
Copyright 2000 N. AYDIN. All rights
reserved. 1

1

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

naydin@ieee.org

Introduction to Digital Logic

2

Course Outline
1. Digital Computers, Number Systems, Arithmetic Operations, Decimal,

Alphanumeric, and Gray Codes
2. Binary Logic, Gates, Boolean Algebra, Standard Forms
3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level

Circuit Optimization
4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates,

High-Impedance Outputs
5. Implementation Technology and Logic Design, Design Concepts and Automation,

The Design Space, Design Procedure, The major design steps
6. Programmable Implementation Technologies: Read-Only Memories, Programmable

Logic Arrays, Programmable Array Logic,Technology mapping to programmable
logic devices

7. Combinational Functions and Circuits
8. Arithmetic Functions and Circuits
9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
11. Counters, register cells, buses, & serial operations
12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
13. Memory Basics

3

Lecture 4

Additional Gates and CircuitsAdditional Gates and Circuits
–– Other Gate TypesOther Gate Types

–– ExclusiveExclusive--OR Operator and GatesOR Operator and Gates

–– HighHigh--Impedance OutputsImpedance Outputs

Introduction to Digital Logic

4

Other Gate Types

• Why?
– Implementation feasibility and low cost

– Power in implementing Boolean functions

– Convenient conceptual representation

• Gate classifications
– Primitive gate - a gate that can be described using a single

primitive operation type (AND or OR) plus an optional
inversion(s).

– Complex gate - a gate that requires more than one primitive
operation type for its description

• Primitive gates will be covered first

5

Buffer

• A buffer is a gate with the function F = X:

• In terms of Boolean function, a buffer is the
same as a connection!

• So why use it?
– A buffer is an electronic amplifier used to improve

circuit voltage levels and increase the speed of
circuit operation.

X F

6

NAND Gate

• The basic NAND gate has the following symbol,
illustrated for three inputs:

– AND-Invert (NAND)

• NAND represents NOTAND, i. e., the AND function
with a NOT applied. The symbol shown is an AND-
Invert. The small circle (“bubble”) represents the
invert function.

X
Y

Z
ZYX)Z,Y,X(F ⋅⋅⋅⋅⋅⋅⋅⋅====

Copyright 2000 N. AYDIN. All rights
reserved. 2

7

NAND Gates (continued)

• Applying DeMorgan's Law gives Invert-OR (NAND)

• This NAND symbol is called Invert-OR, since inputs are
inverted and then ORed together.

• AND-Invert and Invert-OR both represent the NAND
gate. Having both makes visualization of circuit function
easier.

• A NAND gate with one input degenerates to an inverter.

X
Y

Z
ZYX)Z,Y,X(F ++++++++====

8

NAND Gates (continued)

• The NAND gate is the natural implementation for the
simplest and fastest electronic circuits

• Universal gate - a gate type that can implement any
Boolean function.

• The NAND gate is a universal gate
• NAND usually does not have an operation symbol

defined since
– the NAND operation is not associative, and
– we have difficulty dealing with non-associative mathematics!

9

NOR Gate

• The basic NOR gate has the following symbol,
illustrated for three inputs:

– OR-Invert (NOR)

• NOR represents NOT - OR, i. e., the OR function
with a NOT applied. The symbol shown is an OR-
Invert. The small circle (“bubble”) represents the
invert function.

X
Y

Z

ZYX)Z,Y,X(F ++====

10

NOR Gate (continued)

• Applying DeMorgan's Law gives Invert-AND (NOR)

• This NOR symbol is called Invert-AND, since inputs
are inverted and then ANDed together.

• OR-Invert and Invert-AND both represent the NOR
gate. Having both makes visualization of circuit
function easier.

• A NOR gate with one input degenerates to an inverter.

X
Y

Z

11

NOR Gate (continued)

• The NOR gate is another natural implementation for
the simplest and fastest electronic circuits

• The NOR gate is a universal gate

• NOR usually does not have a defined operation
symbol since
– the NOR operation is not associative, and

– we have difficulty dealing with non-associative
mathematics!

12

Exclusive OR/ Exclusive NOR

• The eXclusive OR (XOR) function is an important
Boolean function used extensively in logic circuits.

• The XOR function may be;
– implemented directly as an electronic circuit (truly a gate) or

– implemented by interconnecting other gate types (used as a
convenient representation)

• The eXclusive NOR function is the complement of the
XOR function

• By our definition, XOR and XNOR gates are complex
gates.

Copyright 2000 N. AYDIN. All rights
reserved. 3

13

Exclusive OR/ Exclusive NOR

• Uses for the XOR and XNORs gate include:
– Adders/subtractors/multipliers

– Counters/incrementers/decrementers

– Parity generators/checkers

• Definitions
– The XOR function is:

– The eXclusive NOR (XNOR) function, otherwise
known as equivalence is:

• Strictly speaking, XOR and XNOR gates do no exist
for more than two inputs. Instead, they are replaced
by odd and even functions.

YXYXYX ++++====⊕⊕⊕⊕

YXYXYX ++++====⊕⊕⊕⊕

14

Truth Tables for XOR/XNOR

• Operator Rules: XOR XNOR

• The XOR function means:
X OR Y, but NOT BOTH

• Why is the XNOR function also known as the
equivalence function, denoted by the operator ≡?

X Y X⊕⊕⊕⊕Y

0 0 0
0 1 1
1 0 1
1 1 0

X Y

0 0 1
0 1 0
1 0 0
1 1 1

or X≡≡≡≡Y
(X⊕⊕⊕⊕Y)

15

XOR/XNOR (Continued)

• The XOR function can be extended to 3 or more variables. For
more than 2 variables, it is called an odd function or modulo 2
sum (Mod 2 sum), not an XOR:

• The complement of the odd function is the even function.

• The XOR identities:

======== X1XX0X ⊕⊕⊕⊕⊕⊕⊕⊕
1XX0XX ====⊕⊕⊕⊕====⊕⊕⊕⊕

XYYX ⊕⊕⊕⊕====⊕⊕⊕⊕
ZYX)ZY(XZ)YX(⊕⊕⊕⊕⊕⊕⊕⊕====⊕⊕⊕⊕⊕⊕⊕⊕====⊕⊕⊕⊕⊕⊕⊕⊕

++++++++++++====⊕⊕⊕⊕⊕⊕⊕⊕ ZYXZYXZYXZYXZYX

16

Symbols For XOR and XNOR

• XOR symbol:

• XNOR symbol:

• Symbols exist only for two inputs

17

XOR Implementations

• The simple SOP implementation uses the following
structure:

• A NAND only implementation is:

X

Y

X Y

X

X Y

Y

18

Odd and Even Functions

• The odd and even functions on a K-map form
“checkerboard” patterns.

• The 1s of an odd function correspond to minterms
having an index with an odd number of 1s.

• The 1s of an even function correspond to minterms
having an index with an even number of 1s.

• Implementation of odd and even functions for greater
than 4 variables as a two-level circuit is difficult, so
we use “trees” made up of :
– 2-input XOR or XNORs

– 3- or 4-input odd or even functions

Copyright 2000 N. AYDIN. All rights
reserved. 4

19

• Design a 3-input odd function F = X Y Z
with 2-input XOR gates

• Factoring, F = (X Y) Z

• The circuit:

+ +

+ +

X
Y

Z
F

Example: Odd Function Implementation

20

• Design a 4-input odd function F = W X Y Z
with 2-input XOR and XNOR gates

• Factoring, F = (W X) (Y Z)

• At the second level use XNOR instead of XOR:

+ + +

+ + +

W
X

Y
F

Z

Example: Even Function Implementation

21

• In Chapter 1, a parity bit added to n-bit code to produce an n
+ 1 bit code:
– Add odd parity bit to generate code words with even parity
– Add even parity bit to generate code words with odd parity
– Use odd parity circuit to check code words with even parity
– Use even parity circuit to check code words with odd parity

• Example: n = 3. Generate even
parity code words of length 4 with
odd parity generator:

• Check even parity code words of
length 4 with odd parity checker:

• Operation: (X,Y,Z) = (0,0,1) gives
(X,Y,Z,P) = (0,0,1,1) and E = 0.
If Y changes from 0 to 1 between
generator and checker, then E = 1 indicates an error.

X
Y

Z P

X
Y

Z
E

P

Parity Generators and Checkers

22

Hi-Impedance Outputs

• Logic gates introduced thus far
– have 1 and 0 output values,

– cannothave their outputs connected together, and

– transmit signals on connections in only onedirection.

• Three-state logic adds a third logic value, Hi-
Impedance (Hi-Z), giving three states: 0, 1, and Hi-Z
on the outputs.

• The presence of a Hi-Z state makes a gate output as
described above behave quite differently:
– “1 and 0” become “1, 0, and Hi-Z”

– “cannot” becomes “can,” and

– “only one” becomes “two”

23

• What is a Hi-Z value?
– The Hi-Z value behaves as an open circuit

– This means that, looking back into the circuit, the output
appears to be disconnected.

– It is as if a switch between the internal circuitry and the
output has been opened.

• Hi-Z may appear on the output of any gate, but we
restrict gates to:
– a 3-state buffer, or

– a transmission gate,

each of which has one data input and one control
input.

Hi-Impedance Outputs (continued)

24

The 3-State Buffer

• For the symbol and truth table, IN
is the data input,and EN, the
control input.

• For EN = 0, regardless of the
value on IN (denoted by X), the
output value is Hi-Z.

• For EN = 1, the output value
follows the input value.

• Variations:
– Data input, IN, can be inverted
– Control input, EN, can be inverted
by addition of “bubbles” to signals.

IN

EN

OUT

Symbol

EN IN OUT

0 X Hi-Z

1 0 0
1 1 1

Truth Table

Copyright 2000 N. AYDIN. All rights
reserved. 5

25

• Connection of two 3-state buffer
outputs, B1 and B0, to a wire, OUT

• Assumption: Buffer data inputs can
take on any combination of values 0
and 1

• Resulting Rule: At least one buffer
output value must be Hi-Z. Why?

• How many valid buffer output
combinations exist?

• What is the rule for n 3-state buffers
connected to wire, OUT?

• How many valid buffer output
combinations exist?

Resolution Table

Hi-ZHi-ZHi-Z

11Hi-Z

00Hi-Z

1Hi-Z1

0Hi-Z0

OUTB0B1

Resolving 3-State Values on a Connection

26

• Data Selection Function: If s = 0, OL = IN0, else OL = IN1

• Performing data selection with 3-state buffers:

• Since EN0 = S and EN1 = S, one of the two buffer outputs is
always Hi-Z plus the last row of the table never occurs.

IN0

IN1

EN0

EN1

S

OL

0

0

0

1

1

EN1

1X11

XXX0

0X01

11X0

00X0

OLIN1IN0EN0

3-State Logic Circuit

27

Transmission Gates

• The transmission gate is one of the designs for
an electronic switch for connecting and
disconnecting two points in a circuit:

(a)

X YTG

C

C

(c)
C5 0 and C5 1

X Y

(b

X Y

C5 1 and C5 0

(d)

X Y

C

TG

28

Transmission Gates (continued)

• In many cases, X can be regarded as a data input
and Y as an output. C and C, with complementary
values applied, is a control input.

• With these definitions, the transmission gate,
provides a 3-state output:
– C = 1, Y = X (X = 0 or 1)

– C = 0, Y = Hi-Z

• Care must be taken when using the TG in design,
however, since X and Y as input and output are
interchangeable, and signals can pass in both
directions.

29

• Exclusive OR F = A C

• The basis for the function implementation is TG-
controlled paths to the output

Circuit Example Using TG

(b)

A

0

0

1

1

C

0

1

0

1

TG1

No path

Path

No path

Path

TG0

Path

No path

Path

No path

F

0

1

1

0

(a)

C

A

F

TG0

TG1

+

30

More Complex Gates

• The remaining complex gates are SOP or POS
structures with and without an output inverter.

• The names are derived using:
– A - AND

– O - OR

– I - Inverter

– Numbers of inputs on first-level “gates” or directly
to second-level “gates”

Copyright 2000 N. AYDIN. All rights
reserved. 6

31

• Example: AOI - AND-OR-Invert consists of a single
gate with AND functions driving an OR function
which is inverted.

• Example: 2-2-1 AO has two 2-input ANDS driving an
OR with one additional OR input

• These gate types are used because:
– the number of transistors needed is fewer than required by

connecting together primitive gates

– potentially, the circuit delay is smaller, increasing the
circuit operating speed

More Complex Gates (continued)

