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Course Outline
1. Digital Computers, Number Systems, Arithmetic Operations, Decimal, 

Alphanumeric, and Gray Codes
2. Binary Logic, Gates, Boolean Algebra, Standard Forms
3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level 

Circuit Optimization
4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, 

High-Impedance Outputs
5. Implementation Technology and Logic Design, Design Concepts and Automation, 

The Design Space, Design Procedure, The major design steps
6. Programmable Implementation Technologies: Read-Only Memories, Programmable 

Logic Arrays, Programmable Array Logic,Technology mapping to programmable 
logic devices

7. Combinational Functions and Circuits
8. Arithmetic Functions and Circuits
9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
11. Counters, register cells, buses, & serial operations
12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
13. Memory Basics
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Lecture 2

Gate Circuits and Boolean Gate Circuits and Boolean 
EquationsEquations

–– Binary Logic and GatesBinary Logic and Gates

–– Boolean AlgebraBoolean Algebra

–– Standard FormsStandard Forms

Introduction to Digital Logic

4

• Binary variables take on one of two values.
• Logical operatorsoperate on binary values and 

binary variables.
• Basic logical operators are the logic functions

AND, OR and NOT.
• Logic gatesimplement logic functions.
• Boolean Algebra: a useful mathematical system 

for specifying and transforming logic functions.
• We study Boolean algebra as foundation for 

designing and analyzing digital systems!

Binary Logic and Gates
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• Recall that the two binary values have 
different names:
– True/False
– On/Off
– Yes/No
– 1/0

• We use 1 and 0 to denote the two values.
• Variable identifier examples:

– A, B, y, z, or X1 for now
– RESET, START_IT, or ADD1 later

Binary Variables
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• The three basic logical operations are:
– AND 
– OR
– NOT

• AND is denoted by a dot (·)

• OR is denoted by a plus (+)

• NOT is denoted by an overbar (̄ ), a 
single quote mark (' ) after, or (~) before 
the variable

Logical Operations
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• Examples:
– Y=A.B is read “Y is equal to A AND B.”
– z=x+y is read “z is equal to x OR y.”
– X=Ā is read “X is equal to NOT A.”

� Note: The statement: 
1 + 1 = 2(read “one plusone equals two”)

is not the same as
1 + 1 = 1(read “1 or 1 equals 1”).

Notation Examples
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� Operations are defined on the values 
"0" and "1" for each operator:

AND

0 · 0 = 0
0 · 1 = 0
1 · 0 = 0
1 · 1 = 1

OR

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

NOT

10 ====
01 ====

Operator Definitions
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01

10

X

NOT

XZ ====

• Truth table −−−− a tabular listing of the values of a 
function for all possible combinations of values on its 
arguments

• Example: Truth tables for the basic logic operations:

111

001

010

000
Z = X·YYX

AND

111

101

110

000

Z = X+YYX

OR

Truth Tables
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• Using Switches
– For inputs: 

• logic 1 is switch closed
• logic 0 is switch open

– For outputs:
• logic 1 is light on
• logic 0 is light off.

• NOT uses a switch such
that:

• logic 1 is switch open
• logic 0 is switch closed

Switches in parallel => OR

C
Normally-closed switch => NOT

Logic Function Implementation

Switches in series => AND
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• Example: Logic Using Switches

• Light is on (L = 1) for 
L(A, B, C, D) =A . ((B . C')+D)

and off (L = 0), otherwise.
• Useful model for relay circuits and for CMOS 

gate circuits, the foundation of current digital 
logic technology

B
A

D

C

Logic Function Implementation (Continued)
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• In the earliest computers, switches were opened 
and closed by magnetic fields produced by 
energizing coils in relays. The switches in turn 
opened and closed the current paths.

• Later, vacuum tubes that open and close 
current paths electronically replaced relays.

• Today, transistors are used as electronic 
switches that open and close current paths.

Logic Gates
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• Implementation of logic gates with transistors (See 
Reading  Supplement −−−− CMOS Circuits)

� Transistor or tube implementations of logic functions are 
called logic gatesor just gates

� Transistor gate circuits can be modeled by switch circuits

•

F

+V

X

Y

+V

X

+V

X

Y
•

•

•

•

•

• •

•

• •

•

•

(a) NOR

G = X +Y

(b) NAND (c) NOT

X . Y

X

•

•

•

•

Logic Gates (continued)
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• Logic gates have special symbols:

• And waveform behavior in time as follows:

Logic Gate Symbols and Behavior

(b) Timing diagram

X 0 0 1 1

Y 0 1 0 1

X ·Y(AND) 0 0 0 1

X + Y(OR) 0 1 1 1

(NOT) X 1 1 0 0

(a) Graphic symbols

OR gate

X

Y
Z = X + Y

X

Y
Z = X ·Y

AND gate

X Z = X

NOT gate or
inverter
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• Boolean equations, truth tables and logic diagrams describe 
the same function!

• Truth tables are unique; expressions and logic diagrams are 
not. This gives flexibility in implementing functions.

X

Y F

Z

Logic Diagram

Equation

ZYX F ++++====

Truth Table

11 1 1
11 1 0
11 0 1
11 0 0
00 1 1
00 1 0
10 0 1
00 0 0

X Y Z ZYX F ⋅⋅⋅⋅++++====

Logic Diagrams and Expressions
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Involution

Idempotence

Existence of complement

Existence of 0 and1

Commutative
Associative

Distributive

DeMorgan’s

2. X . 1 X=

4. X . 0 0=

6. X . X X=

8. 0=X . X

� An algebraic structure defined on a set of at least two elements, B, 
together with three binary operators (denoted +, · and ) that 
satisfies the following basic identities:

10. X + Y Y + X=

12. (X + Y) Z+ X + (Y Z)+=
14. X(Y + Z) XY XZ+=

16. X + Y X . Y=

11. XY YX=
13. (XY)Z X(YZ)=
15. X + YZ (X + Y) (X + Z)=
17. X . Y X + Y=

1. X + 0 X=

3. +X 1 1=

5. X + X X=

7. 1=X + X

9. X = X

Boolean Algebra
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� If the meaning is unambiguous, we leave out the 
symbol  “·”

� The dualof an algebraic expression is obtained by 
interchanging + and · and interchanging 0’s and 
1’s.

� The identities appear in dualpairs. When there is 
only one identity on a line the identity is self-dual, 
i. e., the dual expression = the original expression. 

Some Properties of Identities & the Algebra
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• Unless it happens to be self-dual, the dual of an 
expression does not equal the expression itself.

• Example: F = (A + C)· B + 0
dual F =  (A · C + B) · 1 = A · C  + B

• Example: G = X · Y + (W + Z)
dual G = 

• Example: H = A · B + A · C + B · C
dual H = 

• Are any of these functions self-dual?

Some Properties of Identities & the Algebra
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• There can be more than 2 elements in B, i. e., 
elements other than 1 and 0. What are some 
common useful Boolean algebras with more 
than 2 elements? 

1.
2.

• If B contains only 1 and 0, then B is called the 
switching algebra which is the algebra we use 
most often.

Algebra of Sets
Algebra of n-bit binary vectors

Some Properties of Identities & the Algebra
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� The order of evaluation in a Boolean
expression is:
1. Parentheses
2. NOT
3. AND
4. OR

� Consequence: Parentheses appear
around OR expressions

� Example: F = A(B + C)(C + D)

Boolean Operator Precedence
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• A + A·B = A (Absorption Theorem)
Proof Steps Justification (identity or theorem)

A + A·B

= A · 1 + A · B X = X · 1

= A · ( 1 + B)      X · Y + X · Z = X ·(Y + Z)(Distributive Law)

= A · 1 1 + X = 1

= A X · 1 = X

• Our primary reason for doing proofs is to learn:
– Careful and efficient use of the identities and theorems of 

Boolean algebra, and
– How to choose the appropriate identity or theorem to apply 

to make forward progress, irrespective of the application. 

Example 1: Boolean Algebraic Proof
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• AB + AC + BC = AB + AC (Consensus Theorem)
Proof Steps: Justification (identity or theorem) 

AB + AC + BC
= AB + AC + 1 · BC
= AB + AC + (A + A) · BC            
= AB + AC + ABC + ABC
= AB (1+C) +AC (1+B)
= AB · 1 +AC · 1
= AB + AC

Example 2: Boolean Algebraic Proofs
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•
Proof Steps Justification (identity or theorem)

=

YXZ)YX( ++++++++

)ZX(XZ)YX( ++++====++++++++ Y Y

Example 3: Boolean Algebraic Proofs
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(((( )))) Absorption xyxxxyxx ====++++⋅⋅⋅⋅====⋅⋅⋅⋅++++

x y⋅⋅⋅⋅y LawssDeMorgan'xx ⋅⋅⋅⋅====++++ y x==== ++++ y

(((( ))))(((( )))) ninimizatioMyyyxyyyx ====++++++++====⋅⋅⋅⋅⋅⋅⋅⋅ ++++ x x

zyxzyzyx ++++⋅⋅⋅⋅++++====++++⋅⋅⋅⋅++++⋅⋅⋅⋅++++ x x(((( )))) (((( )))) (((( )))) (((( )))) (((( ))))
++++====++++++++ Consensuszyxzyzyx ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ x x

(((( )))) tionSimplificayxyxyxyx ⋅⋅⋅⋅====++++⋅⋅⋅⋅++++====⋅⋅⋅⋅++++ x x

Useful Theorems
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yyyx ====⋅⋅⋅⋅⋅⋅⋅⋅ x++++

(((( ))))(((( ) ) ) ) yyyx ====++++++++ x

Proof of Simplification

26

++++ yx x==== y⋅⋅⋅⋅

yx ⋅⋅⋅⋅ yx ++++====

Proof of DeMorgan’s Laws

27

x y z F1 F2 F3 F4 
0 0 0 0 0   
0 0 1 0 1   
0 1 0 0 0   
0 1 1 0 0   
1 0 0 0 1   
1 0 1 0 1   
1 1 0 1 1   
1 1 1 0 1   

 

zxyxF4 ++++====

xyF1==== z

xF2 ==== yz++++

xzyxzyxF3 ++++==== y++++

Boolean Function Evaluation

1
0
0
1
1
1
0
0

0
1
0
1
1
1
0
0
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• An application of Boolean algebra

• Simplify to contain the smallest number 
of literals (complemented and 
uncomplemented variables):

= AB + ABCD +  A C D + A C D + A B D

= AB + AB(CD) + A C (D + D) + A B D

= AB + A C + A B D = B(A + AD) +AC 

= B (A + D) + A C  5 literals

++++++++++++++++ DCBADCADBADCABA

Expression Simplification
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• Use DeMorgan's Theorem to 
complement a function:
1. Interchange AND and OR operators
2. Complement each constant value and 

literal

• Example: Complement F =xyz+xyz

F = (x + y + z)(x + y + z)
• Example: Complement G = (a + bc)d + e 

G =?

Complementing Functions
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• What are Canonical Forms?

• Minterms and Maxterms

• Index Representation of Minterms and 
Maxterms 

• Sum-of-Minterm (SOM) Representations

• Product-of-Maxterm (POM) Representations

• Representation of Complements of Functions

• Conversions between Representations

Overview – Canonical Forms
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• It is useful to specify Boolean functions in 
a form that:
– Allows comparison for equality.
– Has a correspondence to the truth tables 

• Canonical Forms in common usage:
– Sum of Minterms (SOM)
– Product of Maxterms (POM)

Canonical Forms

32

• Minterms are AND terms with every variable 
present in either true or complemented form.  

• Given that each binary variable may appear 
normal (e.g., x) or complemented (e.g., x), there 
are 2n minterms for n variables.

• Example: Two variables (X and Y)produce
2 x 2 = 4 combinations:
XY (both normal) 
XY (X normal, Y complemented)
XY (X complemented, Y normal)
XY (both complemented)

• Thus there are four mintermsof two variables.

Minterms
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• Maxterms are OR terms with every variable in 
true or complemented form.

• Given that each binary variable may appear 
normal (e.g., x) or complemented (e.g., x), there 
are 2n maxterms for n variables.

• Example: Two variables (X and Y) produce
2 x 2 = 4 combinations:
X+Y (both normal) 
X+Y (X normal, Y complemented)
X+Y (X complemented, Y normal)
X+Y (both complemented)

Maxterms
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• Examples: Two variable minterms and 
maxterms.

• The index above is important for describing 
which variables in the terms are true and 
which are complemented.

x + yx y3

x + yx y2

x + yx y1

x + yx y0

MaxtermMintermIndex

Maxterms and Minterms
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• Minterms and maxterms are designated with a subscript
• The subscript is a number, corresponding to a binary 

pattern
• The bits in the pattern represent the complemented or 

normal state of each variable listed in a standard order.
• All variables will be present in a minterm or maxterm and 

will be listed in the same order(usually alphabetically) 
• Example: For variables a, b, c:

– Maxterms:  (a + b + c),   (a + b + c)
– Terms:   (b + a + c), a c b, and (c + b + a) are NOT in 

standard order.
– Minterms:    a b c,   a  b  c, a b  c
– Terms:    (a + c), b c, and (a + b) do not contain all 

variables

Standard Order

36

• The indexfor the minterm or maxterm, 
expressed as a binary number, is used to 
determine whether the variable is shown in the 
true form or complemented form.

• For Minterms:
– “1” means the variable is “Not Complemented” and 
– “0” means  the variable is “Complemented”.

• For Maxterms:
– “0” means  the variable is “Not Complemented” and 
– “1” means the variable is “Complemented”. 

Purpose of the Index
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• Example: (for three variables)

• Assume the variables are called X, Y, and Z.
• The standard order is X, then Y, then Z.
• The Index 0(base 10) = 000 (base 2) for three 

variables). All three variables are complemented 
for minterm 0 ( ) and no variables are 
complemented for Maxterm 0(X,Y,Z).

– Minterm 0, called m0 is           .
– Maxterm 0, called M0 is (X + Y + Z).
– Minterm 6 ?
– Maxterm 6 ?

Z,Y,X

ZYX

Index Example in Three Variables
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Index  Binary  Minterm  Maxterm
i       Pattern     mi M i

0       0000 
1       0001 
3       0011
5       0101 
7       0111 

10       1010
13       1101
15       1111           

dcba dcba ++++++++++++
dcba

dcba ++++++++++++
dcba dcba ++++++++++++

dcba ++++++++++++
dcba dcba ++++++++++++
dba
dcba dcba ++++++++++++

?
?

?

?c

Index Examples – Four Variables
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• Review:  DeMorgan's Theorem
and    

• Two-variable example: 
and 

Thus M2 is the complement of m2 and vice-versa.
• Since DeMorgan's Theorem holds for n variables, 

the above holds for terms of n variables
• giving:

and  
Thus Mi is the complement of mi.

yxy·x ++++==== yxyx ⋅⋅⋅⋅====++++

yxM 2 ++++==== yx·m2 ====

i mM ==== i ii Mm ====

Minterm and Maxterm Relationship
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• Minterms of Maxterms of
2 variables                       2 variables

• Each column in the maxterm function table is the 
complement of the column in the minterm function 
table since Mi is the complement of mi.

x y m0 m1 m2 m3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

x y M0 M1 M 2 M3

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

Function Tables for Both
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• In the function tables:
– Each minterm has one and only one 1 present in the 2n terms 

(a minimum of 1s).  All other entries are 0.
– Each maxterm has one and only one 0 present in the 2n terms 

All other entries are 1 (a maximum of 1s). 

• We can implement any function by "ORing" the 
minterms corresponding to "1" entries in the function 
table. These are called the minterms of the function.

• We can implement any function by "ANDing" the 
maxterms corresponding to "0" entries in the function 
table. These are called the maxterms of the function.

• This gives us two canonical forms:
– Sum of Minterms (SOM)
– Product of Maxterms (POM)

for stating any Boolean function.

Observations

42

x y z index m1 + m4 + m7 = F1

0 0 0 0 0 + 0 + 0 = 0

0 0 1 1 1 + 0 + 0 = 1

0 1 0 2 0 + 0 + 0 = 0

0 1 1 3 0 + 0 + 0 = 0

1 0 0 4 0 + 1 + 0 = 1

1 0 1 5 0 + 0 + 0 = 0

1 1 0 6 0 + 0 + 0 = 0

1 1 1 7 0 + 0 + 1 = 1

• Example:  Find F1 = m1 + m4 + m7 

• F1 = x y  z + x  y z  + x  y  z

Minterm Function Example
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• F(A, B, C, D, E) = m2 + m9 + m17 + m23

• F(A, B, C, D, E) =

Minterm Function Example

44

• Example:  Implement  F1 in maxterms:
F1 =      M0 · M2 · M3 · M5 · M6

)zyz)·(xy·(xz)y(xF1 ++++++++++++++++++++++++====
z)yx)·(zyx·( ++++++++++++++++

x y z i M 0 ⋅⋅⋅⋅ M 2 ⋅⋅⋅⋅ M 3 ⋅⋅⋅⋅ M 5 ⋅⋅⋅⋅ M 6 = F1
0 0 0 0 0  1  1  1 = 0
0 0 1 1 1  1  1 1  1 = 1
0 1 0 2 1  0  1 1  1 = 0
0 1 1 3 1  1  0 1  1 = 0
1 0 0 4 1  1  1 1  1 = 1
1 0 1 5 1  1  1 0  1 = 0
1 1 0 6 1  1  1 1  0 = 0
1 1 1 7 1  

⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅ 1  1 1  1 = 1

1  ⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅

Maxterm Function Example
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•

• F(A, B,C,D) =

141183 MMMM)D,C,B,A(F ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=

Maxterm Function Example
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• Any Boolean function can be expressed as a 
Sum of Minterms.
– For the function table, the mintermsused are the 

terms corresponding to the 1's
– For expressions, expandall terms first to explicitly 

list all minterms.  Do this by “ANDing” any term 
missing a variable v with a term (          ).

• Example:   Implement                       as a sum of 
minterms.

First expand terms:
Then distribute terms: 
Express as sum of minterms: f = m3 + m2 + m0

yxxf ++++====

yxyxxyf ++++++++====

v  v ++++

yx)yy(xf ++++++++====

Canonical Sum of Minterms

47

• Example:
• There are three variables, A, B, and C which 

we take to be the standard order.
• Expanding the terms with missing variables:

• Collect terms (removing all but one of duplicate 
terms): 

• Express as SOM:

CBAF ++++====

Another SOM Example

48

• From the previous example, we started with:

• We ended up with:
F = m1+m4+m5+m6+m7

• This can be denoted in the formal shorthand:

• Note that we explicitly show the standard 
variables in order and drop the “m” 
designators.

)7,6,5,4,1()C,B,A(F mΣΣΣΣ====

CBAF ++++====

Shorthand SOM Form
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• Any Boolean Function can be expressed as a Product 
of Maxterms (POM).
– For the function table, the maxterms used are the terms 

corresponding to the 0's.
– For an expression, expand all terms first to explicitly list all

maxterms.  Do this by first applying the second distributive 
law , “ORing” terms missing variable V with a term equal to 
V ⋅⋅⋅⋅V and then applying the distributive law again.

• Example: Convert to product of maxterms:

Apply the distributive law:

Add missing variable z:

Express as POM: f = M2 · M3

yxx)z,y,x(f ++++====

yx)y(x1)y)(xx(xyxx ++++====++++⋅⋅⋅⋅====++++++++====++++

(((( ))))zyx)zyx(zzyx ++++++++++++++++====⋅⋅⋅⋅++++++++

Canonical Product of Maxterms

50

• Convert to Product of Maxterms:

• Use  x + y z = (x+y)·(x+z) with                                     , 
and           to get:

• Then use                          to get:

and a second time to get:

• Rearrange to standard order,
to give f = M5 · M2

BACBCAC)B,f(A, ++++++++====

)BC)(AABC(f ++++++++++++++++====

Bz ====
)BCBC)(AACBC(Af ++++++++++++++++====

AyC),B(Ax ====++++==== C

yxyxx ++++====++++
)BCC)(AABCC(f ++++++++++++++++====

C)B)(ACBA(f ++++++++++++++++====

Another POM Example

51

• The complement of a function expressed as a 
sum of minterms is constructed by selecting the 
minterms missing in the sum-of-minterms 
canonical forms.

• Alternatively, the complement of a function 
expressed by a Sum of Minterms form is simply 
the Product of Maxterms with the same indices.

• Example: Given )7,5,3,1()z,y,x(F mΣΣΣΣ====
)6,4,2,0()z,y,x(F mΣΣΣΣ====
)7,5,3,1()z,y,x(F MΠΠΠΠ====

Function Complements

52

• To convert between sum-of-minterms and product-
of-maxterms form (or vice-versa) we follow these 
steps:
– Find the function complement by swapping terms in the 

list with terms not in the list.
– Change from products to sums, or vice versa.

• Example:Given F as before:
• Form the Complement: 
• Then use the other form with the same indices – this 

forms the complement again, giving the other form 
of the original function:

)7,5,3,1()z,y,x(F mΣΣΣΣ====
)6,4,2,0()z,y,x(F mΣΣΣΣ====

)6,4,2,0()z,y,x(F MΠΠΠΠ====

Conversion Between Forms

53

• Standard Sum-of-Products (SOP) form:
equations are written as an OR of AND terms 

• Standard Product-of-Sums (POS) form:
equations are written as an AND of OR terms

• Examples:
– SOP:
– POS:

• These “mixed” forms are neither SOP nor POS
–

–

BCBACBA ++++++++

C)(AC)B(A ++++++++
B)(ACACBA ++++++++

C·)CB(A·B)(A ++++++++++++

Standard Forms

54

• A sum of minterms form for n variables 
can be written down directly from a truth 
table.
– Implementation of this form is a two-level 

network of gates such that:
– The first level consists of n-input AND gates, 

and
– The second level is a single OR gate (with 

fewer than 2n inputs).

• This form often can be simplified so that 
the corresponding circuit is simpler.

Standard Sum-of-Products (SOP)
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• A Simplification Example:
•
• Writing the minterm expression:

F = A B C + A B C + A B C + ABC + ABC
• Simplifying:

F = A+BC

• Simplified F contains 3 literals compared to 15 in 
minterm F 

)7,6,5,4,1(m)C,B,A(F ΣΣΣΣ====

Standard Sum-of-Products (SOP)

56

• The two implementations for F are shown 
below – it is quite apparent which is simpler!

F

B

C

A

AND/OR Two-level Implementation of SOP Expression

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

57

• The previous examples show that:
– Canonical Forms (Sum-of-minterms, Product-of-

Maxterms), or other standard forms (SOP, POS) 
differ in complexity

– Boolean algebra can be used to manipulate 
equations into simpler forms.

– Simpler equations lead to simpler two-level 
implementations

• Questions:
– How can we attain a “simplest” expression?
– Is there only one minimum cost circuit?
– The next part will deal with these issues.


