Introduction to Digital Logic

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr
naydin@ieee.org

[

o~ wn

Course Outline

Digital Computers, Number Systems, Arithmetic @piens, Decimal,
Alphanumeric, and Gray Codes

Binary Logic, Gates, Boolean Algebra, Standard Borm

Circuit Optimization, Two-Level Optimization, Mdpanipulation, Multi-Level
Circuit Optimization

Additional Gates and Circuits, Other Gate Types]iisive-OR Operator and Gateq,
High-Impedance Outputs

Implementation Technology and Logic Design, Desipncepts and Automation,
The Design Space, Design Procedure, The majorriesigs

Programmable Implementation Technologies: Redg-@emories, Programmable
Logic Arrays, Programmable Array Logic, Technologgpping to programmable
logic devices

Combinational Functions and Circuits

Arithmetic Functions and Circuits

Sequential Circuits Storage Elements and Sequéitiait Analysis

Sequential Circuits, Sequential Circuit Desigri&SEiagrams, State Tables
Counters, register cells, buses, & serial opmnati

Sequencing and Control, Datapath and Control, Ahyoic State Machines (ASM)
Memory Basics

Introduction to Digital Logic

Lecture 7

Combinational Functionsand
Circuits

Overview

Functions and functional blocks
Rudimentary logic functions
Decoding
Encoding
Selecting
Implementing Combinational Functions Using:
— Decoders and OR gates
— Multiplexers (and inverter)
—ROMs
- PLAs
—PALs
— Lookup Tables

Functions and Functional Blocks

useful in design

¢ Corresponding to each of the functions is a
combinational circuit implementation called a
functional block.

asSS| MSI, andLSI circuits.

« Today, they are often simply parts withiivaSI
circuit.

¢ The functions considered are those found to bg ver

« In the past, many functional blocks were impleradnt

Rudimentary L ogic Functions

Functions of a single variable X
Can be used on the
inputs to functional

blocks to implement

Functionsof One Variable

X F=0F=XF= XF=1

other than the block’s 0 0o o0 1 1
intended function 1 0o 1 0 1
Vecor Vop
1 F 1 F 1 X F X

Copyright 2000 N. AYDIN. All rights
reserved.

Multiple-bit Rudimentary Functions
 Multi-bit Examples:

S

MF@ F(10)
A Wlde Ilne is used to represent F

abuswhich is a vector signal (d)
* In (b) of the example, F = {FF,, F;, F) is a bus.
« The bus can be split into individual bis shown in (b)

« Sets of bitsan be split from the bus as shown in (c)
for bits 2 and 1 of F.

« The sets of bits need not be continuous as sho\) ifor bits 3, 1, and 0
of F.

> o r >

Jaaay
> o, |

Enabling Function

 Enabling permits an input signal to pass through to arj
output

« Disabling blocks an input signal from passing through
to an output, replacing it with a fixed value

« The value on the output when it is disable cahlbg
(as for three-state buffers and transmission gaes)

orl
X
« When disabled, 0 outpet—" EN:Di F
* When disabled, 1 out, (@)

Enabling applications? 4[>0><:D_ F
EN

(b)

Decoding

» Decoding- the conversion of an-bit input
code to am-bit output code with
n<ms< 2"such that each valid code word
produces a unique output code

« Circuits that perform decoding are called
decoders

« Here, functional blocks for decoding are
— called swherem< 2" and

—generat@" (or fewer) minterms for the input
variables

Decoder Examples

* 1-to-2-Line Decoder 47 i Do= A

* 2-to-4-Line Decoder

A1 Ag| Do Dy D, Dy
As
0010 00 Do= Ay Ao
0 1 0 1 0 0
10/ 00 10 _
11 0 0 0 1 D= A1 Ap
@ _
D, = AAg
® Notethat the 2-4-line
madeup of 2110-2 I —) "W
linedecodersand 4 AND gates:

Decoder Expansion

General procedure given in book for any decodén winputs
and?2" outputs.

This procedure builds a decoder backward fromotitputs.
The output AND gates are driven by two decodeth tiieir
numbers of inputs either equal or differing by 1.

These decoders are then designed using the sacedpre
until 2-to-1-line decoders are reached.

The procedure can be modified to apply to decodétsthe
number of outputs 2"

Decoder Expansion - Example 1

¢ 3-to-8-line decoder
— Number of output ANDs = 8
— Number of inputs to decoders driving output AND3 =
— Closest possible split to equal
¢ 2-to-4-line decoder
 1-to-2-line decoder
— 2-to-4-line decoder
* Number of output ANDs = 4
« Number of inputs to decoders driving output AND2 =

 Closest possible split to equal
— Two 1-to-2-line decoders

Copyright 2000 N. AYDIN. All rights
reserved.

Decoder Expansion - Example 1

42-input ANDs |{[8 2-input ANDs

=

¢ Result

Ao

a

Ay

2-to-4-Line
decoder

|

Az

1-to-2-Line decoders T Ds

L—p,

3-t0-8 Line decoder

Decoder Expansion - Example 2

¢ 7-t0-128-line decoder
— Number of output ANDs = 128
— Number of inputs to decoders driving output AND8 =
— Closest possible split to equal
* 4-to-16-line decoder
¢ 3-t0-8-line decoder
— 4-t0-16-line decoder
« Number of output ANDs = 16
« Number of inputs to decoders driving output AND2 =
 Closest possible split to equal
— 2 2-to-4-line decoders
— Complete using known 3-8 and 2-to-4 line decoders

Decoder with Enable

* In general, attach-enabling circuits to the outputs
* Truth table for the function
— Note use of X’s to denote both 0 and 1
— Combination containing two X’s represent four lbjneombinations
« Alternatively, can be viewed as distributing vabfesignal EN to
1 of 4 outputs N

 |n this case, called a Ar
demultiplexer A
f : >o— o
EN A; Ao

Dy D D; Ds o,

0 X X

D2

o
-

1
1

o

Ds

coroo
oroo
roocoo

1
1
1
1

@ (b)

Encoding

Encoding- the opposite of decoding - the conversion jof
anmebit input code to a-bit output code witth<m<
2" such that each valid code word produces a uniquse
output code

Circuits that perform encoding are calkrtoders

An encoder ha&" (or fewer) input lines and output
lines which generate the binary code corresponiging
the input values

Typically, an encoder converts a code containkarty
one bit that is 1 to a binary code correspondinttp¢o
position in which the 1 appears.

Encoder Example

¢ A decimal-to-BCD encoder
—Inputs: 10 bits corresponding to decimal digits O
through 9, (B, ..., Dy)
—Outputs: 4 bits with BCD codes
—Function: If input bit Dis a 1, then the output
(Ag, Ay, Aq, Ap) is the BCD code for, i
« The truth table could be formed, but
alternatively, the equations for each of the
four outputs can be obtained directly.

Encoder Example (continued)

* Input D is a term in equatiod, if bit Ajis 1 in
the binary value for i.
» Equations:
A3=Dg+ Dy
A,=D,+Dg+ Dg+D,
Ay =D, +Ds+ Dg + Dy
Ag=D;+Ds+ D5+ D7+ Dy
* F, = Dy + D, can be extracted from,Aand A

Copyright 2000 N. AYDIN. All rights
reserved.

Priority Encoder Priority Encoder Example

* If more than one input value is 1, then the « Priority encoder with 5 inputs (PD;, D,, D;, Dy) - highest priority to most
. . significant 1 present - Code outputs A2, A1, AO ahdhere V indicates at
encoder just designed does not work. least one 1 present.
« One encoder that can accept all possible fo. of win- Inputs outpus
binations of input values and produce a o | D4 |D3 D2 b1 B0 A2 L AL LKD)V
com . _p o p 0 ojojojofo|X|[X|X]|oO
meaningful result is griority encoder. olojolo|1]lolo]o]1
« Among the 1s that appear, it selects the most 2 0jo0joy1/xj0101 1,1
. g . s 4 0 0 1] X | X 0 1 0 1
s!gn!f!cant !nput pos!t!on (or the. Igast p o T T x Tx Tx To 1111
significant input position) containing a 1 and 16 1 I x Ix I xIx11l0lo0l1
responds with the corresponding binary code + Xs in input part of table represent 0 or 1; thatsié entries correspond to

product terms instead of minterms. The column eneft shows that all 32

for that position. minterms are present in the product terms in thieta

Priority Encoder Example (continued) Selecting
 Could use a K-map to get equations, but can He * Selecting of data or information is a critical
read directly from table and manually function in digital systems and computers
optimized if careful: « Circuits that perform selecting have:
A,=D, —A set of information inputs from which the

selection is made
—A single output
—A set of control lines for making the selection
* Logic circuits that perform selecting are called
multiplexers
* Selecting can also be done by three-state logi
or transmission gates

21 22

A;=D,D;+ D,D;D,= D,Fy, F;=(D;s+D,)
A¢=D,D3+ D,D3D,D; = D,(D; + D,D1)
V =D,+F,+D,+D,

Multiplexers 2-to-1-Line Multiplexer
* Since2=2n=1

» A multiplexer selects information from an input « The single selection variable S has two values:
line and directs the information to an output linp — S =0 selects inpug |

« A typical multiplexer has control inputs (S_, —S = 1selects input |
... §) calledselection inputs, 2" information * The equation:
inputs (L"_,, ...), and one output Y Y= Sly+3,

« A multiplexer can be designed to have * The circuit: Ew— Enabling
information inputs with nx 2" as well am D
selection inputs o7 1:):}4

= D
I3

Copyright 2000 N. AYDIN. All rights
reserved.

2-to-1-Line Multiplexer (continued)

* Note the regions of the multiplexer circuit shown:
— 1-to-2-line Decoder
— 2 Enabling circuits
— 2-input OR gate
« To obtain a basis for multiplexer expansion, we
combine the Enabling circuits and OR gate intoXa 2
2 AND-OR circuit:
— 1-to-2-line decoder
—2x2 AND-OR
In general, for anto-1-line multiplexer:
—n-to-2"-line decoder
—27x 2 AND-OR

25

Example: 4-to-1-line Multiplexer

 2-to-2-line decoder
e 22x 2 AND-OR

Decodel

St

4x 2 AND-OR

S

45

26|

Multiplexer Width Expansion

Select “vectors of bits” instead of “bits”

Use multiple copies of2< 2 AND-OR in parallel
Example: Imrp:m,on
4-to-1-line

quad multi-
plexer all

27

Other Selection Implementations
* Three-state logic in place of AND-OR
S
|1% 5
H?

(b)
 Gate input cost = 14 compared to 22 (or 18) fg
gate implementation

28|

=

Other Selection | mplementations

Transmission Gate Multiplexer

S——1

 Gate input b
cost=8
compared ’ Z‘T—
to 14 for
3-state logic &%)
and 18 or 22 .
for gate logic - %o
(5=1)

29

Combinational Function | mplementation

« Alternative implementation techniques:
— Decoders and OR gates
— Multiplexers (and inverter)
—ROMs
—PLAs
—PALs
— Lookup Tables

* Can be referred to atructured implementation
methods since a specific underlying structure is
assumed in each case

30|

Copyright 2000 N. AYDIN. All rights
reserved.

Decoder and OR Gates

« Implementm functions ofn variables with:

— Sum-of-minterms expressions
— Onen-to-2"-line decoder
—mOR gates, one for each output

« Approach 1:

— Find the truth table for the functions

— Make a connection to the corresponding OR from the
corresponding decoder output wherever a 1 appedngi
truth table

« Approach 2

— Find the minterms for each output function
— OR the minterms together

31

Decoder and OR Gates Example

Implement the following set of odd parity functaf
(A7 Ag As, A9 A
P, = A;@AD A, 7

P,=A@ADA, e
Py= A®@AD Aq 25'
e Finding sum of ~°

minterms expressiong

P, =3,(1,25,6,8,11,12,1%)
P,=2,(1,3/4,6,8,10,13,1%)
P,=%,(2,3,4,58,9,14,15 2

* Find circuit 14

* Is this a good idea?

REBoo~vourwnk o
@ U
8 0 U 9

Multiplexer Approach 1

 Implementm functions ofn variables with:

— Sum-of-minterms expressions
— An mrwide 2'-to-1-line multiplexer

« Design:

— Find the truth table for the functions.
— In the order they appear in the truth table:
« Apply the function input variables to the multipde inputs §_,, ... , §
« Label the outputs of the multiplexer with the auttpariables
— Value-fix the information inputs to the multiplexgsing the
values from the truth table (for don’t cares, apgther 0 or 1)

33

Example: Gray to Binary Code

« Design a circuit to

; Gray Binary
convert a 3-bit Gray ABC | xyz
code to a binary code 000 | 000

) i 100 001

 The formulation gives 110 010
the truth table on the 010 . 011

. 011 100
right 111 | 101

* Itis obvious from this 101 | 110
001 111

table that X = C and the
Y and Z are more complex

34

Gray to Binary (continued)

Rearrange the table so

that the input combinations Gray | Binary
are in counting order ABC Xyz

000 000

Functions y and z can 001 111

be implemented using 010 011

a dual 8-to-1-line 011 100

multiplexer by: 100 001

— connecting A, B, and C to the 101 110

multiplexer select inputs 110 010

— placing y and z on the two 111 101

multiplexer outputs
— connecting their respective
truth table values to the inputs

35

Gray to Binary (continued)

0—]Doo 0—b10
1— D01 1—D11
1— D02 1—D12
0— D03 0— D13
0— D04 1— D14
1—|pgs Out Y o—|pis Out z
1—pos 0—D16
0— D07 1—p17
LT sw0a A TS stol
¢ —{S0_ MUX c —iso_MUX

* Note that the multiplexer with fixed inputs is idial to a
ROM with 3-bit addresses and 2-bit data!

36|

Copyright 2000 N. AYDIN. All rights
reserved.

Multiplexer Approach 2 Example: Gray to Binary Code

« Implement anyn functions ofn + 1 variables by using: « Design a circuit to -
— An m-wide 2-to-1-line multiplexer g . Gray Binary
A convert a 3-bit Gray ABC | xyz
— A single inverter i 000 000
« Design: code to a binary code 100 001
— Find the truth table for the functions. ° The formulation gives 110 010
- E?SEdEn the values of the firstariables, separate the truth table rows the tI’Uth table on the 010 011
o pare . 011 100
— For each pair and output, define a rudimentargtian of the final nght 111 101
variable (0, 1, XX) A i A 101 110
- Using the firsi variables as the index, value-fix the informatiopits « It is obvious from this
to the multiplexer with the corresponding rudimeytanctions table that X = C and the 001 111

— Use the inverter to generate the rudimentary fana¢

Y and Z are more complex

37 38,
Gray to Binary (continued) Gray to Binary (continued)
* Rearrange the table so that the input combinatioesn « Assign the variables and functions to the mulsipteinputs:
counting order, pair rows, and find rudimentarydiions c—1
C— D00 e D10
Gray Binary Rudimentary | Rudimentary c c C—{Do1 E— D11
ABC Xyz Functions of ¢| Functions of 4 D c—p02 out—Y C—D12 Out|—2z
fory forz C—Do3 Cc—{D13
000 449 F=C F=C A—{s1 4ol A—]|s1 4to-l
001 111 B—{S0 MUX B—]S0 MUX
010 q11 = = « Note that this approach (Approach 2) reduces dis¢ loy almost
F=C F=C
011 1409 half compared to Approach 1.
100 991 F=C £=C * This result is no longer ROM-like
101 110 « Extending, a function of more tharvariables is decomposed in
110 914 E=E Foc several sub-functiondefined on a subset of the variables. The
111 101 multiplexer then selects among these sub-functions.
39 40,
Read Only Memory Truth table
« Functions are implemented by storing the truthetab
« Other representations such as equations more Inputs Outputs
convenient A, Ay Ay Bs By By B, By By Decimal
« Generation of programming information from D0 0 0 0 0 0 00
equations usually done by software : ‘l' .1. ' :; : ‘f ‘1) j
0

Text Example 4-10 : Design a combinational circuit I 10
o 0
I 0
0 1
0 0

1 9

0 16
1 25
0 36
1 49

using a ROM. The circuit accepts a 3 bit number and O

1

1
generates an output binary number equal to thersqug [T
of the input number 1

a1 42|

Copyright 2000 N. AYDIN. All rights
reserved.

Implementation

Ay A Ay

0000
00 1]0
01 00

B, o1 1fo0
1
1
1
1

Ay

000
0110
1o 1
L1 1

§ X4ROM

Ay

Ay

Bs By

0
0
0
0

1
1
0
1

B: B,

00
00

1o
00
1o

00

{a) Block diagram

Two outputs are generated outside of the ROM

(b) ROM truth table

In the implementation of the system, these two functions are
‘hardwired” and even if the ROM is reprogrammable or

removable, cannot be corrected or updated

43

Programmable Array Logic

 There is no sharing of AND gates as in the
ROM and PLA

« Design requires fitting functions within the
limited number of ANDs per OR gate

« Single function optimization is the first step to
fitting

» Otherwise, if the number of terms in a function
is greater than the number of ANDs per OR
gate, then factoring is necessary

44

Programmable Array Logic Example

F2=AB+BC+AC

« EquationsF1=ABC +ABC+A B C+ABC

F1 must be AND Inputs
Product
factored term A B C D W Ouputs
since four 1 ° 0 1 - w= AR
terms 3 - - +ABC
4 10 0 — — Fl=x=A BC
i B
: e -~ T F2=Y
terms as W 5 L I =AB+BC +AC

=
|

45

Programmable Array Logic Example

AND gates nputs

w
x
A—l—1|
E ety
-
e—ij
DDD}_L[>;FZ
—;
o 1 Fuse blown
v

48

Programmable Logic Array

The set of functions to be implemented must f aévailable

number of product terms

The number of literals per term is less imporiarfitting

The best approach to fitting is multiple-outputptlevel
optimization (which has not been discussed)

Since output inversion is available, terms canlé@ment either

a function or its complement

For small circuits, K-maps can be used to viseafimoduct

term sharing and use of complements

For larger circuits, software is used to do theérojzation

including use of complemented functions

a7

Programmable Logic Array Example

BC B BC —B
. K_map A\ 00 01 11 10 A 00 01 ’_1.1 10
specification o@ 1 |(o]f 2 ofo]of1]o
* HOYV can this A[l 1|0 (] 9 A[l o | [d]3
be implemented
c c

i ? __c_ _ __
with four terms? Fy= ABC+ KB+ ABT _
« Complete the — F1= AB+AC+BC+ABC

programming table

F2= AB + AC + BC—

F,= AC +AB +BC
PLA programming table

Outputs

Product Inputs M

tem A BCF F

AB 1 11 - 1
AC 2 1-1 1
BC 3 -11 1
4 -

48|

Copyright 2000 N. AYDIN. All rights

reserved.

Programmable Logic Array Example

X Fuse intact
1 Fuse blown

clata Ugli;;f}a

I — P

SAUAUAT)

49

Lookup Tables

Lookup tables are used for implementing logic in
Field-Programmable Gate Arrays (FPGAs) and
Complex Logic Devices (CPLDs)

Lookup tables are typically small, often with four
inputs, one output, and 16 entries

Since lookup tables store truth tables, it is fiego
implement any 4-input function

Thus, the design problem is how to optimally
decompose a set of given functions into a set of 4-
input two- level functions.

We will illustrate this by a manual attempt

50|

Lookup Table Example

 Equations to be implemented:
F.(AB.CDLE) =ADE+BDE+CDE
F,(AB.D.ESF) =ADE+BDE+FDE

« Extract 4-input function:
Fs(ABDE) =ADE+BDE
F.CDEFR)=FR+CDE
F,(D.E,F,R)=FR+FDE

* The cost of the solution is 3 lookup tables

51

Copyright 2000 N. AYDIN. All rights
reserved.

