-to-16-line decoder
- 3-to-8-line decoder
- 4-to-16-line decoder
- Number of output ANDs = 16
- Number of inputs to decoders driving output ANDs $=2$
- Closest possible split to equal
- 2 2-to-4-line decoders
- Complete using known 3-8 and 2-to-4 line decoders

Decoder with Enable

- In general, attach m-enabling circuits to the outputs
- Truth table for the function
- Note use of X's to denote both 0 and 1
- Combination containing two X's represent four binary combinations
- Alternatively, can be viewed as distributing value of signal EN to 1 of 4 outputs
- In this case, called a
demultiplexer

Encoder Example

- A decimal-to-BCD encoder
- Inputs: 10 bits corresponding to decimal digits 0 through $9,\left(\mathrm{D}_{0}, \ldots, \mathrm{D}_{9}\right)$
-Outputs: 4 bits with BCD codes
-Function: If input bit D_{i} is a 1 , then the output $\left(\mathrm{A}_{3}, \mathrm{~A}_{2}, \mathrm{~A}_{1}, \mathrm{~A}_{0}\right)$ is the BCD code for i ,
- The truth table could be formed, but alternatively, the equations for each of the four outputs can be obtained directly.

Encoding

- Encoding - the opposite of decoding - the conversion of an m-bit input code to a n-bit output code with $n \leq m \leq$ 2^{n} such that each valid code word produces a unique output code
- Circuits that perform encoding are called encoders
- An encoder has 2^{n} (or fewer) input lines and n output lines which generate the binary code corresponding to the input values
- Typically, an encoder converts a code containing exactly one bit that is 1 to a binary code corresponding to the position in which the 1 appears.

Encoder Example (continued)

- Input D_{i} is a term in equation A_{j} if bit A_{j} is 1 in the binary value for i.
- Equations:
$\mathrm{A}_{3}=\mathrm{D}_{8}+\mathrm{D}_{9}$
$\mathrm{A}_{2}=\mathrm{D}_{4}+\mathrm{D}_{5}+\mathrm{D}_{6}+\mathrm{D}_{7}$
$\mathrm{A}_{1}=\mathrm{D}_{2}+\mathrm{D}_{3}+\mathrm{D}_{6}+\mathrm{D}_{7}$
$\mathrm{A}_{0}=\mathrm{D}_{1}+\mathrm{D}_{3}+\mathrm{D}_{5}+\mathrm{D}_{7}+\mathrm{D}_{9}$
- $\mathrm{F}_{1}=\mathrm{D}_{6}+\mathrm{D}_{7}$ can be extracted from A_{2} and A_{1}

Priority Encoder

- If more than one input value is 1 , then the encoder just designed does not work.
- One encoder that can accept all possible combinations of input values and produce a meaningful result is a priority encoder.
- Among the 1s that appear, it selects the most significant input position (or the least significant input position) containing a 1 and responds with the corresponding binary code for that position.

Priority Encoder Example

- Priority encoder with 5 inputs $\left(D_{4}, D_{3}, D_{2}, D_{1}, D_{0}\right)$ - highest priority to most significant 1 present - Code outputs $\mathrm{A} 2, \mathrm{~A} 1, \mathrm{~A} 0$ and V where V indicates at least one 1 present.

No. of Min- terms/Row	Inputs						Outputs			
	D4	D3	D2	D1	D0	A2	A1	A0	V	
	0	0	0	0	0	X	X	X	0	
	0	0	0	0	1	0	0	0	1	
	0	0	0	1	X	0	0	1	1	
	0	0	1	X	X	0	1	0	1	
8	0	1	X	X	X	0	1	1	1	
16	1	X	X	X	X	1	0	0	1	

Xs in input part of table represent 0 or 1 ; thus table entries correspond to product terms instead of minterms. The column on the left shows that all 32 minterms are present in the product terms in the table

Priority Encoder Example (continued)

- Could use a K-map to get equations, but can be read directly from table and manually optimized if careful:
$\mathrm{A}_{2}=\mathrm{D}_{4}$
$\mathrm{A}_{1}=\overline{\mathrm{D}}_{4} \mathrm{D}_{3}+\overline{\mathrm{D}}_{4} \overline{\mathrm{D}}_{3} \mathrm{D}_{2}=\overline{\mathrm{D}}_{4} \mathrm{~F}_{1}, \mathrm{~F}_{1}=\left(\mathrm{D}_{3}+\mathrm{D}_{2}\right)$
$\mathrm{A}_{0}=\overline{\mathrm{D}}_{4} \mathrm{D}_{3}+\overline{\mathrm{D}}_{4} \overline{\mathrm{D}}_{3} \overline{\mathrm{D}}_{2} \mathrm{D}_{1}=\overline{\mathrm{D}}_{4}\left(\mathrm{D}_{3}+\overline{\mathrm{D}}_{2} \mathrm{D} 1\right)$
$V=D_{4}+F_{1}+D_{1}+D_{0}$

Selecting

- Selecting of data or information is a critical function in digital systems and computers
- Circuits that perform selecting have:
- A set of information inputs from which the selection is made
- A single output
- A set of control lines for making the selection
- Logic circuits that perform selecting are called multiplexers
- Selecting can also be done by three-state logic or transmission gates

Multiplexers

- A multiplexer selects information from an input line and directs the information to an output line
- A typical multiplexer has n control inputs ($\mathrm{S}_{\mathrm{n}-1}$, $\ldots \mathrm{S}_{0}$) called selection inputs, 2^{n} information inputs $\left(\mathrm{I}_{2}{ }^{\mathrm{n}}{ }_{-1}, \ldots \mathrm{I}_{0}\right)$, and one output Y
- A multiplexer can be designed to have m information inputs with $\mathrm{m}<2^{\mathrm{n}}$ as well as n selection inputs

2-to-1-Line Multiplexer

- Since $2=2^{1}, \mathrm{n}=1$
- The single selection variable S has two values:
$-\mathrm{S}=0$ selects input I_{0}
$-\mathrm{S}=1$ selects input I_{1}
- The equation:

$$
\mathbf{Y}=\overline{\mathbf{S}} \mathbf{I}_{0}+\mathbf{S I}_{1}
$$

- The circuit:

2-to-1-Line Multiplexer (continued)

- Note the regions of the multiplexer circuit shown:
- 1-to-2-line Decoder
-2 Enabling circuits
- 2-input OR gate
- To obtain a basis for multiplexer expansion, we combine the Enabling circuits and OR gate into a $2 \times$
2 AND-OR circuit:
- 1-to-2-line decoder
-2×2 AND-OR
- In general, for an 2^{n}-to-1-line multiplexer:
$-n$-to- 2^{n}-line decoder
$-2^{n} \times 2$ AND-OR

Multiplexer Width Expansion

- Select "vectors of bits" instead of "bits"
- Use multiple copies of $2^{n} \times 2$ AND-OR in parallel
- Example:

4-to-1-line
quad multi-
plexer

Example: 4-to-1-line Multiplexer

- 2-to- 2^{2}-line decoder
- $2^{2} \times 2$ AND-OR

Other Selection Implementations

- Three-state logic in place of AND-OR

- Gate input cost $=14$ compared to 22 (or 18) for gate implementation

Other Selection Implementations

- Transmission Gate Multiplexer
- Gate input cost $=8$ compared to 14 for 3-state logic and 18 or 22 for gate logic

Combinational Function Implementation

- Alternative implementation techniques:
- Decoders and OR gates
- Multiplexers (and inverter)
- ROMs
- PLAs
- PALs
- Lookup Tables
- Can be referred to as structured implementation methods since a specific underlying structure is assumed in each case

Decoder and OR Gates

- Implement m functions of n variables with:
- Sum-of-minterms expressions
- One n-to- 2^{n}-line decoder
$-m$ OR gates, one for each output
- Approach 1 :
- Find the truth table for the functions
- Make a connection to the corresponding OR from the corresponding decoder output wherever a 1 appears in the truth table
- Approach 2
- Find the minterms for each output function
- OR the minterms together

Decoder and OR Gates Example

- Implement the following set of odd parity functions of $\left(\mathrm{A}_{7}, \mathrm{~A}_{6}, \mathrm{~A}_{5}, \mathrm{~A}_{3}\right)$ $\mathrm{P}_{1}=\mathrm{A}_{7} \oplus \mathrm{~A}_{5} \oplus \mathrm{~A}_{3}$ $\mathrm{P}_{2}=\mathrm{A}_{7} \oplus \mathrm{~A}_{6} \oplus \mathrm{~A}_{3}$ $\mathrm{P}_{3}=\mathrm{A}_{7} \oplus \mathrm{~A}_{6} \oplus \mathrm{~A}_{5}$
- Finding sum of minterms expressions $\mathrm{P}_{1}=\Sigma_{\mathrm{m}}(1,2,5,6,8,11,12,15)$ $\mathrm{P}_{2}=\Sigma_{\mathrm{m}}(1,3,4,6,8,10,13,15)$ $\mathrm{P}_{3}=\Sigma_{\mathrm{m}}(2,3,4,5,8,9,14,15)$
- Find circuit
- Is this a good idea?

Multiplexer Approach 1

- Implement m functions of n variables with:
- Sum-of-minterms expressions
- An m-wide 2^{n}-to-1-line multiplexer
- Design:
- Find the truth table for the functions.
- In the order they appear in the truth table:
- Apply the function input variables to the multiplexer inputs $\mathrm{S}_{\mathrm{n}-1}, \ldots, \mathrm{~S}_{0}$
- Label the outputs of the multiplexer with the output variables
- Value-fix the information inputs to the multiplexer using the values from the truth table (for don't cares, apply either 0 or 1)

Example: Gray to Binary Code

- Design a circuit to convert a 3-bit Gray code to a binary code
- The formulation gives the truth table on the right
- It is obvious from this table that $\mathrm{X}=\mathrm{C}$ and the

Gray $\mathbf{A B} \mathbf{C}$	Binary $\mathbf{x y ~} \mathbf{Z}$
000	000
100	001
110	010
010	011
011	100
111	101
101	110
001	111

Gray to Binary (continued)

- Rearrange the table so that the input combinations are in counting order
- Functions y and z can be implemented using a dual 8-to-1-line multiplexer by:
- connecting A, B, and C to the multiplexer select inputs placing y and z on the two multiplexer outputs

Gray $\mathbf{A B} \mathbf{C}$	Binary $\mathbf{x y z}$
000	000
001	111
010	011
011	100
100	001
101	110
110	010
111	101

Gray to Binary (continued)

- Note that the multiplexer with fixed inputs is identical to a ROM with 3-bit addresses and 2-bit data!

Multiplexer Approach 2

- Implement any m functions of $n+1$ variables by using:
- An m-wide 2^{n}-to- 1 -line multiplexer
- A single inverter
- Design:
- Find the truth table for the functions.

Based on the values of the first n variables, separate the truth table rows into pairs
For each pair and output, define a rudimentary function of the final variable ($0,1, \mathrm{X}, \overline{\mathrm{X}}$)
Using the first n variables as the index, value-fix the information inputs to the multiplexer with the corresponding rudimentary functions

- Use the inverter to generate the rudimentary function $\overline{\mathrm{X}}$

Example: Gray to Binary Code

- Design a circuit to convert a 3-bit Gray code to a binary code
- The formulation gives the truth table on the right
- It is obvious from this table that $\mathrm{x}=\mathrm{C}$ and the

Gray $\mathbf{A B C}$	Binary $\mathbf{x y ~ z}$
000	000
100	001
110	010
010	011
011	100
111	101
101	110
001	111

Gray to Binary (continued)

- Rearrange the table so that the input combinations are in counting order, pair rows, and find rudimentary functions

$\begin{gathered} \text { Gray } \\ \text { A B C } \end{gathered}$	Binary xyz	Rudimentary Functions of C for y	Rudimentary Functions of C for z
000	0000	$\mathrm{F}=\mathrm{C}$	$\mathrm{F}=\mathrm{C}$
001	111		
010	0111	$\mathbf{F}=\overline{\mathbf{C}}$	$\mathbf{F}=\overline{\mathbf{C}}$
011	100		
100	001	$\mathrm{F}=\mathrm{C}$	$\mathbf{F}=\overline{\mathbf{C}}$
101	110		
110	010	$\mathrm{F}=\overline{\mathbf{C}}$	$\mathrm{F}=\mathrm{C}$
111	101		

Gray to Binary (continued)

- Assign the variables and functions to the multiplexer inputs:

- Note that this approach (Approach 2) reduces the cost by almost half compared to Approach 1.
- This result is no longer ROM-like
- Extending, a function of more than n variables is decomposed into several sub-functions defined on a subset of the variables. The multiplexer then selects among these sub-functions.

Read Only Memory

- Functions are implemented by storing the truth table
- Other representations such as equations more convenient
- Generation of programming information from equations usually done by software
- Text Example 4-10 : Design a combinational circuit using a ROM. The circuit accepts a 3 bit number and generates an output binary number equal to the square of the input number

Truth table										
Inputs			Outputs						Decimal	
A_{2}	A_{1}	A_{0}	B_{5}	B_{4}	B_{3}	B_{2}	B_{1}	B_{0}		
0	0	0	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	1	1	
0	1	0	0	0	0	1	0	0	4	
0	1	1	0	0	1	0	0	1	9	
1	0	0	0	1	0	0	0	0	16	
1	0	1	0	1	1	0	0	1	25	
1	1	0	1	0	0	1	0	0	36	
1	1	1	1	1	0	0	0	1	49	

Two outputs are generated outside of the ROM
In the implementation of the system, these two functions are "hardwired" and even if the ROM is reprogrammable or removable, cannot be corrected or updated

Programmable Array Logic

- There is no sharing of AND gates as in the ROM and PLA
- Design requires fitting functions within the limited number of ANDs per OR gate
- Single function optimization is the first step to fitting
- Otherwise, if the number of terms in a function is greater than the number of ANDs per OR gate, then factoring is necessary

Programmable Array Logic Example

- Equations: $\mathbf{F} 1=\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}}+\overline{\mathbf{A}} \mathbf{B} \overline{\mathbf{C}}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C}+\mathbf{A B C}$ $\mathbf{F} 2=\mathbf{A B}+\mathbf{B C}+\mathbf{A C}$ factored since four terms
- Factor out last two terms as W

Product term	AND Inputs					Outputs
	A	B	c	D	w	
1	0	0	1	-	-	$W=\bar{A} \overline{\underline{E}}$
2	1	1	1	-	-	$+\mathrm{ABC}$
3	-	-	-	-	-	
4	1	0	0	-	-	$\mathrm{F} 1=\mathrm{X}=\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}}$
5	0	1	0	-	-	$+\overline{\mathbf{A B}} \overline{\mathbf{C}}+\mathbf{W}$
6	-	-	-	-	1	
7	1	1	-	-	-	
8	-	1	1	-	-	
9	1	-	1	-	-	$=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$
10	-	-	-	-	-	
11	-	-	-	-	-	
12	-	-	-	-	-	

Programmable Array Logic Example

Programmable Logic Array

- The set of functions to be implemented must fit the available number of product terms
- The number of literals per term is less important in fitting
- The best approach to fitting is multiple-output, two-level optimization (which has not been discussed)
- Since output inversion is available, terms can implement either a function or its complement
- For small circuits, K-maps can be used to visualize product term sharing and use of complements
- For larger circuits, software is used to do the optimization including use of complemented functions

Programmable Logic Array Example

- K-map specification
- How can this be implemented with four terms?
- Complete the programming table
 $\longrightarrow \begin{aligned} & \mathrm{F}_{1}=\overline{\mathrm{A}} \overline{\mathrm{B} C}+\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}} \quad-\mathrm{F}_{2}=\mathrm{AB}+\mathrm{AC}+\mathrm{BC} \longleftarrow \\ & \longrightarrow \mathrm{F}_{1}=\mathrm{AB}+\mathrm{AC}+\mathrm{BC}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}}-\overline{\mathrm{F}}_{2}=\overline{\mathrm{A}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{B}}+\overline{\mathrm{B}} \overline{\mathrm{C}}\end{aligned}$

Programmable Logic Array Example

Lookup Tables

- Lookup tables are used for implementing logic in Field-Programmable Gate Arrays (FPGAs) and Complex Logic Devices (CPLDs)
- Lookup tables are typically small, often with four inputs, one output, and 16 entries
- Since lookup tables store truth tables, it is possible to implement any 4-input function
- Thus, the design problem is how to optimally decompose a set of given functions into a set of 4 input two- level functions.
- We will illustrate this by a manual attempt

Lookup Table Example

- Equations to be implemented:
$\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\mathrm{ADE}+\mathrm{B} D \mathrm{E}+\mathrm{CDE}$ $\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{E}, \mathrm{F})=\mathrm{ADE}+\mathrm{B} D \mathrm{E}+\mathrm{FD} \mathrm{E}$
- Extract 4-input function:
$\mathrm{F}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{E})=\mathrm{ADE}+\mathrm{B} D \mathrm{E}$
$\mathrm{F}_{1}\left(\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}_{3}\right)=\mathrm{F}_{3}+\mathrm{CDE}$
$\mathrm{F}_{2}\left(\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{F}_{3}\right)=\mathrm{F}_{3}+\mathrm{FD} \mathrm{E}$
- The cost of the solution is 3 lookup tables

