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Course Outline
1. Digital Computers, Number Systems, Arithmetic Operations, Decimal, 

Alphanumeric, and Gray Codes
2. Binary Logic, Gates, Boolean Algebra, Standard Forms
3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level 

Circuit Optimization
4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, 

High-Impedance Outputs
5. Implementation Technology and Logic Design, Design Concepts and Automation, 

The Design Space, Design Procedure, The major design steps
6. Programmable Implementation Technologies: Read-Only Memories, Programmable 

Logic Arrays, Programmable Array Logic,Technology mapping to programmable 
logic devices

7. Combinational Functions and Circuits
8. Arithmetic Functions and Circuits
9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
11. Counters, register cells, buses, & serial operations
12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
13. Memory Basics
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Introduction to Digital Logic

Lecture 1

Digital Computers and 
Information
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Overview

• Digital Systems and Computer Systems
• Information Representation
• Number Systems [binary, octal and hexadecimal]

• Arithmetic Operations
• Base Conversion

• Decimal Codes [BCD (binary coded decimal), parity]

• Gray Codes
• Alphanumeric Codes
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• Each virtual machine 
layer is an abstraction of 
the level below it.

• The machines at each 
level execute their own 
particular instructions, 
calling upon machines at 
lower levels to perform 
tasks as required.

• Computer circuits 
ultimately carry out the 
work.

The Computer Level Hierarchy
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Digital System

• Takes a set of discrete information (inputs) and 
discrete internal information (system state) and 
generates a set of discrete information (outputs).

System State

Discrete
Information
Processing
System

Discrete
Inputs Discrete

Outputs
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Types of Digital Systems

• No state present
– Combinational Logic System
– Output = Function (Input )

• State present
– State updated at discrete times

=> Synchronous Sequential System
– State updated at any time

=>Asynchronous Sequential System
– State= Function (State, Input )
– Output = Function (State) 

or Function (State, Input)
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A Digital Counter

1 30 0 5 6 4
Count Up

Reset

Inputs: Count Up, Reset
Outputs: Visual Display
State: "Value" of stored digits

Synchronous or Asynchronous?

Digital System Example:
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Synchronous or 
Asynchronous?

Inputs: 
Keyboard, 
mouse, modem, 
microphone

Outputs: CRT, 
LCD, modem, 
speakers

Memory

Control
unit Datapath

Input/Output

CPU

A Digital Computer Example
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Signal

• An information variable represented by physical 
quantity.

• For digital systems, the variable takes on discrete 
values.   

• Two level, or binary values are the most prevalent 
values in digital systems.

• Binary values are represented abstractly by:
– digits 0 and 1
– words (symbols) False (F) and True (T)
– words (symbols) Low (L) and High (H) 
– and words On and Off.

• Binary values are represented by values or ranges of 
values of physical quantities
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Analog

Asynchronous

Synchronous

Time

Continuous 
in value & 

time

Discrete in        
value & 

continuous 
in time

Discrete in 
value & time

Digital

Signal Examples Over Time
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5.0

4.0

3.0

2.0

1.0

0.0

Volts

HIGH

LOW

HIGH

LOW

OUTPUT INPUT

Threshold 
Region

Signal Example – Physical Quantity: Voltage
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• What are other physical quantities 
represent 0 and 1?

– CPU Voltage

– Disk Magnetic Field Direction

– CD Surface Pits/Light

– Dynamic RAM Electrical Charge

Binary Values: Other Physical Quantities
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• Positive radix, positional number systems

• A number with radix r is represented by a 
string of digits:

An - 1An - 2 … A1A0 . A- 1 A- 2 … A- m ++++ 1 A- m

in which 0 ≤ ≤ ≤ ≤ Ai < r and . is the radix point.

• The string of digits represents the power series:

( ) ( )(Number)r = ∑∑ +
j = - m

j
j

i

i = 0
i rArA

(Integer Portion)  + (Fraction Portion)

i = n - 1 j = - 1

Number Systems – Representation
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Number Systems – Examples

1

2

4
8

16
32

0.5
0.25

0.125
0.0625

0.03125

1

10

100
1000

10,000
100,000

0.1
0.01

0.001
0.0001

0.00001

r 0

r 1

r 2

r 3

r 4

r 5

r -1

r -2

r -3

r -4

r -5

0

1

2
3

Powers of     4          
Radix           5

-1
-2

-3
-4

-5

0 => 10 => 90 => r - 1Digits

210rRadix (Base)

BinaryDecimalGeneral
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� 210 (1024) is Kilo , denoted "K"

� 220 (1,048,576) is Mega, denoted "M"

� 230 (1,073, 741,824) is Giga, denoted "G"

Special Powers of 2

� 240 (1,099,511,627,776) is Tera, denoted “T"
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• Useful for Base Conversion

Exponent Value Exponent Value
0 1 11 2,048
1 2 12 4,096
2 4 13 8,192
3 8 14 16,384
4 16 15 32,768
5 32 16 65,536
6 64 17 131,072
7 128 18 262,144

19 524,288
20 1,048,576
21 2,097,152

8 256
9 512
10 1024

Positive Powers of 2

18

• To convert to decimal, use decimal arithmetic 
to form ΣΣΣΣ (digit × respective power of 2).

• Example:Convert 110102 to N10:

1××××24 + 1××××23 + 0××××22 + 1××××21 + 0××××20 = 26

Converting Binary to Decimal
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• Method 1
– Subtract the largest power of 2 that gives a positive 

remainder and record the power.
– Repeat, subtracting from the prior remainder and recording 

the power, until the remainder is zero.
– Place 1’s  in the positions in the binary result corresponding 

to the powers recorded; in all other positions place 0’s.
• Example: Convert 62510 to N2

– 625 – 512 = 113 = N1 512 = 29
– 113 – 64 =   49 = N2 64 = 26

– 49 – 32 =   17 = N3 32 = 25

– 17 – 16 =     1 = N4 16 = 24

– 1 – 1 =     0 = N5 1 = 20

(625)10 = 1⋅⋅⋅⋅29 + 0⋅⋅⋅⋅28 + 0⋅⋅⋅⋅27+ 1⋅⋅⋅⋅26 + 1⋅⋅⋅⋅25 + 1⋅⋅⋅⋅24 + 0⋅⋅⋅⋅23+ 0⋅⋅⋅⋅22 + 0⋅⋅⋅⋅21 + 1⋅⋅⋅⋅20

= (1001110001)2

Converting Decimal to Binary
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Name Radix Digits

Binary 2 0,1

Octal 8 0,1,2,3,4,5,6,7

Decimal 10 0,1,2,3,4,5,6,7,8,9

Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

� The six letters (in addition to the 10
integers) in hexadecimal represent:

A→→→→10, B→→→→ 11, C→→→→ 12, D→→→→ 13, E→→→→ 14, F→→→→ 15

Commonly Occurring Bases
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Decimal 
(Base 10)

Binary 
(Base 2)

Octal 
(Base 8)

Hexadecimal 
(Base 16)

00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0C
13 01101 15 0D
14 01110 16 0E
15 01111 17 0F
16 10000 20 10

• Good idea to memorize!

Numbers in Different Bases
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� Method 2  
� To convert from one base to another:

1) Convert the Integer Part

2) Convert the Fraction Part

3) Join the two results with a radix point

Conversion Between Bases
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Conversion Details

• To Convert the Integer Part:
Repeatedly divide the number by the new radix and save 
the remainders. The digits for the new radix are the 
remainders in reverse orderof their computation. If the 
new radix is > 10, then convert all remainders > 10 to 
digits A, B, … 

• To Convert the Fractional Part:

Repeatedly multiply the fraction by the new radix and 
save the integer digits that result.  The digits for the new 
radix are the integer digits inorder of their computation.
If the new radix is > 10, then convert all integers > 10 to 
digits A, B, … 
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• Convert 46 to Base 2:
– (101110)2

• Convert 0.6875 to Base 2:
– (0.1011)2

• Join the results together with the radix 
point:
– (101110.1011)2

Example: Convert 46.687510 To Base 2
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Additional Issue - Fractional Part

• Note that in the conversion in the previous slide, 
the fractional part became 0 as a result of the 
repeated multiplications. 

• In general, it may take many bits to get this to 
happen or it may never happen.

• Example: Convert 0.6510 to N2
– 0.65 = 0.1010011001001 …
– The fractional part begins repeating every 4 steps 

yielding repeating 1001 forever!

• Solution: ?
– Specify number of bits to right of radix point and round 

or truncate to this number.

26

Checking the Conversion

• To convert back, sum the digits times their 
respective powers of r.
• From the prior conversion of 46.687510

1011102 = 1⋅⋅⋅⋅25 + 0⋅⋅⋅⋅24 + 1⋅⋅⋅⋅23 + 1⋅⋅⋅⋅22 + 1⋅⋅⋅⋅21 + 0⋅⋅⋅⋅20

=1·32 + 0·16 +1·8 +1·4 + 1·2 +0·1
=  32 + 8 + 4 + 2
=  46

0.10112 = 1/2 + 1/8 + 1/16
= 0.5000 + 0.1250 + 0.0625
= 0.6875
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• Octal to Binary:
– Restate the octal as three binary digits starting 

at the radix point and going both ways.

• Binary to Octal:
– Group the binary digits into three bit groups 

starting at the radix point and going both ways, 
padding with zeros as needed in the fractional 
part.

– Convert each group of three bits to an octal 
digit.

Octal to Binary and Back
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• Hexadecimal to Binary:
– Restate the hexadecimal as four binary digits 

starting at the radix point and going both ways.

• Binary to Hexadecimal:
– Group the binary digits into four bit groups 

starting at the radix point and going both ways, 
padding with zeros as needed in the fractional 
part.

– Convert each group of four bits to a
hexadecimal digit.

Hexadecimal to Binary and Back
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• Convert octal to binary.
• Use groups of four bits and convert as above to 

hexadecimal digits.
• Example: Octal to Binary to Hexadecimal

(6     3     5  . 1     7     7)8

(110011101. 001111111)2

(0001 10011101. 001111111000)2

(1      9      D   .   3       F       8)16

• Why do these conversions work? 

Octal to Hexadecimal via Binary

30

• You can use arithmetic in other bases if you 
are careful:

• Example:   Convert 1011102 to Base 10 using 
binary arithmetic:
Step 1 101110 / 1010  = 100  r  0110

Step 2 100 / 1010  =     0  r  0100
Converted Digits are01002 | 01102

or (4 6) 10

A Final Conversion Note
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• Flexibility of representation
– Within constraints below, can assign any binary 

combination (called a code word) to any data as long as 
data is uniquely encoded.

• Information Types
– Numeric

• Must represent range of data needed
• Very desirable to represent data such that simple, 

straightforward computation for common arithmetic operations 
permitted

• Tight relation to binary numbers

– Non-numeric
• Greater flexibility since arithmetic operations not applied.
• Not tied to binary numbers

Binary Numbers and Binary Coding
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• Given n binary digits (called bits), a binary code
is a mapping from a set of represented elements
to a subset of the 2n binary numbers.

• Example: A
binary code
for the seven
colors of the
rainbow

• Code 100 is 
not used

Non-numeric Binary Codes

Binary Number
000
001
010
011
101
110
111

Color
Red
Orange
Yellow
Green
Blue
Indigo
Violet 
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• Given M elements to be represented by a 
binary code, the minimum number of bits, 
n, needed, satisfies the following 
relationships:

2n > M > 2(n – 1) 

n =log2 M where x , called the ceiling
function, is the integer greater than or equal 
to x.

• Example: How many bits are required to 
represent decimal digitswith a binary code?
– 4 bits are required (n =log2 9 = 4)

Number of Bits Required

34

Number of Elements Represented

• Given n digits in radix r, there are rn distinct 
elements that can be represented.

• But, you can represent m elements, m < rn

• Examples:
– You can represent 4 elements in radix r = 2 with 

n = 2 digits: (00, 01, 10, 11).  
– You can represent 4 elements in radix r = 2 with 

n = 4 digits: (0001, 0010, 0100, 1000).
– This second code is called a "one hot" code.

S1-2-28Eylul
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Decimal 8,4,2,1 Excess3 8,4,-2,-1 Gray
0 0000 0011 0000 0000
1 0001 0100 0111 0001
2 0010 0101 0110 0011
3 0011 0110 0101 0010
4 0100 0111 0100 0110
5 0101 1000 1011 0111
6 0110 1001 1010 0101
7 0111 1010 1001 0100
8 1000 1011 1000 1100
9 1001 1100 1111 1101

�The usual way of expressing a decimal number in terms of a binary 
number is known as pure binary coding
�There are over 8,000 ways that you can chose 10 elements from the 16 
binary numbers of 4 bits.   A few are useful:

Binary Codes for Decimal Digits
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Binary Coded Decimal (BCD)

• In the 8421 Binary Coded Decimal (BCD) 
representation each decimal digit is converted to 
its 4-bit pure binary equivalent

• This code is the simplest, most intuitive binary 
code for decimal digits and uses the same powers 
of 2 as a binary number, but only encodes the first 
ten values from 0 to 9.
For example: (57)dec���� (?) bcd

(   5       7  ) dec

= (01010111)bcd



Copyright 2000 N. AYDIN. All rights 
reserved. 7

37

• What interesting property is common 
to these two codes?

111111009

100010118

100110107

101010016

101110005

010001114

010101103

011001012

011101001

000000110

8, 4, –2, –1Excess 3Decimal

Excess 3 Code and 8, 4, –2, –1 Code
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Binary to Gray Code Conversion

• What special property does the 
Gray code have in relation to 
adjacent decimal digits?

• To convert binary to a Gray-
coded number then follow this 
method :

1. The binary number and the 
Gray-coded number will have 
the same number of bits 

2. The Gray code MSB (left-hand 
bit) and binary MSB will 
always be the same 

3. To get the Gray code next-to-
MSB (i.e. next digit to the right) 
add the binary MSB and the 
binary next-to-MSB. Record 
the sum, ignoring any carry. 

4. Continue in this manner right 
through to the end. 

1000111115
1001111014
1011110113
1010110012
1110101111
1111101010
110110019
110010008
010001117
010101106
011101015
011001004
001000113
001100102
000100011
000000000
Gray8421Decimal
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Gray Code to Binary conversion

• To convert a Gray-coded 
number to binary then follow 
this method :

1. The binary number and the 
Gray-coded number will have 
the same number of bits 

2. The binary MSB (left-hand bit) 
and Gray code MSB will always 
be the same 

3. To get the binary next-to-MSB 
(i.e. next digit to the right) add 
the binary MSB and the gray 
code next-to-MSB. Record the 
sum, ignoring any carry. 

4. Continue in this manner right 
through to the end. 

1000111115
1001111014
1011110113
1010110012
1110101111
1111101010
110110019
110010008
010001117
010101106
011101015
011001004
001000113
001100102
000100011
000000000
Gray8421Decimal
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Binary to Gray Conversion Example
• Question:Convert the binary number 11101101to its Gray code 

equivalent. 
• Answer:

= 0 + 1 = 1Gray Code Digit 8 11101101Binary 

= 1 + 0 = 1Gray Code Digit 7 11101101 Binary

(carry 1)= 1 + 1 = 0Gray Code Digit 6 11101101 Binary 

= 0 + 1 = 1Gray Code Digit 5 11101101Binary 

= 1 + 0 = 1 Gray Code Digit 4 11101101Binary 

(carry 1)= 1 + 1 = 0 Gray Code Digit 3 11101101Binary 

(carry 1)= 1 + 1 = 0 Gray Code Digit 2 11101101 Binary 

(same as binary)= 1 Gray CodeDigit 1 11101101 Binary

11101101bin = 10011011gray
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Gray to Decimal Conversion
• Question:Convert the Gray coded number 10011011to its 

binary equivalent. 
• Answer:

= 1 + 0 = 1Binary Digit 8 10011011Gray Code 

(carry 1)= 1 + 1 = 0Binary Digit 7 10011011 Gray Code 

= 0 + 1 = 1Binary Digit 6 10011011 Gray Code 

= 1 + 0 = 1Binary Digit 5 10011011 Gray Code 

(carry 1)= 1 + 1 = 0Binary Digit 4 10011011 Gray Code 

= 0 + 1 = 1Binary Digit 3 10011011 Gray Code 

= 0 + 1 = 1Binary Digit 2 10011011 Gray Code 

(same as Gray code)= 1Binary Digit 1 10011011 Gray Code 

10011011gray = 11101101bin

42

B0

111

110

000

001

010

011100

101

B1

B2

(a) Binary Code for Positions 0 through 7

G0

G1

G2

111

101

100 000

001

011

010110

(b) Gray Code for Positions 0 through 7

Gray Code (Continued)

• Does this special Gray code property have 
any value?

• An Example: Optical Shaft Encoder
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Gray Code (Continued)

• How does the shaft encoder work?

• For the binary code, what codes may be 
produced if the shaft position lies between 
codes for 3 and 4 (011 and 100)?

• Is this a problem?

44

Gray Code (Continued)

• For the Gray code, what codes may be 
produced if the shaft position lies between 
codes for 3 and 4 (010 and 110)?

• Is this a problem?

• Does the Gray code function correctly for 
these borderline shaft positions for all cases 
encountered in octal counting?

45

4221 BCD Code

• The 4221 BCD code is another 
binary coded decimal code where 
each bit is weighted by 4, 2, 2 and 
1 respectively. Unlike BCD 
coding there are no invalid 
representations. 

• The 1's complement of a 4221 
representation is important in 
decimal arithmetic. In forming the 
code remember the following 
rules 

• Below decimal 5 use the right-
most bit representing 2 first 

• Above decimal 5 use the left-most 
bit representing 2 first 

• Decimal 5 = 2+2+1 and not 4+1 
00001111 9 

00011110 8 

00101101 7 

00111100 6 

10000111 5 

01111000 4 

11000011 3 

11010010 2 

11100001 1 

11110000 0 

1's 
complement

4221 Decimal 
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Warning: Conversion or Coding?

• Do NOT mix up conversionof a decimal 
number to a binary number with coding a 
decimal number with a BINARY CODE.

• 1310 = 11012 (This is conversion)

• 13  ⇔⇔⇔⇔ 0001|0011 (This is coding)
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Binary Arithmetic

• Single Bit Addition with Carry

• Multiple Bit Addition

• Single Bit Subtraction with Borrow

• Multiple Bit Subtraction

• Multiplication
• BCD Addition

48

Given two binary digits (X,Y), a carry in (Z) we get the 
following sum (S) and carry (C): 

Carry in (Z) of 0: 

 

 

 

Carry in (Z) of 1: 
 

Z  1  1  1  1 
X  0  0  1  1 

+ Y  + 0  + 1  + 0  + 1 

C S  0 1  1 0  1 0  1 1 
 

Z  0  0  0  0 
X  0  0  1  1 

+ Y  + 0  + 1  + 0  + 1 

C S  0 0  0 1  0 1  1 0 
 

Single Bit Binary Addition with Carry
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• Extending this to two multiple bit 
examples:

Carries 00000 101100
Augend 01100     10110 
Addend     +10001 +10111
Sum 11101   101101
• Note:  The 0is the default Carry-In to the 

least significant bit.

Multiple Bit Binary Addition

50

• Given two binary digits (X,Y), a borrow in (Z) we 
get the following difference (S) and borrow (B):

• Borrow in (Z) of 0:

• Borrow in (Z) of 1:  Z 1 1 1 1

X 0 0 1 1

- Y -0 -1 -0 -1

BS 11 1 0 0 0 1 1

Z 0 0 0 0

X 0 0 1 1

- Y -0 -1 -0 -1

BS 0 0 1 1 0 1 0 0

Single Bit Binary Subtraction with Borrow
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• Extending this to two multiple bit examples:

Borrows 00000 0011 0

Minuend 10110     10110 

Subtrahend - 10010 - 10011

Difference 00100      00011
• Notes: The 0is a Borrow-In to the least significant 

bit. If the Subtrahend > the Minuend, interchange 
and append a – to the result. 

Multiple Bit Binary Subtraction
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Binary Multiplication

The binary multiplication table is simple:

0 ∗∗∗∗ 0 = 0  |  1 ∗∗∗∗ 0 = 0  |  0 ∗∗∗∗ 1 = 0  |  1 ∗∗∗∗ 1 = 1

Extending multiplication to multiple digits :

Multiplicand 1011
Multiplier x  101
Partial Products 1011

0000 -
1011 - -

Product 110111

53

� Given a BCD code, we use binary arithmetic to add the digits:
8 1000 Eight

+5 +0101 Plus 5 
13 1101 is 13 (> 9)

� Note that the result is MORE THAN 9, so must be
represented by two digits!

� To correct the digit, subtract 10 by adding 6 modulo 16.
8 1000 Eight

+5 +0101 Plus 5 
13 1101 is 13 (> 9)

+0110 so add 6
carry = 1 0011 leaving 3 + cy

0001 | 0011 Final answer (two digits)
� If the digit sum is > 9, add one to the next significant digit

BCD Arithmetic

54

BCD Addition Example

• Addition is analogous to decimal addition with 
normal binary addition taking place from right to 
left. For example, 

6 0110BCD for 6 42 0100 0010BCD for 42

+3 0011BCD for 3 +270010 0111BCD for 27

_______ ____________

1001BCD for 9 0110 1001BCD for 69
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• Add 2905BCD to 1897BCD showing 
carries and digit corrections.

0001    1000    1001    0111
+ 0010 1001 0000 0101

0111 0011 0011 1110

BCD Addition Example-2

0100 10010    1010 1100
0000 0110 0110 0110
0100 1000 10000 10010

4 8 0 2
56

Error-Detection Codes

• Redundancy(e.g. extra information), in the form 
of extra bits, can be incorporated into binary code 
words to detect and correct errors.   

• A simple form of redundancy is parity , an extra bit 
appended onto the code word to make the number 
of 1’s odd or even. Parity can detect all single-bit 
errors and some multiple-bit errors.

• A code word has even parity if the number of 1’s 
in the code word is even.

• A code word has odd parity if the number of 1’s in 
the code word is odd.

57

4-Bit Parity Code Example

• Fill in the even and odd parity bits:

• The codeword "1111" has even parityand the 
codeword "1110" has odd parity.   Both can be 
used to represent 3-bit data.

Even Parity Odd Parity
Message - Parity Message - Parity

000 - 000 -
001 - 001 -
010 - 010 -
011 - 011 -
100 - 100 -
101 - 101 -
110 - 110 -
111 - 111 -

58

ASCII Character Codes

• American Standard Code for Information 
Interchange (Refer to Table 1-4 in the text)

• This code is a popular code used to represent 
information sent as character-based data.   It uses 
7-bits to represent:
– 94 Graphic printing characters.
– 34 Non-printing characters

• Some non-printing characters are used for text 
format (e.g. BS = Backspace, CR = carriage 
return)

• Other non-printing characters are used for record 
marking and flow control (e.g. STX and ETX start 
and end text areas).

59

ASCII has some interesting properties:
� Digits 0 to 9 span Hexadecimal values 3016 to 3916.
� Upper case A-Z span 4116 to 5A16 .
� Lower case a-z span 6116 to 7A16.

• Lower to upper case translation (and vice versa) 
occurs by flipping bit 6.

� Delete (DEL) is all bits set, a carryover from when 
punched paper tape was used to store messages.   

� Punching all holes in a row erased a mistake!

ASCII Properties

60

UNICODE

• UNICODE extends ASCII to 65,536 
universal  characters codes

– For encoding characters in world languages

– Available in many modern applications

– 2 byte (16-bit) code words

– See Reading Supplement – Unicode on the 
Companion Website 
http://www.prenhall.com/mano
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Data types

• Our first requirement is to find a way to represent information 
(data) in a form that is mutually comprehensible by human and 
machine.

– Ultimately, we will have to develop schemes for 
representing all conceivable types of information -
language, images, actions, etc.

– We will start by examining different ways of representing 
integers, and look for a form that suits the computer.

– Specifically, the devices that make up a computer are 
switches that can be on or off, i.e. at high or low voltage. 
Thus they naturally provide us with two symbolsto work 
with: we can call them on & off, or (more usefully) 0 and 1.

62

Decimal Numbers

• “decimal” means that we have tendigits to use in our 

representation (the symbols0 through 9)

• What is 3546?

– it is three thousandsplus five hundredsplus four tensplus 

six ones.

– i.e. 3546 = 3.103 + 5.102 + 4.101 + 6.100

• How about negative numbers?

– we use two more symbolsto distinguish positive and 

negative:

+ and -

63

Unsigned Binary Integers

00000100001001004

00000011000110113

00000010000100102

00000001000010011

00000000000000000

8-bits5-bits3-bits

Y = “abc” = a.22 + b.21 + c.20

N = number of bits

Range is:
0 ≤ i  < 2N - 1

(where the digits a, b, c can each take on the valu es of 0 or 1 only)

Problem:
• How do we represent 

negative numbers?
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Signed Magnitude

• Leading bit is the signbit

00100+4

10100-4

10011-3

10010-2

00011+3

00010+2

00001+1

00000+0

10000-0

10001-1

Range is:
-2N-1 + 1 < i  < 2N-1 - 1

Y = “abc” = (-1)a (b.21 + c.20)

Problems:
• How do we do addition/subtraction?
• We have two numbers for zero (+/-)!
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One’s Complement

• Invert all bits

00100+4

11011-4

11100-3

11101-2

00011+3

00010+2

00001+1

00000+0

11111-0

11110-1

Range is:
-2N-1 + 1 < i  < 2N-1 - 1

If msb (most significant bit) is 1 then the
number is negative (same as signed 
magnitude)

Problems:
•Same as for signed magnitude
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Two’s Complement

• Transformation
– To transform a into -a, invert all 

bits in aand add 1 to the result

10000-16

……

01111+15

……

00011

00010

00001

00000

11111

11110

11101-3

-2

+3

+2

+1

0

-1
Range is:

-2N-1 < i  < 2N-1 - 1

Advantages:

• Operations need not check the sign

• Only one representation for zero

• Efficient use of all the bits
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Limitations of integer representations

• Most numbers are not integer!
– Even with integers, there are two other considerations:

• Range:
– The magnitude of the numbers we can represent is 

determined by how many bits we use:
• e.g. with 32 bits the largest number we can represent is about +/- 2 

billion, far too small for many purposes.

• Precision:
– The exactness with which we can specify a number:

• e.g. a 32 bit number gives us 31 bits of precision, or roughly 9
figure precision in decimal repesentation.

• We need another data type!
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Real numbers

• Our decimal system handles non-integer real numbers 
by adding yet another symbol - the decimal point (.) to 
make a fixed point notation:
– e.g. 3456.78 = 3.103 + 4.102 + 5.101 + 6.100 + 7.10-1 + 8.10-2

• The floating point, or scientific, notation allows us to 
represent very large and very small numbers (integer or 
real), with as much or as little precision as needed:
– Unit of electric charge  e =1.602 176 462 x 10-19 Coulomb

– Volume of universe = 1 x 1085 cm3

• the two components of these numbers are called the mantissa and the 
exponent
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Real numbers in binary 

• We mimic the decimal floating point notation to create a 
“hybrid” binary floating point number:
– We first use a “binary point” to separate whole numbers from 

fractional numbers to make a fixed point notation:
• e.g. 00011001.110 = 1.24 + 1.103 + 1.101 + 1.2-1 + 1.2-2 => 25.75

(2-1 = 0.5 and 2-2 = 0.25, etc.)

– We then “float” the binary point:
• 00011001.110 => 1.1001110 x 24

mantissa = 1.1001110, exponent = 4

– Now we have to express this without the extra symbols ( x, 2, . )
• by convention, we divide the available bits into three fields:

sign, mantissa, exponent
70

IEEE-754 fp numbers - 1
s biased exp. fraction
1 8 bits 23 bits

N = (-1)s x 1.fraction x 2(biased exp. – 127)
32 bits:

• Sign: 1 bit

• Mantissa: 23 bits
– We “normalize” the mantissa by dropping the leading 1 and 

recording only its fractional part (why?) 

• Exponent: 8 bits
– In order to handle both +ve and -ve exponents, we add 127 

to the actual exponent to create a “biased exponent”:
• 2-127 => biased exponent = 0000 0000 (= 0)
• 20 => biased exponent = 0111 1111 (= 127)
• 2+127 => biased exponent = 1111 1110 (= 254)

71

IEEE-754 fp numbers - 2

• Example: Find the corresponding fp representation of 25.75
• 25.75 => 00011001.110 => 1.1001110 x 24

• sign bit = 0 (+ve)

• normalized mantissa (fraction) = 100 1110 0000 0000 0000 0000

• biased exponent = 4 + 127 = 131 => 1000 0011

• so 25.75 => 0 1000 0011100 1110 0000 0000 0000 0000=> x41CE0000

• Values represented by convention:

– Infinity (+ and -): exponent = 255 (1111 1111) and fraction = 0

– NaN (not a number): exponent = 255 and fraction ≠ 0

– Zero (0): exponent = 0 and fraction = 0

• note: exponent = 0  =>  fraction is de-normalized, i.e no hidden 1
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IEEE-754 fp numbers - 3

• Double precision (64 bit) floating point
1 11 bits 52 bits

N = (-1)s x 1.fraction x 2(biased exp. – 1023)

64 bits:

� Range & Precision:
� 32 bit: 

� mantissa of 23 bits + 1 => approx. 7 digits decimal
� 2+/-127 => approx. 10 +/-38

� 64 bit: 
� mantissa of 52 bits + 1 => approx. 15 digits decima l
� 2+/-1023 => approx. 10 +/-306

s biased exp. fraction
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Another use for bits: Logic

• Beyond numbers

– logical variables can be true or false, on or off, etc., and so 
are readily represented by the binary system.

– A logical variable A can take the values false = 0 or true = 1
only.

– The manipulation of logical variables is known as Boolean 
Algebra, and has its own set of operations - which are not to 
be confused with the arithmetical operations.

– Some basic operations: NOT, AND, OR, XOR
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Basic Logic Operations

AND

111

001

010

000

A.BBA

OR

111

101

110

000

A+BBA
NOT

01

10

A'A

�Truth Tables of Basic Operations

• Equivalent Notations
– not A = A' = A
– A and B = A.B = A∧B = A intersection B
– A or B = A+B = A∨B = A union B
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More Logic Operations

– Exclusive OR (XOR): either A or B is 1, not both

– A⊕B = A.B' + A'.B

XOR

011

101

110

000

A⊕BBA

XNOR

111

001

010

100

(A⊕B)'BA


