Introduction to Digital Logic

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr
naydin@ieee.org

Course Outline

Digital Computers, Number Systems, Arithmetic @piens, Decimal,
Alphanumeric, and Gray Codes

Binary Logic, Gates, Boolean Algebra, Standard Borm

Circuit Optimization, Two-Level Optimization, Mdpanipulation, Multi-Level
Circuit Optimization

Additional Gates and Circuits, Other Gate Types]iisive-OR Operator and Gateq,
High-Impedance Outputs

5. Implementation Technology and Logic Design, Designcepts and Automation,
The Design Space, Design Procedure, The majormisgigs

6. Programmable Implementation Techno_log%_les: Redg-@emories, Programmable
Logic Arrays, Programmable Array Logic, Technologgpping to programmable
logic devices

7. Combinational Functions and Circuits

8. Arithmetic Functions and Circuits

9. Sequential Circuits Storage Elements and Sequéitiait Analysis

10. Sequential Circuits, Sequential Circuit DesigriSRiagrams, State Tables

11. Counters, register cells, buses, & serial opmrati

12. Sequencing and Control, Datapath and Control, Atgoic State Machines (ASM)

13. Memory Basics

[

> W

Introduction to Digital Logic

Lecture 5

Design Concepts and Automation
Fundamental concepts of design and computer-aiesig i
techniques
The Design Space
Technology parameters for gates, positive and heglatgic and
design tradeoffs
Design Procedure
The major design steps: specification, formulataptjmization,
technology mapping, and verification
Technology Mapping
From AND, OR, and NOT to other gate types
Verification
Does the designed circuit meet the specifications?

Implementation Technology and L ogic Design

Combinational Circuits

« A combinational logic circuit has:
— A set ofmBoolean inputs,
— A set ofn Boolean outputs, and

— nswitching functions, each mapping thei@put
combinations to an output such that the currerwdut
depends only on the current input values

* A block diagram: __

—
> Combinatorial —
* Logic ¢
® Circuit *
° L]
_— —>
m Boolean Inputs n Boolean Outputs

4

Hierarchical Design

« To control the complexity of the function mappinguts to
outputs:
— Decompose the function into smaller pieces cdiledks

— Decompose each block’s function into smaller bipckpeating as
necessary until all blocks are small enough

— Any block not decomposed is callecpramitive block

« Example: 9-input parity tree (see next slide)
— Top Level: 9 inputs, one output
— 2nd Level: Four 3-bit odd parity trees in two lsve
— 3rd Level: Two 2-bit exclusive-OR functions
— Primitives: Four 2-input NAND gates
— Design requires 4 X 2 X 4 = 32 2-input NAND gates

— The collection of all blocks including the decorspd ones is hierarchy

Hierarchy for Parity Tree Example

(@) Symbol for circut

uncion bocks
Ao
Az ——
(¢) -input odd function circuit as.
eeommacied e OR
Hocks

(@) Exclusive-OR block as inerconnected
NANDS.

Copyright 2000 N. AYDIN. All rights
reserved.

Reusable Functions and CAD

* Whenever possible, we try to decompose a commsigd
into commonyeusable function blocks

» These blocks are
— verified and well-documented
— placed in libraries for future use

* Representative Computer-Aided Design Tools:
— Schematic Capture
— Logic Simulators
— Timing Verifiers
— Hardware Description Languages

« Verilog and VHDL
Logic Synthesizers
Integrated Circuit Layout

Top-Down versus Bottom-Up

A top-down design proceeds from an abstract, high-level
specification to a more and more detailed design by
decomposition and successive refinement

A bottom-up design starts with detailed primitive blocks
and combines them into larger and more complex
functional blocks

« Designs usually proceed from both directions
simultaneously

— Top-down design answers: What are we building?
— Bottom-up design answers: How do we build it?

» Top-down controls complexity while bottom-up foesn

the details

Integrated Circuits

Integrated circuit (informally, a “chip”) is a
semiconductor crystal (most often silicon) contadni
the electronic components for the digital gates and
storage elements which are interconnected on fipe ¢
Terminology - Levels of chip integration

— S9 (small-scale integrated) - fewer than 10 gates

— MS (medium-scale integrated) - 10 to 100 gates

— L9 (large-scale integrated) - 100 to thousands of gates

— VLI (very large-scale integrated) - thousands to 100s of
millions of gates

Technology Parameters

Specific gate implementation technologies are attarized

by the following parameters:

— Fan-in —the number of inputs available on a gate

— Fan-out — the number of standard loads driven by a gateubutp

— Logic Levels—the signal value ranges for 1 and 0 on the inpnts1
and 0 on the outputs (see Figure 1-1)

— Noise Margin — the maximum external noise voltage superimposed
a normal input value that will not cause an undésé change in the
circuit output

— Cost for agate - a measure of the contribution by the gate to ts ¢
of the integrated circuit

— Propagation Delay — The time required for a change in the value of g
signal to propagate from an input to an output

— Power Dissipation — the amount of power drawn from the power
supply and consumed by the gate

Propagation Delay

Propagation delay is the time for a change omputiof a gate
to propagate to the output.

Delay is usually measured at the 50% point witpeet to the
H and L output voltage levels.

High-to-low () and low-to-high @,,,) output signal changes
may have different propagation delays.

High-to-low (HL) and low-to-high (LH) transitiorsre defined
with respect to the output, nibte input.

An HL input transition causes:

— an LH output transition if the gate inverts and

— an HL output transition if the gate does not ihver

Propagation Delay (continued)

tpd 5 max (tpHL, tpLH)

« Propagation delays measured at the midpoint betwe
the L and H values

* What is the expression for thgt delay for:
— a string ofn identical buffers?
— a string ofn identical inverters?

©®

Copyright 2000 N. AYDIN. All rights

reserved.

>

Propagation Delay Example

¢ Find &y, t, 1y and f4 for the signals given

IN (volts)

\
\
|

OUT (volts)

\

\ /
\

\

t (ns)
1.0 nsper division

Delay Models

« Transport delay - a change in the output in response
to a change on the inputs occurs after a fixedipec
delay

« Inertial delay - similar to transport delay, except that
if the input changes such that the output is toxgha
twice in a time interval less than threjection time,
the output changes do not occur. Models typical
electronic circuit behavior, namely, rejects narrow
“pulses” on the outputs

Delay Model Example

Al [

SO e O B T
AB:

S N~
Delay (TD) [

Beiy 0y

4

0 5 4 6 8 10 12 14 ‘1amems
Propagation Delay = 2.0 nsRejection Time=1.0ns

Fan-out

¢ Fan-out can be defined in terms of a standard
load

— Example: 1 standard load equals the load
contributed by the input of 1 inverter.

— Transition time -the time required for the gate
output to change from H to Lyt or from L to H,
tLH

— Themaximum fan-out that can be driven by a gate
is the number of standard loads the gate can drivg
without exceeding its specifiedaximum transition
time

Fan-out and Delay

¢ The fan-out loading a gate’s output affects the|
gate’s propagation delay
¢ Example:
— One realistic equation fog,t for a NAND gate
with 4 inputs is:
thg=0.07 +0.021 SL ns

— SL is the number of standard loads the gate is
driving, i. e., its fan-out in standard loads

—ForSL=4.5,}=0.165ns

Cost

« In an integrated circuit:
— The cost of a gate is proportional to the chimareupied
by the gate
— The gate area is roughly proportional to the nunabel

size of the transistoend the amount of wiringonnecting
them

— Ignoring the wiring area, the gate area is royghl
proportional to the gate input count

— So gate input count is a rough measure of gate cos
« If the actual chip layout area occupied by thegst
known, it is a far more accurate measure

Copyright 2000 N. AYDIN. All rights
reserved.

Positive and Negative Logic

* The same physical gate has different logical

meanings depending on interpretation of the signal

levels.

Positive Logic

— HIGH (more positive) signal levels represent Labic

— LOW (less positive) signal levels represent Ldyic

Negative Logic

— LOW (more negative) signal levels represent Ldgic

— HIGH (less negative) signal levels represent Légic

« A gate that implements a Positive Logic AND
function will implement a Negative Logic OR
function, and vice-versa.

Positive and Negative L ogic (continued)

¢ Given this signal level table: Input | Output
XY
LL L
LH H
HL H
HH H
* What logic function is implemented?
Positive |(H =1) Negative |(H =0)
Logic |(L=0) Logic (L=1)
00 0 11 1
01 1 10 0
10 1 01 0
11 1 00 0

20|

Positive and Negative L ogic (continued)

¢ Rearranging the negative logic terms to the
standard function table order:

Positive |(H =1) Negative |(H =0)
Logic |(L=0) Logic L=21
00 0 00 0
01 1 01 0
10 1 10 0
11 1 11 1

21

L ogic Symbol Conventions

« Use ofpolarity indicator to represent use of negative
logic convention on gate inputs or outputs

X—]
v CKTZ | L
. .. LH|IH
Logic Circuit 1y [
HHIH

o D
v z z
Positive Logic Negative Logic

22

Design Trade-Offs

¢ Cost - performance tradeoffs

¢ Gate-Level Example:

— NAND gate G with 20 standard loads on its out@ast & delay of
0.45 ns and has a normalized cost of 2.0

— Abuffer H has a normalized cost of 1.5. The NAjde driving
the buffer with 20 standard loads gives a totaylelf 0.33 ns

— Inwhich if the following cases should the buffer added?
1. The cost of this portion of the circuit cannotrbere than 2.5
2. The delay of this portion of the circuit cannetrnore than 0.40 ns

3. The delay of this portion of the circuit mustless than 0.30 ns and the
cost less than 3.0

. Tradeoffs can also be accomplished much highgrerdesign
hierarchy

. Constraints on cost and performance have a malipiim making
tradeoffs

23

Design Procedure

1. Specification
— Write a specification for the circuit if one istradready
available
2. Formulation
— Derive a truth table or initial Boolean equatidimat
define the required relationships between the ;pat
outputs, if not in the specification
3. Optimization
— Apply 2-level and multiple-level optimization

— Draw alogic diagram or provide a netlist for teeulting
circuit using ANDs, ORs, and inverters

24|

Copyright 2000 N. AYDIN. All rights
reserved.

Design Procedure

4. Technology Mapping

— Map the logic diagram or netlist to the
implementation technology selected

5. Verification
— Verify the correctness of the final design

25

Design Example

1. Specification

— BCD to Excess-3 code converter

— Transforms BCD code for the decimal digits to
Excess-3 code for the decimal digits

— BCD code words for digits 0 through 9: 4-bit
patterns 0000 to 1001, respectively

— Excess-3 code words for digits 0 through 9: 4-bit
patterns consisting of 3 (binary 0011) added to
each BCD code word

— Implementation:
« multiple-level circuit
* NAND gates (including inverters)

26|

Design Example (continued)
. Input BCD | Output Excess 3
2. Formulation ABCD WXYZ
— Conversion of 4-bit codes 0000 0011
can be most easily 8 8 2 é 8 % 8 (13
formulated by a truth table 0011 0110
— Variables 0100 0111
- BCD: 0101 1000
AB,C,D 0110 1001
_ i 0111 1010
Variables 1000 1011
- Excess-3

WXYZ 1001 1100
EARN 1010 X X X X
— Don't Cares 1011 X X X X
-BCD 1010 1100 X X X X
to 1111 1101 X X X X
1110 X X X X
1111 X X X X

27

Design Example (continued)

- . C C
3. Optimization 2R T Vi T
a. 2-level using e e
K-maps] B] B
W=A+BC+BD AL e AL,
X=BC+B D+E&D D D
Y=CD+CD
Z=D X L C W. C
Jelas) 1]
L 5 7 6 a 15 H B
N ENES B (xz X] %) B
A s[; X)) A[l 1] x xJ
D D

28|

Design Example (continued)

3. Optimization (continued)

b. Multiple-level using transformations
W =A+BC +BD
X=BC+BD+ED
Y=CD+CD
z=D

— Perform extraction, finding factor:
T,=C+D
W=A+BT,

X =BT, +BCD
Y=CD+CD
z=D

G=7+10+6+0=23

G=2+1+4+7+6+0=20

29

Design Example (continued)

3. Optimization (continued)

b. Multiple-level using transformations
T,=C+D
W=A+BT,
X =BT, +BCD
Y =CD+CD
z=D G=20
— An additional extraction not shown in the textcsiit uses
Boolean transformatiofCD =C + D T,):
W=A+BT,
X=BT,+BT,
Y=CD+T,
z=D

G=2+1+4+46+4+0=17

30|

Copyright 2000 N. AYDIN. All rights
reserved.

Design Example (continued)

4. Technology Mapping

. Mapping with a library containing inverters anéhput NAND,
2-input NOR, and 2-2 AOI gates A

- .
Do
B iy X Bc«bo%x

oo Pl

«Dc z

oo

31

Technology Mapping

¢ Chip design styles
¢ Cells and cell libraries
» Mapping Techniques
— NAND gates
— NOR gates
— Multiple gate types
— Programmable logic devices

32,

Chip Design Styles

¢ Full custom - the entire design of the chip dowithi smallest
detail of the layout is performed
— Expensive
— Justifiable only for dense, fast chips with higltes volume

« Standard cell - blocks have been design aheadefar as
part of previous designs
— Intermediate cost
— Less density and speed compared to full custom

« Gate array - regular patterns of gate transist@sdan be used
in many designs built into chip - only the intercentions
between gates are specific to a design
— Lowest cost
— Less density compared to full custom and standelid

33

Cdll Libraries

» Cell - a pre-designed primitive block

e Cdll library - a collection of cells available for
design using a particular implementation
technology

 Ceéll characterization - a detailed specification of a
cell for use by a designer - often based on actual
cell design and fabrication and measured values

¢ Cells are used for gate array, standard cellimnd
some cases, full custom chip design

34

Typical Cell Characterization Components

» Schematic or logic diagram
* Area of cell

— Often normalized to the area of a common, sméllsoeh as an
inverter

 Input loading (in standard loads) presented tputstdriving
each of the inputs

» Delays from each input to each output
* One or more cell templates for technology mapping
* One or more hardware description language models

« If automatic layout is to be used:
— Physical layout of the cell circuit
— Afloorplan layout providing the location of ingsyoutputs, power and
ground connections on the cell

35

Example Céll Library

Typical

Typical Input-to- Basic
cel Cel Normalized Input Output Function
Name Schematic Area Load Delay Templates
0.04

Inverter 100 100, o000 o -
0.05

2NAND D 125 100 | o0 st T

006
2NOR D 125 100 (000

o

0.07
2:2 AOI B>— 225 095 | o 0ior 1 %D—D&

36|

Copyright 2000 N. AYDIN. All rights
reserved.

Mapping to NAND gates NAND Mapping Algorithm

¢ Assumptions:
— Gate loading and delay are ignored

— Cell library contains an inverter andnput NAND gatesn
=2,3, ..

— An AND, OR, inverter schematic for the circuit isadable ji} e
¢ The mapping is accomplished by:
— Replacing AND and OR symbols,

— Pushing inverters through circuit fan-out poiaisq
— Canceling inverter pairs

1. Replace ANDs and ORs:

—_

2. Repeat the following pair of actions until theset
most one inverter between :

a. Acircuit input or driving NAND gate output, and
b. The attached NAND gate inputs.

oo — —— %Ea{g

37

NAND Mapping Example Mapping to NOR gates

¢ Assumptions:
— Gate loading and delay are ignored

— Cell library contains an inverter andnput NOR gates) =
2,3, ...

— An AND, OR, inverter schematic for the circuit isadable
¢ The mapping is accomplished by:
— Replacing AND and OR symbols,

— Pushing inverters through circuit fan-out poiairsq
— Canceling inverter pairs

39

40

NOR Mapping Algorithm NOR Mapping Example

1. Replace ANDs and ORs:

A

oo m B

o e e : F

2. Repeat the following pair of actions until thesat

most one inverter between :

a. Acircuit input or driving NAND gate output, and
C
b. The attached NAND gate inputs.

£
D
Lo o — —— ADQEQ E
: ©
41

mo

42|

Copyright 2000 N. AYDIN. All rights
reserved.

Mapping Multiple Gate Types

¢ Algorithm is available in the Advanced Technolddgpping
reading supplement

¢ Cell library contains gates of more than one “type”

« Concept Set 1
— Steps
* Replace all AND and OR gates with optimum equivatémiuits consisting
only of 2-input NAND gates and inverters.
« Place two inverters in series in each line indineuit containing NO
inverters
— Justification
 Breaks up the circuit into small standardize pigogsermit maximum
flexibility in the mapping process

« For the equivalent circuits, could use any singalte set that can
implement AND, OR and NOT and all of the cells ie tell library

43

Mapping Multiple Gate Types

e Concept Set 2
— Fan-out free subcircuit - a circuit in which a single output cell drives
only one other cell
— Steps
» Use an algorithm that guarantees an optimum saidtr “fan-out
free” subcircuits by replacing interconnected inees and 2-input
NAND gates with cells from the library
« Perform inverter “canceling” and “pushing” as fbe NAND and
NOR
— Justification
» Steps given optimize the total cost of the cedisduwithin “fan-
out free” subcircuits of the circuit
¢ End result: An optimum mapping solution within ttien-out
free subcircuits”

44

Example: Mapping Multiple Cell Types

« Uses same example circuit as NAND mapping and
NOR mapping

¢ Cell library: 2-input and 3-input NAND gates, 2int
NOR gate, and inverter

« Circuits on next slide
(a) Optimized multiple-level circuit
(b) Circuit with AND and OR gates replaced with citswf 2-
input NAND gates and inverters (Outlines show 24dinp
NANDs and inverter sets mapped to library cellaént step)
(c) Mapped circuit with inverter pairs cancelled
(d) Circuit with remaining inverters minimized

45

Example: Mapping Multiple Gate Types

A
B
c
D
E
(@)
A
B A
B
c F C F

o
o

© (d)

48

Verification

« Verification - show that the final circuit designed
implements the original specification

« Simple specifications are:
— truth tables
— Boolean equations
— HDL code

« If the above result from formulaticand are not the
original specificationit is critical that the formulation
process be flawless for the verification to bed/ali

a7

Basic Verification Methods

* Manual Logic Analysis
— Find the truth table or Boolean equations forfiinel circuit
— Compare the final circuit truth table with the sified truth table, or
— Show that the Boolean equations for the finaluirare equal to the
specified Boolean equations
« Simulation
— Simulate the final circuit (or its netlist, podgilvritten as an HDL) and
the specified truth table, equations, or HDL degg@n using test input
values that fully validate correctness.
— The obvious test for a combinational circuit ipligation of all possible
“care” input combinations from the specification

48|

Copyright 2000 N. AYDIN. All rights
reserved.

Verification Example: Manual Analysis

* BCD-to-Excess 3 Code Converter
— Find the SOP Boolean equations from the finaluiirc
— Find the truth table from these equations
— Compare to the formulation truth table

¢ Finding the Boolean Equations:
T,=C+D=C+D
W=A(,B) =A+BT,
X =(T,B)(BCD)=B 1+BCD
Y =CD +C D=CD €D

49

Verification Example: Manual Analysis

< Find the circuit truth table from the equationsl @empare to
specification truth table:

Input BCD Output Excess3
ABCD WXYZ
0000 0011
0001 0100
0010 0101
0011 0110
0100 0111
0101 1000
0110 1001
0111 1010 Thetables
1000 1011 |
1001 1100 match!

50|

Verification Example: Simulation

¢ Simulation procedure:

— Use a schematic editor or text editor to enteaite g
level representation of the final circuit

— Use a waveform editor or text editor to entees t
consisting of a sequence of input combinations to
be applied to the circuit

* This test should guarantee the correctness dfitbeit
if the simulated responses to it are correct

« Short of applying all possible “care” input coméiions,
generation of such a test can be difficult

51

Verification Example: Simulation

* Enter BCD-to-Excess-3 Code Converter Circuit Schmat

= Dr—
.' NAND2
NAND2
) INV
NOR2
b
NAND2
@ D‘ﬁv NAND2
NAND3 /AOI symbol
B— Do | E not available
INV/ AND2 >
| NOR2

AND2 Aol

52,

Verification Example: Simulation

« Enter waveform that applies all possible input borations:

INPUTS |

AL gy —

B
(o3 N |
D

e e e Pt ey

T T T T
] 50 ns 100 ns

< Are all BCD input combinations present? (Low is arf@l high is
one)

53

Verification Example: Simulation

* Run the simulation of the circuit for 120 ns

INPUTS

outPUTS |
w [

X
Y 1 | [1 |
z

0 s X s ‘_ s ‘50ns‘ ‘ . s ‘_lO_Ons‘ s
« Do the simulation output combinations match ttigioal truth
table?

54|

Copyright 2000 N. AYDIN. All rights
reserved.

