
Copyright 2000 N. AYDIN. All rights
reserved. 1

1

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

naydin@ieee.org

Introduction to Digital Logic

2

Course Outline
1. Digital Computers, Number Systems, Arithmetic Operations, Decimal,

Alphanumeric, and Gray Codes
2. Binary Logic, Gates, Boolean Algebra, Standard Forms
3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level

Circuit Optimization
4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates,

High-Impedance Outputs
5. Implementation Technology and Logic Design, Design Concepts and Automation,

The Design Space, Design Procedure, The major design steps
6. Programmable Implementation Technologies: Read-Only Memories, Programmable

Logic Arrays, Programmable Array Logic,Technology mapping to programmable
logic devices

7. Combinational Functions and Circuits
8. Arithmetic Functions and Circuits
9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
11. Counters, register cells, buses, & serial operations
12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
13. Memory Basics

3

Lecture 7

Combinational Functions and Combinational Functions and
CircuitsCircuits

Introduction to Digital Logic

4

Overview

• Functions and functional blocks
• Rudimentary logic functions
• Decoding
• Encoding
• Selecting
• Implementing Combinational Functions Using:

– Decoders and OR gates
– Multiplexers (and inverter)
– ROMs
– PLAs
– PALs
– Lookup Tables

5

Functions and Functional Blocks

• The functions considered are those found to be very
useful in design

• Corresponding to each of the functions is a
combinational circuit implementation called a
functional block.

• In the past, many functional blocks were implemented
as SSI, MSI, and LSI circuits.

• Today, they are often simply parts within a VLSI
circuit.

6

Rudimentary Logic Functions

• Functions of a single variable X

• Can be used on the
inputs to functional
blocks to implement
other than the block’s
intended function

Functions of One Variable

X F = 0 F = X F = F = 1

0
1

0
0

0
1

1
0

1
1

X

0

1

F 0

F 1

(a)

F 0

F 1

V CC or VDD

(b)

X F X

(c)

X F X

(d)

Copyright 2000 N. AYDIN. All rights
reserved. 2

7

Multiple-bit Rudimentary Functions

• Multi-bit Examples:

• A wide line is used to represent
a bus which is a vector signal

• In (b) of the example, F = (F3, F2, F1, F0) is a bus.

• The bus can be split into individual bitsas shown in (b)

• Sets of bitscan be split from the bus as shown in (c)
for bits 2 and 1 of F.

• The sets of bits need not be continuous as shown in (d) for bits 3, 1, and 0
of F.

4 2:1 F(2:1)
2

F
(c)

F
(d)

4 3,1:0 F(3), F(1:0)
3

0

F3

1 F2

F1

A F0

(a)

A

0
1

A
1

2 3
4

F
0

(b)

A

8

Enabling Function

• Enabling permits an input signal to pass through to an
output

• Disabling blocks an input signal from passing through
to an output, replacing it with a fixed value

• The value on the output when it is disable can be Hi-Z
(as for three-state buffers and transmission gates), 0 ,
or 1

• When disabled, 0 output

• When disabled, 1 output

• Enabling applications?

X
F

EN

(a)

EN
X

F

(b)

9

• Decoding- the conversion of an n-bit input
code to an m-bit output code with
n ≤ m ≤ 2n such that each valid code word
produces a unique output code

• Circuits that perform decoding are called
decoders

• Here, functional blocks for decoding are
– called n-to-m line decoders, where m ≤ 2n, and

– generate 2n (or fewer) minterms for the n input
variables

Decoding

10

• 1-to-2-Line Decoder

• 2-to-4-Line Decoder

� Note that the 2-4-line
made up of 2 1-to-2-
line decoders and 4 AND gates.

Decoder Examples
A D0 D1

0 1 0

1 0 1

(a) (b)

D1 = AA

D0 = A

A1

0

0

1

1

A0

0

1

0

1

D0

1

0

0

0

D1

0

1

0

0

D2

0

0

1

0

D3

0

0

0

1

(a)

D0 = A 1 A 0

D1 = A 1 A 0

D2 = A 1 A 0

D3 = A 1 A 0

(b)

A 1

A 0

11

Decoder Expansion

• General procedure given in book for any decoder with n inputs
and 2n outputs.

• This procedure builds a decoder backward from the outputs.

• The output AND gates are driven by two decoders with their
numbers of inputs either equal or differing by 1.

• These decoders are then designed using the same procedure
until 2-to-1-line decoders are reached.

• The procedure can be modified to apply to decoders with the
number of outputs ≠ 2n

12

Decoder Expansion - Example 1

• 3-to-8-line decoder
– Number of output ANDs = 8

– Number of inputs to decoders driving output ANDs = 3

– Closest possible split to equal
• 2-to-4-line decoder

• 1-to-2-line decoder

– 2-to-4-line decoder
• Number of output ANDs = 4

• Number of inputs to decoders driving output ANDs = 2

• Closest possible split to equal
– Two 1-to-2-line decoders

Copyright 2000 N. AYDIN. All rights
reserved. 3

13

Decoder Expansion - Example 1

• Result

3-to-8 Line decoder

1-to-2-Line decoders

4 2-input ANDs 8 2-input ANDs

2-to-4-Line
decoder

D0
A 0

A 1

A 2

D1

D2

D3

D4

D5

D6

D7

14

Decoder Expansion - Example 2

• 7-to-128-line decoder
– Number of output ANDs = 128

– Number of inputs to decoders driving output ANDs = 7

– Closest possible split to equal
• 4-to-16-line decoder

• 3-to-8-line decoder

– 4-to-16-line decoder
• Number of output ANDs = 16

• Number of inputs to decoders driving output ANDs = 2

• Closest possible split to equal
– 2 2-to-4-line decoders

– Complete using known 3-8 and 2-to-4 line decoders

15

• In general, attach m-enabling circuits to the outputs

• Truth table for the function
– Note use of X’s to denote both 0 and 1

– Combination containing two X’s represent four binary combinations

• Alternatively, can be viewed as distributing value of signal EN to
1 of 4 outputs

• In this case, called a
demultiplexer

Decoder with Enable

EN

A 1

A 0
D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0
1
1
1
1

X
0
0
1
1

X
0
1
0
1

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1

(a)

16

Encoding

• Encoding - the opposite of decoding - the conversion of
an m-bit input code to a n-bit output code with n ≤ m ≤
2n such that each valid code word produces a unique
output code

• Circuits that perform encoding are called encoders

• An encoder has 2n (or fewer) input lines and n output
lines which generate the binary code corresponding to
the input values

• Typically, an encoder converts a code containing exactly
one bit that is 1 to a binary code corresponding to the
position in which the 1 appears.

17

Encoder Example

• A decimal-to-BCD encoder
– Inputs: 10 bits corresponding to decimal digits 0

through 9, (D0, …, D9)

– Outputs: 4 bits with BCD codes

– Function: If input bit Di is a 1, then the output
(A3, A2, A1, A0) is the BCD code for i,

• The truth table could be formed, but
alternatively, the equations for each of the
four outputs can be obtained directly.

18

Encoder Example (continued)

• Input Di is a term in equation Aj if bit Aj is 1 in
the binary value for i.

• Equations:
A3 = D8 + D9

A2 = D4 + D5 + D6 + D7

A1 = D2 + D3 + D6 + D7

A0 = D1 + D3 + D5 + D7 + D9

• F1 = D6 + D7 can be extracted from A2 and A1

Copyright 2000 N. AYDIN. All rights
reserved. 4

19

Priority Encoder

• If more than one input value is 1, then the
encoder just designed does not work.

• One encoder that can accept all possible
combinations of input values and produce a
meaningful result is a priority encoder.

• Among the 1s that appear, it selects the most
significant input position (or the least
significant input position) containing a 1 and
responds with the corresponding binary code
for that position.

20

Priority Encoder Example

• Priority encoder with 5 inputs (D4, D3, D2, D1, D0) - highest priority to most
significant 1 present - Code outputs A2, A1, A0 and V where V indicates at
least one 1 present.

• Xs in input part of table represent 0 or 1; thus table entries correspond to
product terms instead of minterms. The column on the left shows that all 32
minterms are present in the product terms in the table

16

8

4

2

1

0

No. of Min-
terms/Row

0XXX00000

1001XXXX1

1110XXX10

1010XX100

1100X1000

100010000

VA0A1A2D0D1D2D3D4

OutputsInputs

21

Priority Encoder Example (continued)

• Could use a K-map to get equations, but can be
read directly from table and manually
optimized if careful:
A2 = D4

A1 = D3 + D2 = F1, F1 = (D3 + D2)

A0 = D3 + D1 = (D3 + D1)
V = D4 + F1 + D1 + D0

D4 D3D4 D4

D4 D3D4 D2 D4 D2

22

• Selecting of data or information is a critical
function in digital systems and computers

• Circuits that perform selecting have:
– A set of information inputs from which the

selection is made
– A single output
– A set of control lines for making the selection

• Logic circuits that perform selecting are called
multiplexers

• Selecting can also be done by three-state logic
or transmission gates

Selecting

23

Multiplexers

• A multiplexer selects information from an input
line and directs the information to an output line

• A typical multiplexer has n control inputs (Sn − 1,
… S0) called selection inputs, 2n information
inputs (I2

n
− 1, … I0), and one output Y

• A multiplexer can be designed to have m
information inputs with m < 2n as well as n
selection inputs

24

2-to-1-Line Multiplexer

• Since 2 = 21, n = 1

• The single selection variable S has two values:
– S = 0 selects input I0

– S = 1 selects input I1

• The equation:

Y = I0 + SI1

• The circuit:

S

S

I0

I1

Decoder
Enabling
Circuits

Y

Copyright 2000 N. AYDIN. All rights
reserved. 5

25

2-to-1-Line Multiplexer (continued)

• Note the regions of the multiplexer circuit shown:
– 1-to-2-line Decoder
– 2 Enabling circuits
– 2-input OR gate

• To obtain a basis for multiplexer expansion, we
combine the Enabling circuits and OR gate into a 2 ×
2 AND-OR circuit:
– 1-to-2-line decoder
– 2 × 2 AND-OR

• In general, for an 2n-to-1-line multiplexer:
– n-to-2n-line decoder
– 2n × 2 AND-OR

26

Example: 4-to-1-line Multiplexer

• 2-to-22-line decoder

• 22 × 2 AND-OR

S1
Decoder

S0

Y

S1
Decoder

S0

Y

S1
Decoder

4 x 2 AND-OR
S0

Y

I 2

I 3

I1

I0

27

Multiplexer Width Expansion

• Select “vectors of bits” instead of “bits”

• Use multiple copies of 2n × 2 AND-OR in parallel

• Example:
4-to-1-line
quad multi-
plexer

28

Other Selection Implementations

• Three-state logic in place of AND-OR

• Gate input cost = 14 compared to 22 (or 18) for
gate implementation

I0

I1

I2

I3

S1

S0

(b)

Y

29

Other Selection Implementations

• Transmission Gate Multiplexer

• Gate input
cost = 8
compared
to 14 for
3-state logic
and 18 or 22
for gate logic

S0

S1

I0

I1

I2

I3

Y

TG
(S0 = 0)

TG
(S1 = 0)

TG
(S1 = 1)

TG
(S0 = 1)

TG
(S0 = 0)

TG
(S0 = 1)

30

Combinational Function Implementation

• Alternative implementation techniques:

– Decoders and OR gates

– Multiplexers (and inverter)

– ROMs

– PLAs

– PALs

– Lookup Tables

• Can be referred to as structured implementation
methods since a specific underlying structure is
assumed in each case

Copyright 2000 N. AYDIN. All rights
reserved. 6

31

Decoder and OR Gates

• Implement m functions of n variables with:
– Sum-of-minterms expressions

– One n-to-2n-line decoder

– m OR gates, one for each output

• Approach 1:
– Find the truth table for the functions

– Make a connection to the corresponding OR from the
corresponding decoder output wherever a 1 appears in the
truth table

• Approach 2
– Find the minterms for each output function

– OR the minterms together

32

Decoder and OR Gates Example

• Implement the following set of odd parity functions of

(A7, A6, A5, A3)
P1 = A7 A5 A3

P2 = A7 A6 A3

P3 = A7 A6 A5

• Finding sum of
minterms expressions

P1 = Σm(1,2,5,6,8,11,12,15)
P2 = Σm(1,3,4,6,8,10,13,15)
P3 = Σm(2,3,4,5,8,9,14,15)

• Find circuit

• Is this a good idea?

+

+

+

+

+

+

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A7
A6
A5
A3

P1

P3

P2

33

Multiplexer Approach 1

• Implement m functions of n variables with:
– Sum-of-minterms expressions

– An m-wide 2n-to-1-line multiplexer

• Design:
– Find the truth table for the functions.

– In the order they appear in the truth table:
• Apply the function input variables to the multiplexer inputs Sn − 1, … , S0

• Label the outputs of the multiplexer with the output variables

– Value-fix the information inputs to the multiplexer using the
values from the truth table (for don’t cares, apply either 0 or 1)

34

Example: Gray to Binary Code

• Design a circuit to
convert a 3-bit Gray
code to a binary code

• The formulation gives
the truth table on the
right

• It is obvious from this
table that X = C and the
Y and Z are more complex

Gray
A B C

Binary
x y z

0 0 0 0 0 0
1 0 0 0 0 1
1 1 0 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 1 1 1 0 1
1 0 1 1 1 0
0 0 1 1 1 1

35

Gray to Binary (continued)

• Rearrange the table so
that the input combinations
are in counting order

• Functions y and z can
be implemented using
a dual 8-to-1-line
multiplexer by:

– connecting A, B, and C to the
multiplexer select inputs

– placing y and z on the two
multiplexer outputs

– connecting their respective
truth table values to the inputs

Gray
A B C

Binary
x y z

0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 0 1
1 0 1 1 1 0
1 1 0 0 1 0
1 1 1 1 0 1

36

• Note that the multiplexer with fixed inputs is identical to a
ROM with 3-bit addresses and 2-bit data!

Gray to Binary (continued)

D04
D05
D06
D07

S1
S0

A
B

S2

D03
D02
D01
D00

Out

C

1
1

1
1

0

0
0

0

Y

8-to-1
MUX

D14
D15
D16
D17

S1
S0

A
B

S2

D13
D12
D11
D10

Out

C

1

1

1
1

0
0

0

0

Z

8-to-1
MUX

Copyright 2000 N. AYDIN. All rights
reserved. 7

37

Multiplexer Approach 2

• Implement any m functions of n + 1 variables by using:
– An m-wide 2n-to-1-line multiplexer

– A single inverter

• Design:
– Find the truth table for the functions.

– Based on the values of the first n variables, separate the truth table rows
into pairs

– For each pair and output, define a rudimentary function of the final
variable (0, 1, X,)

– Using the first n variables as the index, value-fix the information inputs
to the multiplexer with the corresponding rudimentary functions

– Use the inverter to generate the rudimentary function

X

X

38

Example: Gray to Binary Code

• Design a circuit to
convert a 3-bit Gray
code to a binary code

• The formulation gives
the truth table on the
right

• It is obvious from this
table that x = C and the
Y and Z are more complex

Gray
A B C

Binary
x y z

0 0 0 0 0 0
1 0 0 0 0 1
1 1 0 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 1 1 1 0 1
1 0 1 1 1 0
0 0 1 1 1 1

39

Gray to Binary (continued)

• Rearrange the table so that the input combinations are in
counting order, pair rows, and find rudimentary functions

1 0 11 1 1

0 1 01 1 0

1 1 01 0 1

0 0 11 0 0

1 0 00 1 1

0 1 10 1 0

1 1 10 0 1

0 0 00 0 0

Rudimentary
Functions of C

for z

Rudimentary

Functions of C
for y

Binary

x y z

Gray

A B C

F = C

F = C

F = C

F = C

F = C

F = CF = C

F = C

40

• Assign the variables and functions to the multiplexer inputs:

• Note that this approach (Approach 2) reduces the cost by almost
half compared to Approach 1.

• This result is no longer ROM-like

• Extending, a function of more thann variables is decomposed into
several sub-functionsdefined on a subset of the variables. The
multiplexer then selects among these sub-functions.

Gray to Binary (continued)

S1
S0

A
B

D03
D02
D01
D00

Out Y

4-to-1
MUX

C
C

C

C D13
D12
D11
D10

Out Z

4-to-1
MUX

S1
S0

A
B

C

C

C

C
C C

41

Read Only Memory

• Functions are implemented by storing the truth table

• Other representations such as equations more
convenient

• Generation of programming information from
equations usually done by software

• Text Example 4-10 : Design a combinational circuit
using a ROM. The circuit accepts a 3 bit number and
generates an output binary number equal to the square
of the input number

42

Truth table

Copyright 2000 N. AYDIN. All rights
reserved. 8

43

Implementation

Two outputs are generated outside of the ROM
In the implementation of the system, these two functions are
“hardwired” and even if the ROM is reprogrammable or
removable, cannot be corrected or updated

44

Programmable Array Logic

• There is no sharing of AND gates as in the
ROM and PLA

• Design requires fitting functions within the
limited number of ANDs per OR gate

• Single function optimization is the first step to
fitting

• Otherwise, if the number of terms in a function
is greater than the number of ANDs per OR
gate, then factoring is necessary

45

• Equations: F1 = A + B + C + ABC
F2 = AB + BC + AC

• F1 must be
factored
since four
terms

• Factor out
last two
terms as W

A BB C C A

Programmable Array Logic Example

Product
term

AND Inputs

OutputsA B C D W

1
2
3

W = C

4
5
6

F1 = X =A
+ B + W

7
8
9

10
11
12

—
—
—

—
—
—

—
—
—

—
—
—

—
—
—

A B

C

+ ABC

F2 = Y
= AB + BC +AC

B C
A

1
0
—

0
1
—

0
0
—

—
—
—

—
—
1

— —

0
1

0
1

1
1
—

—

—

—
—
—

—

1
—
1

1
1
—

—
1
1

—

—

—
—
—

—

46

Programmable Array Logic Example

X

XX

XX

XX

X XX

X X X

XX X

X X X

AND gates inputs

A C WProduct
term

1

2

3

4

5

6

7

8

9

10

11

12

A

B

C

D

W

F1

F2

All fuses intact
(always 5 0)

X Fuse intact

X

A B B C D D W

A C WA B B C D D W

1 Fuse blown

47

Programmable Logic Array

• The set of functions to be implemented must fit the available
number of product terms

• The number of literals per term is less important in fitting

• The best approach to fitting is multiple-output, two-level
optimization (which has not been discussed)

• Since output inversion is available, terms can implement either
a function or its complement

• For small circuits, K-maps can be used to visualize product
term sharing and use of complements

• For larger circuits, software is used to do the optimization
including use of complemented functions

48

Programmable Logic Array Example

• K-map
specification

• How can this
be implemented
with four terms?

• Complete the
programming table

Outputs

1

2

3

4

F2

1

1

–
1

AB

AC

BC

Inputs

–

1

1

C

1

1

–

A

1

–

1

B

PLA programming table

(T)
F1

Product
term

F2 = AB + AC + BC

0

C

0

1

0 1

0 0

00 01 11 10
BC

A

0

B

1

1A

0

C

0

1 0

1 1

00 01 11 10
BC

A

1

B

0

1A

0

1 =F ABC + A B C + A B C

F2 = AC + AB + BCF1 = AB + AC + BC + A B C

Copyright 2000 N. AYDIN. All rights
reserved. 9

49

Programmable Logic Array Example

X Fuse intact

1 Fuse blown

0

1

F1

F2

A

B

C

C B AC B A

1

2

4

3

X X

X X

X X

X XX

X

X

X X

X

X

X

X

X

50

Lookup Tables

• Lookup tables are used for implementing logic in
Field-Programmable Gate Arrays (FPGAs) and
Complex Logic Devices (CPLDs)

• Lookup tables are typically small, often with four
inputs, one output, and 16 entries

• Since lookup tables store truth tables, it is possible to
implement any 4-input function

• Thus, the design problem is how to optimally
decompose a set of given functions into a set of 4-
input two- level functions.

• We will illustrate this by a manual attempt

51

Lookup Table Example

• Equations to be implemented:
F1(A,B,C,D,E) = A D E + B D E + C D E
F2(A,B,D,E,F) = A D E + B D E + F D E

• Extract 4-input function:
F3(A,B,D,E) = A D E + B D E
F1(C,D,E,F3) = F3 + C D E
F2(D,E,F,F3) = F3 + F D E

• The cost of the solution is 3 lookup tables

