
Copyright 2000 N. AYDIN. All rights
reserved. 1

1

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

naydin@ieee.org

Introduction to Digital Logic

2

Course Outline
1. Digital Computers, Number Systems, Arithmetic Operations, Decimal,

Alphanumeric, and Gray Codes
2. Binary Logic, Gates, Boolean Algebra, Standard Forms
3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level

Circuit Optimization
4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates,

High-Impedance Outputs
5. Implementation Technology and Logic Design, Design Concepts and Automation,

The Design Space, Design Procedure, The major design steps
6. Programmable Implementation Technologies: Read-Only Memories, Programmable

Logic Arrays, Programmable Array Logic,Technology mapping to programmable
logic devices

7. Combinational Functions and Circuits
8. Arithmetic Functions and Circuits
9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
11. Counters, register cells, buses, & serial operations
12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
13. Memory Basics

3

Lecture 5

Implementation Technology and Logic DesignImplementation Technology and Logic Design
Design Concepts and Automation

Fundamental concepts of design and computer-aided design
techniques

The Design Space
Technology parameters for gates, positive and negative logic and

design tradeoffs
Design Procedure

The major design steps: specification, formulation, optimization,
technology mapping, and verification

Technology Mapping
From AND, OR, and NOT to other gate types

Verification
Does the designed circuit meet the specifications?

Introduction to Digital Logic

4

Combinational Circuits

• A combinational logic circuit has:
– A set of m Boolean inputs,

– A set of n Boolean outputs, and

– n switching functions, each mapping the 2m input
combinations to an output such that the current output
depends only on the current input values

• A block diagram:

m Boolean Inputs n Boolean Outputs

Combinatorial
Logic
Circuit

5

Hierarchical Design

• To control the complexity of the function mapping inputs to
outputs:
– Decompose the function into smaller pieces called blocks

– Decompose each block’s function into smaller blocks, repeating as
necessary until all blocks are small enough

– Any block not decomposed is called a primitive block

– The collection of all blocks including the decomposed ones is a hierarchy

• Example: 9-input parity tree (see next slide)
– Top Level: 9 inputs, one output

– 2nd Level: Four 3-bit odd parity trees in two levels

– 3rd Level: Two 2-bit exclusive-OR functions

– Primitives: Four 2-input NAND gates

– Design requires 4 X 2 X 4 = 32 2-input NAND gates

6

X 0
X 1
X 2
X 3
X 4
X 5
X 6
X 7
X 8

Z O

9-Input
odd

function

(a) Symbol for circuit

BO

3-Input
odd

function

A 0

A 1

A 2

BO

3-Input
odd

function

A 0

A 1

A 2

BO

3-Input
odd

function

A 0

A 1

A 2

BO

3-Input
odd

function

A 0

A 1

A 2

X 0

X 1

X 2

X 3

X 4

X 5

X 6

X 7

X 8

Z O

(b) Circuit as interconnected 3-input odd
function blocks

(c) 3-input odd function circuit as
interconnected exclusive-OR
blocks

(d) Exclusive-OR block as interconnected
NANDs

BO

A 0

A 1

A 2

Hierarchy for Parity Tree Example

Copyright 2000 N. AYDIN. All rights
reserved. 2

7

Reusable Functions and CAD

• Whenever possible, we try to decompose a complex design
into common, reusable function blocks

• These blocks are
– verified and well-documented
– placed in libraries for future use

• Representative Computer-Aided Design Tools:
– Schematic Capture
– Logic Simulators
– Timing Verifiers
– Hardware Description Languages

• Verilog and VHDL

– Logic Synthesizers
– Integrated Circuit Layout

8

Top-Down versus Bottom-Up

• A top-down design proceeds from an abstract, high-level
specification to a more and more detailed design by
decomposition and successive refinement

• A bottom-up design starts with detailed primitive blocks
and combines them into larger and more complex
functional blocks

• Designs usually proceed from both directions
simultaneously

– Top-down design answers: What are we building?

– Bottom-up design answers: How do we build it?

• Top-down controls complexity while bottom-up focuses on
the details

9

Integrated Circuits

• Integrated circuit (informally, a “chip”) is a
semiconductor crystal (most often silicon) containing
the electronic components for the digital gates and
storage elements which are interconnected on the chip.

• Terminology - Levels of chip integration
– SSI (small-scale integrated) - fewer than 10 gates

– MSI (medium-scale integrated) - 10 to 100 gates

– LSI (large-scale integrated) - 100 to thousands of gates

– VLSI (very large-scale integrated) - thousands to 100s of
millions of gates

10

Technology Parameters

• Specific gate implementation technologies are characterized
by the following parameters:
– Fan-in – the number of inputs available on a gate
– Fan-out – the number of standard loads driven by a gate output
– Logic Levels – the signal value ranges for 1 and 0 on the inputs and 1

and 0 on the outputs (see Figure 1-1)
– Noise Margin – the maximum external noise voltage superimposed on

a normal input value that will not cause an undesirable change in the
circuit output

– Cost for a gate - a measure of the contribution by the gate to the cost
of the integrated circuit

– Propagation Delay – The time required for a change in the value of a
signal to propagate from an input to an output

– Power Dissipation – the amount of power drawn from the power
supply and consumed by the gate

11

Propagation Delay

• Propagation delay is the time for a change on an input of a gate
to propagate to the output.

• Delay is usually measured at the 50% point with respect to the
H and L output voltage levels.

• High-to-low (tPHL) and low-to-high (tPLH) output signal changes
may have different propagation delays.

• High-to-low (HL) and low-to-high (LH) transitions are defined
with respect to the output, notthe input.

• An HL input transition causes:
– an LH output transition if the gate inverts and

– an HL output transition if the gate does not invert.

12

Propagation Delay (continued)

• Propagation delays measured at the midpoint between
the L and H values

• What is the expression for the tPHL delay for:
– a string of n identical buffers?

– a string of n identical inverters?

IN

OUT tPHL tPLH

tpd 5 max (tPHL , tPLH)

IN OUT

Copyright 2000 N. AYDIN. All rights
reserved. 3

13

Propagation Delay Example
• Find tPHL, tPLH and tpd for the signals given

IN
(v

ol
ts

)
O

U
T

(v
ol

ts
)

t (ns)
1.0 ns per division

14

Delay Models

• Transport delay - a change in the output in response
to a change on the inputs occurs after a fixed specified
delay

• Inertial delay - similar to transport delay, except that
if the input changes such that the output is to change
twice in a time interval less than the rejection time,
the output changes do not occur. Models typical
electronic circuit behavior, namely, rejects narrow
“pulses” on the outputs

15

Delay Model Example

A

Transport
Delay (TD)

Inertial
Delay (ID)

B

Time (ns)0 42 6 8 10 12 14 16

A B:

No Delay
(ND) a b c d e

Propagation Delay = 2.0 ns Rejection Time = 1 .0 ns
16

Fan-out

• Fan-out can be defined in terms of a standard
load
– Example: 1 standard load equals the load

contributed by the input of 1 inverter.

– Transition time -the time required for the gate
output to change from H to L, tHL, or from L to H,
tLH

– The maximum fan-out that can be driven by a gate
is the number of standard loads the gate can drive
without exceeding its specified maximum transition
time

17

Fan-out and Delay

• The fan-out loading a gate’s output affects the
gate’s propagation delay

• Example:
– One realistic equation for tpd for a NAND gate

with 4 inputs is:

tpd = 0.07 + 0.021 SL ns

– SL is the number of standard loads the gate is
driving, i. e., its fan-out in standard loads

– For SL = 4.5, tpd = 0.165 ns

18

Cost

• In an integrated circuit:
– The cost of a gate is proportional to the chip area occupied

by the gate

– The gate area is roughly proportional to the number and
size of the transistorsand the amount of wiringconnecting
them

– Ignoring the wiring area, the gate area is roughly
proportional to the gate input count

– So gate input count is a rough measure of gate cost

• If the actual chip layout area occupied by the gate is
known, it is a far more accurate measure

Copyright 2000 N. AYDIN. All rights
reserved. 4

19

Positive and Negative Logic

• The same physical gate has different logical
meanings depending on interpretation of the signal
levels.

• Positive Logic
– HIGH (more positive) signal levels represent Logic 1
– LOW (less positive) signal levels represent Logic 0

• Negative Logic
– LOW (more negative) signal levels represent Logic 1
– HIGH (less negative) signal levels represent Logic 0

• A gate that implements a Positive Logic AND
function will implement a Negative Logic OR
function, and vice-versa.

20

• Given this signal level table:

• What logic function is implemented?

Positive
Logic

(H = 1)
(L = 0)

Negative
Logic

(H = 0)
(L = 1)

0 0 0 1 1 1
0 1 1 1 0 0
1 0 1 0 1 0
1 1 1 0 0 0

Input
X Y

Output

L L L
L H H
H L H
H H H

Positive and Negative Logic (continued)

21

• Rearranging the negative logic terms to the
standard function table order:

Positive
Logic

(H = 1)
(L = 0)

Negative
Logic

(H = 0)
(L = 1)

0 0 0 0 0 0

0 1 1 0 1 0

1 0 1 1 0 0

1 1 1 1 1 1

Positive and Negative Logic (continued)

22

Logic Symbol Conventions

• Use of polarity indicator to represent use of negative
logic convention on gate inputs or outputs

X

CKT
X
Y

Z

Logic Circuit

X

L
L
H
H

Y

L
H
L
H

Z

L
H
H
H

Y
Z

Positive Logic Negative Logic

X
Y

Z

23

Design Trade-Offs

• Cost - performance tradeoffs

• Gate-Level Example:
– NAND gate G with 20 standard loads on its output has a delay of

0.45 ns and has a normalized cost of 2.0

– A buffer H has a normalized cost of 1.5. The NAND gate driving
the buffer with 20 standard loads gives a total delay of 0.33 ns

– In which if the following cases should the buffer be added?
1. The cost of this portion of the circuit cannot be more than 2.5

2. The delay of this portion of the circuit cannot be more than 0.40 ns

3. The delay of this portion of the circuit must be less than 0.30 ns and the
cost less than 3.0

• Tradeoffs can also be accomplished much higher in the design
hierarchy

• Constraints on cost and performance have a major role in making
tradeoffs

24

Design Procedure

1. Specification
– Write a specification for the circuit if one is not already

available

2. Formulation
– Derive a truth table or initial Boolean equations that

define the required relationships between the inputs and
outputs, if not in the specification

3. Optimization
– Apply 2-level and multiple-level optimization

– Draw a logic diagram or provide a netlist for the resulting
circuit using ANDs, ORs, and inverters

Copyright 2000 N. AYDIN. All rights
reserved. 5

25

Design Procedure

4. Technology Mapping
– Map the logic diagram or netlist to the

implementation technology selected

5. Verification
– Verify the correctness of the final design

26

Design Example

1. Specification
– BCD to Excess-3 code converter
– Transforms BCD code for the decimal digits to

Excess-3 code for the decimal digits
– BCD code words for digits 0 through 9: 4-bit

patterns 0000 to 1001, respectively
– Excess-3 code words for digits 0 through 9: 4-bit

patterns consisting of 3 (binary 0011) added to
each BCD code word

– Implementation:
• multiple-level circuit
• NAND gates (including inverters)

27

Design Example (continued)

2. Formulation
– Conversion of 4-bit codes

can be most easily
formulated by a truth table

– Variables
- BCD:
A,B,C,D

– Variables
- Excess-3
W,X,Y,Z

– Don’t Cares
- BCD 1010

to 1111

0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Output Excess 3
W X Y Z

Input BCD
A B C D

28

Design Example (continued)

3. Optimization
a. 2-level using

K-maps
W = A + BC + BD

X = C + D + B

Y = CD +

Z =

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

11

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

11

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1

1

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1

1

X X X

X X

X

1

1

W

Z Y

X

B CDB

CD
D

29

Design Example (continued)

3. Optimization (continued)
b. Multiple-level using transformations

W = A + BC + BD
X = C + D + B
Y = CD +
Z = G = 7 + 10 + 6 + 0 = 23

– Perform extraction, finding factor:
T1 = C + D
W = A + BT1

X = T1 + B
Y = CD +
Z = G = 2 + 1 + 4 + 7 + 6 + 0 = 20

C
B CDB

D
D

B CD
CD

D

30

Design Example (continued)

3. Optimization (continued)
b. Multiple-level using transformations

T1 = C + D
W = A + BT1

X = T1 + B
Y = CD +
Z = G = 20

– An additional extraction not shown in the text since it uses a
Boolean transformation: (= C + D =):

W = A + BT1

X = T1 + B
Y = CD +
Z = G = 2 +1 + 4 + 6 + 4 + 0 = 17

B CD
CD

D

B T1

D
T1

CD T1

Copyright 2000 N. AYDIN. All rights
reserved. 6

31

Design Example (continued)

4. Technology Mapping
• Mapping with a library containing inverters and 2-input NAND,

2-input NOR, and 2-2 AOI gates
A

B

C

D

W

X

Y

Z

A

B

C
D

W

X

Y

Z

32

Technology Mapping

• Chip design styles

• Cells and cell libraries

• Mapping Techniques
– NAND gates

– NOR gates

– Multiple gate types

– Programmable logic devices

33

Chip Design Styles

• Full custom - the entire design of the chip down to the smallest
detail of the layout is performed
– Expensive

– Justifiable only for dense, fast chips with high sales volume

• Standard cell - blocks have been design ahead of time or as
part of previous designs
– Intermediate cost

– Less density and speed compared to full custom

• Gate array - regular patterns of gate transistors that can be used
in many designs built into chip - only the interconnections
between gates are specific to a design
– Lowest cost

– Less density compared to full custom and standard cell

34

Cell Libraries

• Cell - a pre-designed primitive block

• Cell library - a collection of cells available for
design using a particular implementation
technology

• Cell characterization - a detailed specification of a
cell for use by a designer - often based on actual
cell design and fabrication and measured values

• Cells are used for gate array, standard cell, and in
some cases, full custom chip design

35

• Schematic or logic diagram

• Area of cell
– Often normalized to the area of a common, small cell such as an

inverter

• Input loading (in standard loads) presented to outputs driving
each of the inputs

• Delays from each input to each output

• One or more cell templates for technology mapping

• One or more hardware description language models

• If automatic layout is to be used:
– Physical layout of the cell circuit

– A floorplan layout providing the location of inputs, outputs, power and
ground connections on the cell

Typical Cell Characterization Components

36

Example Cell Library

Cell
Name

Cell
Schematic

Normalized
Area

Typical
Input
Load

Typical
Input-to-
Output
Delay

Basic
Function

Templates

Inverter 1.00 1.00
0.04

1 0.0123 SL

2NAND 1.25 1.00
0.05

1 0.0143 SL

2NOR 1.25 1.00
0.06

1 0.0183 SL

2-2 AOI 2.25 0.95 0.07
1 0.0193 SL

Copyright 2000 N. AYDIN. All rights
reserved. 7

37

Mapping to NAND gates

• Assumptions:
– Gate loading and delay are ignored

– Cell library contains an inverter and n-input NAND gates, n
= 2, 3, …

– An AND, OR, inverter schematic for the circuit is available

• The mapping is accomplished by:
– Replacing AND and OR symbols,

– Pushing inverters through circuit fan-out points, and

– Canceling inverter pairs

38

NAND Mapping Algorithm

1. Replace ANDs and ORs:

2. Repeat the following pair of actions until there is at
most one inverter between :

a. A circuit input or driving NAND gate output, and

b. The attached NAND gate inputs.

.

.

.
.
.
.

.

.

.
.
..

.

..
..
.

39

NAND Mapping Example
A

B

C

D

F

E

(a)

A

B

C

7

5

1

6

2

4

9

X

Y

38D
E

F

(b)

A
B

C

D

E

F

(d)

X

5

5

7

6
Y

(c)

OI

40

Mapping to NOR gates

• Assumptions:
– Gate loading and delay are ignored

– Cell library contains an inverter and n-input NOR gates, n =
2, 3, …

– An AND, OR, inverter schematic for the circuit is available

• The mapping is accomplished by:
– Replacing AND and OR symbols,

– Pushing inverters through circuit fan-out points, and

– Canceling inverter pairs

41

NOR Mapping Algorithm

1. Replace ANDs and ORs:

2. Repeat the following pair of actions until there is at
most one inverter between :

a. A circuit input or driving NAND gate output, and

b. The attached NAND gate inputs.

.

..
..
.

.

.

.

.

.

.
..
.

..

.

42

NOR Mapping Example

A

B

C

D

E

F

(c)

F

A

B

X

C

D
E

(b)

A
B

C

D
E

F

(a)

2

3

1

Copyright 2000 N. AYDIN. All rights
reserved. 8

43

Mapping Multiple Gate Types

• Algorithm is available in the Advanced Technology Mapping
reading supplement

• Cell library contains gates of more than one “type”

• Concept Set 1
– Steps

• Replace all AND and OR gates with optimum equivalent circuits consisting
only of 2-input NAND gates and inverters.

• Place two inverters in series in each line in the circuit containing NO
inverters

– Justification
• Breaks up the circuit into small standardize pieces to permit maximum

flexibility in the mapping process

• For the equivalent circuits, could use any simple gate set that can
implement AND, OR and NOT and all of the cells in the cell library

44

Mapping Multiple Gate Types

• Concept Set 2
– Fan-out free subcircuit - a circuit in which a single output cell drives

only one other cell

– Steps
• Use an algorithm that guarantees an optimum solution for “fan-out

free” subcircuits by replacing interconnected inverters and 2-input
NAND gates with cells from the library

• Perform inverter “canceling” and “pushing” as for the NAND and
NOR

– Justification
• Steps given optimize the total cost of the cells used within “fan-

out free” subcircuits of the circuit

• End result: An optimum mapping solution within the “fan-out
free subcircuits”

45

• Uses same example circuit as NAND mapping and
NOR mapping

• Cell library: 2-input and 3-input NAND gates, 2-input
NOR gate, and inverter

• Circuits on next slide
(a) Optimized multiple-level circuit
(b) Circuit with AND and OR gates replaced with circuits of 2-
input NAND gates and inverters (Outlines show 2-input
NANDs and inverter sets mapped to library cells in next step)
(c) Mapped circuit with inverter pairs cancelled
(d) Circuit with remaining inverters minimized

Example: Mapping Multiple Cell Types

46

F

A

B

C

D

E

F

(a)

A
B

C

D
E

(b)

A

B

C

D

E

F

(c)

A
B

C

D

F

E

(d)

Example: Mapping Multiple Gate Types

47

• Verification - show that the final circuit designed
implements the original specification

• Simple specifications are:
– truth tables

– Boolean equations

– HDL code

• If the above result from formulationand are not the
original specification, it is critical that the formulation
process be flawless for the verification to be valid!

Verification

48

Basic Verification Methods

• Manual Logic Analysis
– Find the truth table or Boolean equations for the final circuit

– Compare the final circuit truth table with the specified truth table, or

– Show that the Boolean equations for the final circuit are equal to the
specified Boolean equations

• Simulation
– Simulate the final circuit (or its netlist, possibly written as an HDL) and

the specified truth table, equations, or HDL description using test input
values that fully validate correctness.

– The obvious test for a combinational circuit is application of all possible
“care” input combinations from the specification

Copyright 2000 N. AYDIN. All rights
reserved. 9

49

• BCD-to-Excess 3 Code Converter
– Find the SOP Boolean equations from the final circuit.

– Find the truth table from these equations

– Compare to the formulation truth table

• Finding the Boolean Equations:
T1 = C + D = C + D

W = A (T1 B) = A + B T1

X = (T1 B) (B) = T1 + B

Y = C + D = CD + D
C D

C
B C D

CD

Verification Example: Manual Analysis

50

Input BCD
A B C D

Output Excess-3
WXYZ

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

• Find the circuit truth table from the equations and compare to
specification truth table:

The tables
match!

Verification Example: Manual Analysis

51

Verification Example: Simulation

• Simulation procedure:
– Use a schematic editor or text editor to enter a gate

level representation of the final circuit

– Use a waveform editor or text editor to enter a test
consisting of a sequence of input combinations to
be applied to the circuit

• This test should guarantee the correctness of the circuit
if the simulated responses to it are correct

• Short of applying all possible “care” input combinations,
generation of such a test can be difficult

52

Verification Example: Simulation
• Enter BCD-to-Excess-3 Code Converter Circuit Schematic

NAND2

NAND2

INV

NOR2
INV

NAND2

INV

NAND2

AND2

AND2

NAND3
INV

INV

NOR2

W

B

A

C

D

X

AOI

Y

Z

AOI symbol
not available

53

Verification Example: Simulation

• Enter waveform that applies all possible input combinations:

• Are all BCD input combinations present? (Low is a 0 and high is a
one)

0 50 ns 100 ns

 INPUTS

A

B

C

D

54

Verification Example: Simulation

• Run the simulation of the circuit for 120 ns

• Do the simulation output combinations match the original truth
table?

0 50 ns 100 ns

 INPUTS

A

B

C

D

OUTPUTS

W

X

Y

Z

