
Copyright 2000 N. AYDIN. All rights
reserved. 1

1

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

naydin@ieee.org

Introduction to Digital Logic

2

Course Outline
1. Digital Computers, Number Systems, Arithmetic Operations, Decimal,

Alphanumeric, and Gray Codes
2. Binary Logic, Gates, Boolean Algebra, Standard Forms
3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level

Circuit Optimization
4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates,

High-Impedance Outputs
5. Implementation Technology and Logic Design, Design Concepts and Automation,

The Design Space, Design Procedure, The major design steps
6. Programmable Implementation Technologies: Read-Only Memories, Programmable

Logic Arrays, Programmable Array Logic,Technology mapping to programmable
logic devices

7. Combinational Functions and Circuits
8. Arithmetic Functions and Circuits
9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
11. Counters, register cells, buses, & serial operations
12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
13. Memory Basics

3

Lecture 2

Gate Circuits and Boolean Gate Circuits and Boolean
EquationsEquations

–– Binary Logic and GatesBinary Logic and Gates

–– Boolean AlgebraBoolean Algebra

–– Standard FormsStandard Forms

Introduction to Digital Logic

4

• Binary variables take on one of two values.
• Logical operatorsoperate on binary values and

binary variables.
• Basic logical operators are the logic functions

AND, OR and NOT.
• Logic gatesimplement logic functions.
• Boolean Algebra: a useful mathematical system

for specifying and transforming logic functions.
• We study Boolean algebra as foundation for

designing and analyzing digital systems!

Binary Logic and Gates

5

• Recall that the two binary values have
different names:
– True/False
– On/Off
– Yes/No
– 1/0

• We use 1 and 0 to denote the two values.
• Variable identifier examples:

– A, B, y, z, or X1 for now
– RESET, START_IT, or ADD1 later

Binary Variables

6

• The three basic logical operations are:
– AND
– OR
– NOT

• AND is denoted by a dot (·)

• OR is denoted by a plus (+)

• NOT is denoted by an overbar (̄), a
single quote mark (') after, or (~) before
the variable

Logical Operations

Copyright 2000 N. AYDIN. All rights
reserved. 2

7

• Examples:
– Y=A.B is read “Y is equal to A AND B.”
– z=x+y is read “z is equal to x OR y.”
– X=Ā is read “X is equal to NOT A.”

� Note: The statement:
1 + 1 = 2(read “one plusone equals two”)

is not the same as
1 + 1 = 1(read “1 or 1 equals 1”).

Notation Examples

8

� Operations are defined on the values
"0" and "1" for each operator:

AND

0 · 0 = 0
0 · 1 = 0
1 · 0 = 0
1 · 1 = 1

OR

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

NOT

10 ====
01 ====

Operator Definitions

9

01

10

X

NOT

XZ ====

• Truth table −−−− a tabular listing of the values of a
function for all possible combinations of values on its
arguments

• Example: Truth tables for the basic logic operations:

111

001

010

000
Z = X·YYX

AND

111

101

110

000

Z = X+YYX

OR

Truth Tables

10

• Using Switches
– For inputs:

• logic 1 is switch closed
• logic 0 is switch open

– For outputs:
• logic 1 is light on
• logic 0 is light off.

• NOT uses a switch such
that:

• logic 1 is switch open
• logic 0 is switch closed

Switches in parallel => OR

C
Normally-closed switch => NOT

Logic Function Implementation

Switches in series => AND

11

• Example: Logic Using Switches

• Light is on (L = 1) for
L(A, B, C, D) =A . ((B . C')+D)

and off (L = 0), otherwise.
• Useful model for relay circuits and for CMOS

gate circuits, the foundation of current digital
logic technology

B
A

D

C

Logic Function Implementation (Continued)

12

• In the earliest computers, switches were opened
and closed by magnetic fields produced by
energizing coils in relays. The switches in turn
opened and closed the current paths.

• Later, vacuum tubes that open and close
current paths electronically replaced relays.

• Today, transistors are used as electronic
switches that open and close current paths.

Logic Gates

Copyright 2000 N. AYDIN. All rights
reserved. 3

13

• Implementation of logic gates with transistors (See
Reading Supplement −−−− CMOS Circuits)

� Transistor or tube implementations of logic functions are
called logic gatesor just gates

� Transistor gate circuits can be modeled by switch circuits

•

F

+V

X

Y

+V

X

+V

X

Y
•

•

•

•

•

• •

•

• •

•

•

(a) NOR

G = X +Y

(b) NAND (c) NOT

X . Y

X

•

•

•

•

Logic Gates (continued)

14

• Logic gates have special symbols:

• And waveform behavior in time as follows:

Logic Gate Symbols and Behavior

(b) Timing diagram

X 0 0 1 1

Y 0 1 0 1

X ·Y(AND) 0 0 0 1

X + Y(OR) 0 1 1 1

(NOT) X 1 1 0 0

(a) Graphic symbols

OR gate

X

Y
Z = X + Y

X

Y
Z = X ·Y

AND gate

X Z = X

NOT gate or
inverter

15

• Boolean equations, truth tables and logic diagrams describe
the same function!

• Truth tables are unique; expressions and logic diagrams are
not. This gives flexibility in implementing functions.

X

Y F

Z

Logic Diagram

Equation

ZYX F ++++====

Truth Table

11 1 1
11 1 0
11 0 1
11 0 0
00 1 1
00 1 0
10 0 1
00 0 0

X Y Z ZYX F ⋅⋅⋅⋅++++====

Logic Diagrams and Expressions

16

Involution

Idempotence

Existence of complement

Existence of 0 and1

Commutative
Associative

Distributive

DeMorgan’s

2. X . 1 X=

4. X . 0 0=

6. X . X X=

8. 0=X . X

� An algebraic structure defined on a set of at least two elements, B,
together with three binary operators (denoted +, · and) that
satisfies the following basic identities:

10. X + Y Y + X=

12. (X + Y) Z+ X + (Y Z)+=
14. X(Y + Z) XY XZ+=

16. X + Y X . Y=

11. XY YX=
13. (XY)Z X(YZ)=
15. X + YZ (X + Y) (X + Z)=
17. X . Y X + Y=

1. X + 0 X=

3. +X 1 1=

5. X + X X=

7. 1=X + X

9. X = X

Boolean Algebra

17

� If the meaning is unambiguous, we leave out the
symbol “·”

� The dualof an algebraic expression is obtained by
interchanging + and · and interchanging 0’s and
1’s.

� The identities appear in dualpairs. When there is
only one identity on a line the identity is self-dual,
i. e., the dual expression = the original expression.

Some Properties of Identities & the Algebra

18

• Unless it happens to be self-dual, the dual of an
expression does not equal the expression itself.

• Example: F = (A + C)· B + 0
dual F = (A · C + B) · 1 = A · C + B

• Example: G = X · Y + (W + Z)
dual G =

• Example: H = A · B + A · C + B · C
dual H =

• Are any of these functions self-dual?

Some Properties of Identities & the Algebra

Copyright 2000 N. AYDIN. All rights
reserved. 4

19

• There can be more than 2 elements in B, i. e.,
elements other than 1 and 0. What are some
common useful Boolean algebras with more
than 2 elements?

1.
2.

• If B contains only 1 and 0, then B is called the
switching algebra which is the algebra we use
most often.

Algebra of Sets
Algebra of n-bit binary vectors

Some Properties of Identities & the Algebra

20

� The order of evaluation in a Boolean
expression is:
1. Parentheses
2. NOT
3. AND
4. OR

� Consequence: Parentheses appear
around OR expressions

� Example: F = A(B + C)(C + D)

Boolean Operator Precedence

21

• A + A·B = A (Absorption Theorem)
Proof Steps Justification (identity or theorem)

A + A·B

= A · 1 + A · B X = X · 1

= A · (1 + B) X · Y + X · Z = X ·(Y + Z)(Distributive Law)

= A · 1 1 + X = 1

= A X · 1 = X

• Our primary reason for doing proofs is to learn:
– Careful and efficient use of the identities and theorems of

Boolean algebra, and
– How to choose the appropriate identity or theorem to apply

to make forward progress, irrespective of the application.

Example 1: Boolean Algebraic Proof

22

• AB + AC + BC = AB + AC (Consensus Theorem)
Proof Steps: Justification (identity or theorem)

AB + AC + BC
= AB + AC + 1 · BC
= AB + AC + (A + A) · BC
= AB + AC + ABC + ABC
= AB (1+C) +AC (1+B)
= AB · 1 +AC · 1
= AB + AC

Example 2: Boolean Algebraic Proofs

23

•
Proof Steps Justification (identity or theorem)

=

YXZ)YX(++++++++

)ZX(XZ)YX(++++====++++++++ Y Y

Example 3: Boolean Algebraic Proofs

24

(((()))) Absorption xyxxxyxx ====++++⋅⋅⋅⋅====⋅⋅⋅⋅++++

x y⋅⋅⋅⋅y LawssDeMorgan'xx ⋅⋅⋅⋅====++++ y x==== ++++ y

(((())))(((()))) ninimizatioMyyyxyyyx ====++++++++====⋅⋅⋅⋅⋅⋅⋅⋅ ++++ x x

zyxzyzyx ++++⋅⋅⋅⋅++++====++++⋅⋅⋅⋅++++⋅⋅⋅⋅++++ x x(((()))) (((()))) (((()))) (((()))) (((())))
++++====++++++++ Consensuszyxzyzyx ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ x x

(((()))) tionSimplificayxyxyxyx ⋅⋅⋅⋅====++++⋅⋅⋅⋅++++====⋅⋅⋅⋅++++ x x

Useful Theorems

Copyright 2000 N. AYDIN. All rights
reserved. 5

25

yyyx ====⋅⋅⋅⋅⋅⋅⋅⋅ x++++

(((())))(((()))) yyyx ====++++++++ x

Proof of Simplification

26

++++ yx x==== y⋅⋅⋅⋅

yx ⋅⋅⋅⋅ yx ++++====

Proof of DeMorgan’s Laws

27

x y z F1 F2 F3 F4
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 0 1
1 1 0 1 1
1 1 1 0 1

zxyxF4 ++++====

xyF1==== z

xF2 ==== yz++++

xzyxzyxF3 ++++==== y++++

Boolean Function Evaluation

1
0
0
1
1
1
0
0

0
1
0
1
1
1
0
0

28

• An application of Boolean algebra

• Simplify to contain the smallest number
of literals (complemented and
uncomplemented variables):

= AB + ABCD + A C D + A C D + A B D

= AB + AB(CD) + A C (D + D) + A B D

= AB + A C + A B D = B(A + AD) +AC

= B (A + D) + A C 5 literals

++++++++++++++++ DCBADCADBADCABA

Expression Simplification

29

• Use DeMorgan's Theorem to
complement a function:
1. Interchange AND and OR operators
2. Complement each constant value and

literal

• Example: Complement F =xyz+xyz

F = (x + y + z)(x + y + z)
• Example: Complement G = (a + bc)d + e

G =?

Complementing Functions

30

• What are Canonical Forms?

• Minterms and Maxterms

• Index Representation of Minterms and
Maxterms

• Sum-of-Minterm (SOM) Representations

• Product-of-Maxterm (POM) Representations

• Representation of Complements of Functions

• Conversions between Representations

Overview – Canonical Forms

Copyright 2000 N. AYDIN. All rights
reserved. 6

31

• It is useful to specify Boolean functions in
a form that:
– Allows comparison for equality.
– Has a correspondence to the truth tables

• Canonical Forms in common usage:
– Sum of Minterms (SOM)
– Product of Maxterms (POM)

Canonical Forms

32

• Minterms are AND terms with every variable
present in either true or complemented form.

• Given that each binary variable may appear
normal (e.g., x) or complemented (e.g., x), there
are 2n minterms for n variables.

• Example: Two variables (X and Y)produce
2 x 2 = 4 combinations:
XY (both normal)
XY (X normal, Y complemented)
XY (X complemented, Y normal)
XY (both complemented)

• Thus there are four mintermsof two variables.

Minterms

33

• Maxterms are OR terms with every variable in
true or complemented form.

• Given that each binary variable may appear
normal (e.g., x) or complemented (e.g., x), there
are 2n maxterms for n variables.

• Example: Two variables (X and Y) produce
2 x 2 = 4 combinations:
X+Y (both normal)
X+Y (X normal, Y complemented)
X+Y (X complemented, Y normal)
X+Y (both complemented)

Maxterms

34

• Examples: Two variable minterms and
maxterms.

• The index above is important for describing
which variables in the terms are true and
which are complemented.

x + yx y3

x + yx y2

x + yx y1

x + yx y0

MaxtermMintermIndex

Maxterms and Minterms

35

• Minterms and maxterms are designated with a subscript
• The subscript is a number, corresponding to a binary

pattern
• The bits in the pattern represent the complemented or

normal state of each variable listed in a standard order.
• All variables will be present in a minterm or maxterm and

will be listed in the same order(usually alphabetically)
• Example: For variables a, b, c:

– Maxterms: (a + b + c), (a + b + c)
– Terms: (b + a + c), a c b, and (c + b + a) are NOT in

standard order.
– Minterms: a b c, a b c, a b c
– Terms: (a + c), b c, and (a + b) do not contain all

variables

Standard Order

36

• The indexfor the minterm or maxterm,
expressed as a binary number, is used to
determine whether the variable is shown in the
true form or complemented form.

• For Minterms:
– “1” means the variable is “Not Complemented” and
– “0” means the variable is “Complemented”.

• For Maxterms:
– “0” means the variable is “Not Complemented” and
– “1” means the variable is “Complemented”.

Purpose of the Index

Copyright 2000 N. AYDIN. All rights
reserved. 7

37

• Example: (for three variables)

• Assume the variables are called X, Y, and Z.
• The standard order is X, then Y, then Z.
• The Index 0(base 10) = 000 (base 2) for three

variables). All three variables are complemented
for minterm 0 () and no variables are
complemented for Maxterm 0(X,Y,Z).

– Minterm 0, called m0 is .
– Maxterm 0, called M0 is (X + Y + Z).
– Minterm 6 ?
– Maxterm 6 ?

Z,Y,X

ZYX

Index Example in Three Variables

38

Index Binary Minterm Maxterm
i Pattern mi M i

0 0000
1 0001
3 0011
5 0101
7 0111

10 1010
13 1101
15 1111

dcba dcba ++++++++++++
dcba

dcba ++++++++++++
dcba dcba ++++++++++++

dcba ++++++++++++
dcba dcba ++++++++++++
dba
dcba dcba ++++++++++++

?
?

?

?c

Index Examples – Four Variables

39

• Review: DeMorgan's Theorem
and

• Two-variable example:
and

Thus M2 is the complement of m2 and vice-versa.
• Since DeMorgan's Theorem holds for n variables,

the above holds for terms of n variables
• giving:

and
Thus Mi is the complement of mi.

yxy·x ++++==== yxyx ⋅⋅⋅⋅====++++

yxM 2 ++++==== yx·m2 ====

i mM ==== i ii Mm ====

Minterm and Maxterm Relationship

40

• Minterms of Maxterms of
2 variables 2 variables

• Each column in the maxterm function table is the
complement of the column in the minterm function
table since Mi is the complement of mi.

x y m0 m1 m2 m3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

x y M0 M1 M 2 M3

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

Function Tables for Both

41

• In the function tables:
– Each minterm has one and only one 1 present in the 2n terms

(a minimum of 1s). All other entries are 0.
– Each maxterm has one and only one 0 present in the 2n terms

All other entries are 1 (a maximum of 1s).

• We can implement any function by "ORing" the
minterms corresponding to "1" entries in the function
table. These are called the minterms of the function.

• We can implement any function by "ANDing" the
maxterms corresponding to "0" entries in the function
table. These are called the maxterms of the function.

• This gives us two canonical forms:
– Sum of Minterms (SOM)
– Product of Maxterms (POM)

for stating any Boolean function.

Observations

42

x y z index m1 + m4 + m7 = F1

0 0 0 0 0 + 0 + 0 = 0

0 0 1 1 1 + 0 + 0 = 1

0 1 0 2 0 + 0 + 0 = 0

0 1 1 3 0 + 0 + 0 = 0

1 0 0 4 0 + 1 + 0 = 1

1 0 1 5 0 + 0 + 0 = 0

1 1 0 6 0 + 0 + 0 = 0

1 1 1 7 0 + 0 + 1 = 1

• Example: Find F1 = m1 + m4 + m7

• F1 = x y z + x y z + x y z

Minterm Function Example

Copyright 2000 N. AYDIN. All rights
reserved. 8

43

• F(A, B, C, D, E) = m2 + m9 + m17 + m23

• F(A, B, C, D, E) =

Minterm Function Example

44

• Example: Implement F1 in maxterms:
F1 = M0 · M2 · M3 · M5 · M6

)zyz)·(xy·(xz)y(xF1 ++++++++++++++++++++++++====
z)yx)·(zyx·(++++++++++++++++

x y z i M 0 ⋅⋅⋅⋅ M 2 ⋅⋅⋅⋅ M 3 ⋅⋅⋅⋅ M 5 ⋅⋅⋅⋅ M 6 = F1
0 0 0 0 0 1 1 1 = 0
0 0 1 1 1 1 1 1 1 = 1
0 1 0 2 1 0 1 1 1 = 0
0 1 1 3 1 1 0 1 1 = 0
1 0 0 4 1 1 1 1 1 = 1
1 0 1 5 1 1 1 0 1 = 0
1 1 0 6 1 1 1 1 0 = 0
1 1 1 7 1

⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅ 1 1 1 1 = 1

1 ⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅

Maxterm Function Example

45

•

• F(A, B,C,D) =

141183 MMMM)D,C,B,A(F ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=

Maxterm Function Example

46

• Any Boolean function can be expressed as a
Sum of Minterms.
– For the function table, the mintermsused are the

terms corresponding to the 1's
– For expressions, expandall terms first to explicitly

list all minterms. Do this by “ANDing” any term
missing a variable v with a term ().

• Example: Implement as a sum of
minterms.

First expand terms:
Then distribute terms:
Express as sum of minterms: f = m3 + m2 + m0

yxxf ++++====

yxyxxyf ++++++++====

v v ++++

yx)yy(xf ++++++++====

Canonical Sum of Minterms

47

• Example:
• There are three variables, A, B, and C which

we take to be the standard order.
• Expanding the terms with missing variables:

• Collect terms (removing all but one of duplicate
terms):

• Express as SOM:

CBAF ++++====

Another SOM Example

48

• From the previous example, we started with:

• We ended up with:
F = m1+m4+m5+m6+m7

• This can be denoted in the formal shorthand:

• Note that we explicitly show the standard
variables in order and drop the “m”
designators.

)7,6,5,4,1()C,B,A(F mΣΣΣΣ====

CBAF ++++====

Shorthand SOM Form

Copyright 2000 N. AYDIN. All rights
reserved. 9

49

• Any Boolean Function can be expressed as a Product
of Maxterms (POM).
– For the function table, the maxterms used are the terms

corresponding to the 0's.
– For an expression, expand all terms first to explicitly list all

maxterms. Do this by first applying the second distributive
law , “ORing” terms missing variable V with a term equal to
V ⋅⋅⋅⋅V and then applying the distributive law again.

• Example: Convert to product of maxterms:

Apply the distributive law:

Add missing variable z:

Express as POM: f = M2 · M3

yxx)z,y,x(f ++++====

yx)y(x1)y)(xx(xyxx ++++====++++⋅⋅⋅⋅====++++++++====++++

(((())))zyx)zyx(zzyx ++++++++++++++++====⋅⋅⋅⋅++++++++

Canonical Product of Maxterms

50

• Convert to Product of Maxterms:

• Use x + y z = (x+y)·(x+z) with ,
and to get:

• Then use to get:

and a second time to get:

• Rearrange to standard order,
to give f = M5 · M2

BACBCAC)B,f(A, ++++++++====

)BC)(AABC(f ++++++++++++++++====

Bz ====
)BCBC)(AACBC(Af ++++++++++++++++====

AyC),B(Ax ====++++==== C

yxyxx ++++====++++
)BCC)(AABCC(f ++++++++++++++++====

C)B)(ACBA(f ++++++++++++++++====

Another POM Example

51

• The complement of a function expressed as a
sum of minterms is constructed by selecting the
minterms missing in the sum-of-minterms
canonical forms.

• Alternatively, the complement of a function
expressed by a Sum of Minterms form is simply
the Product of Maxterms with the same indices.

• Example: Given)7,5,3,1()z,y,x(F mΣΣΣΣ====
)6,4,2,0()z,y,x(F mΣΣΣΣ====
)7,5,3,1()z,y,x(F MΠΠΠΠ====

Function Complements

52

• To convert between sum-of-minterms and product-
of-maxterms form (or vice-versa) we follow these
steps:
– Find the function complement by swapping terms in the

list with terms not in the list.
– Change from products to sums, or vice versa.

• Example:Given F as before:
• Form the Complement:
• Then use the other form with the same indices – this

forms the complement again, giving the other form
of the original function:

)7,5,3,1()z,y,x(F mΣΣΣΣ====
)6,4,2,0()z,y,x(F mΣΣΣΣ====

)6,4,2,0()z,y,x(F MΠΠΠΠ====

Conversion Between Forms

53

• Standard Sum-of-Products (SOP) form:
equations are written as an OR of AND terms

• Standard Product-of-Sums (POS) form:
equations are written as an AND of OR terms

• Examples:
– SOP:
– POS:

• These “mixed” forms are neither SOP nor POS
–

–

BCBACBA ++++++++

C)(AC)B(A ++++++++
B)(ACACBA ++++++++

C·)CB(A·B)(A ++++++++++++

Standard Forms

54

• A sum of minterms form for n variables
can be written down directly from a truth
table.
– Implementation of this form is a two-level

network of gates such that:
– The first level consists of n-input AND gates,

and
– The second level is a single OR gate (with

fewer than 2n inputs).

• This form often can be simplified so that
the corresponding circuit is simpler.

Standard Sum-of-Products (SOP)

Copyright 2000 N. AYDIN. All rights
reserved. 10

55

• A Simplification Example:
•
• Writing the minterm expression:

F = A B C + A B C + A B C + ABC + ABC
• Simplifying:

F = A+BC

• Simplified F contains 3 literals compared to 15 in
minterm F

)7,6,5,4,1(m)C,B,A(F ΣΣΣΣ====

Standard Sum-of-Products (SOP)

56

• The two implementations for F are shown
below – it is quite apparent which is simpler!

F

B

C

A

AND/OR Two-level Implementation of SOP Expression

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

57

• The previous examples show that:
– Canonical Forms (Sum-of-minterms, Product-of-

Maxterms), or other standard forms (SOP, POS)
differ in complexity

– Boolean algebra can be used to manipulate
equations into simpler forms.

– Simpler equations lead to simpler two-level
implementations

• Questions:
– How can we attain a “simplest” expression?
– Is there only one minimum cost circuit?
– The next part will deal with these issues.

