Introduction to Digital Logic

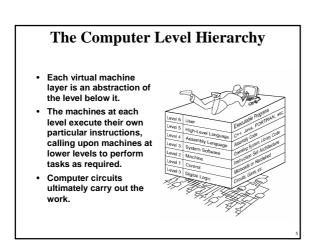
Prof. Nizamettin AYDIN

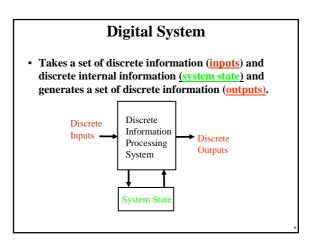
naydin@yildiz.edu.tr naydin@ieee.org

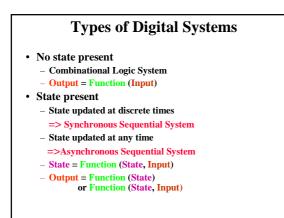
Course Outline

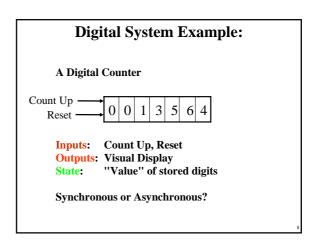
- Digital Com tions, Decimal iters, Number S , and Gray Cod
- 2. 3.
- 4.
- 5.
- Alphanumeric, and Gray Codes Binary Logic, Gates, Boolean Algebra, Standard Forms Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level Circuit Optimization Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, High-Impedance Outputs Implementation Technology and Logic Design, Design Concepts and Automation, The Design Space, Design Procedure, The major design steps Programmable Implementation Technologies: Read-Only Memories, Programmable Logic devices Combinational Functions and Circuits 6.
- 7.
- 8. 9.
- Arithmetic Functions and Circuits Sequential Circuits Storage Elements and Sequential Circuit Analysis Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables 10.
- Counters, register cells, buses, & serial operations Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM) Memory Basics
- 11. 12. 13.

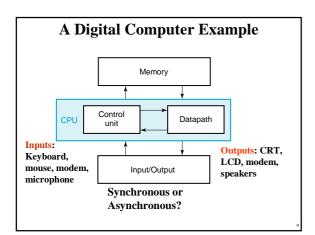
Introduction to Digital Logic Overview · Digital Systems and Computer Systems • Information Representation Lecture 1 • Number Systems [binary, octal and hexadecimal] Digital Computers and **Arithmetic Operations** Base Conversion Information • Decimal Codes [BCD (binary coded decimal), parity] · Gray Codes • Alphanumeric Codes

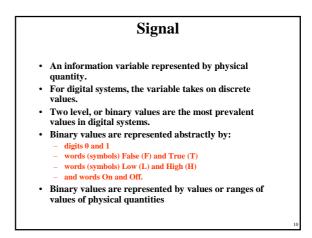


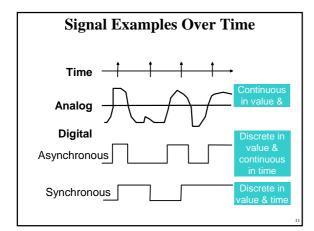


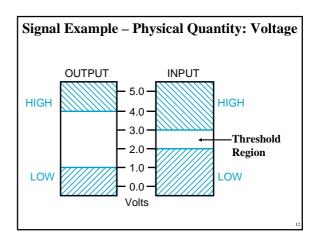


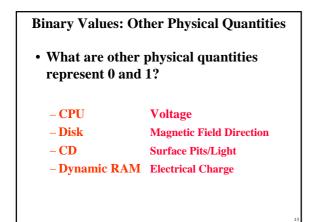












Number Systems – Representation

- Positive radix, positional number systems
- A number with *radix* **r** is represented by a string of digits:

 $A_{n-1}A_{n-2} \dots A_1A_0 \cdot A_{-1}A_{-2} \dots A_{-m+1}A_{-m}$ in which $0 \le A_i < r$ and \cdot is the *radix point*.

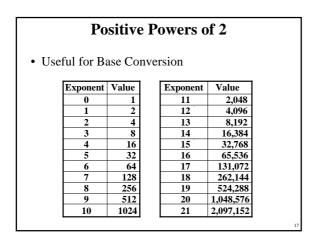
• The string of digits represents the power series:

 $(\text{Number})_{r} = \left(\sum_{i=0}^{j=n-1} A_{i} \cdot r^{i}\right) + \left(\sum_{j=-m}^{j=-1} A_{j} \cdot r^{j}\right)$ (Integer Portion) + (Fraction Portion)

Number Systems – Examples						
	General	Decimal	Binary			
Radix (Base)	r	10	2			
Digits	0 => r - 1	0 => 9	0 => 1			
0	r ⁰	1	1			
1	r ¹	10	2			
2	r ²	100	4			
3	r ³	1000	8			
Powers of 4	r ⁴	10,000	16			
Radix 5	r ⁵	100,000	32			
-1	r -1	0.1	0.5			
-2	r -2	0.01	0.25			
-3	r -3	0.001	0.125			
-4	r -4	0.0001	0.0625			
-5	r -5	0.00001	0.03125			

Special Powers of 2

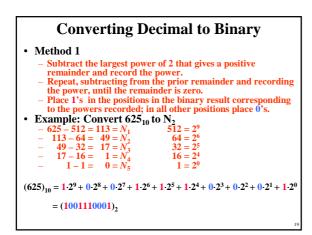
- 2¹⁰ (1024) is Kilo, denoted "K"
- 2²⁰ (1,048,576) is Mega, denoted "M"
- 2³⁰ (1,073, 741,824) is Giga, denoted "G"
- 2⁴⁰ (1,099,511,627,776) is Tera, denoted "T"



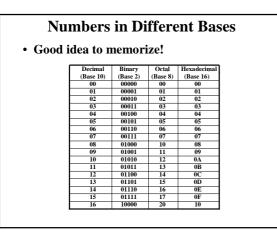
Converting Binary to Decimal

- To convert to decimal, use decimal arithmetic to form Σ (digit × respective power of 2).
- Example:Convert 110102 to N10:

 $1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 26$



Commonly Occurring Bases				
Name	Radix	Digits		
Binary	2	0,1		
Octal	8	0,1,2,3,4,5,6,7		
Decimal	10	0,1,2,3,4,5,6,7,8,9		
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F		
		ddition to the 10 Simal represent:		
A →10 ,	B→11,	$C \rightarrow 12, D \rightarrow 13, E \rightarrow 14, F \rightarrow 15$	20	



Conversion Between Bases

Method 2

- To convert from one base to another:
 - 1) Convert the Integer Part
 - 2) Convert the Fraction Part
 - 3) Join the two results with a radix point

Conversion Details

- To Convert the Integer Part: Repeatedly divide the number by the new radix and save the remainders. The digits for the new radix are the remainders in *reverse order* of their computation. If the new radix is > 10, then convert all remainders > 10 to digits A, B, ...
- To Convert the Fractional Part:

Repeatedly multiply the fraction by the new radix and save the integer digits that result. The digits for the new radix are the integer digits in *order* of their computation. If the new radix is > 10, then convert all integers > 10 to digits A, B, ...

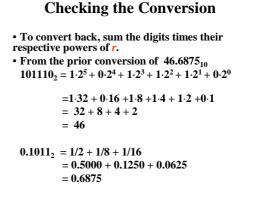
Example: Convert 46.6875₁₀ To Base 2

- Convert 46 to Base 2: - (101110)₂
- Convert 0.6875 to Base 2: - (0.1011)₂
- Join the results together with the radix point:

 $-\left(101110.1011
ight)_{2}$

Additional Issue - Fractional Part

- Note that in the conversion in the previous slide, the fractional part became 0 as a result of the repeated multiplications.
- In general, it may take many bits to get this to happen or it may never happen.
- Example: Convert 0.65₁₀ to N₂
 - 0.65 = 0.1010011001001 ...
 - The fractional part begins repeating every 4 steps yielding repeating 1001 forever!
- Solution: ?
 - Specify number of bits to right of radix point and round or truncate to this number.



Octal to Binary and Back

- Octal to Binary:
 - Restate the octal as three binary digits starting at the radix point and going both ways.
- Binary to Octal:
 - Group the binary digits into three bit groups starting at the radix point and going both ways, padding with zeros as needed in the fractional part.
 - Convert each group of three bits to an octal digit.

Hexadecimal to Binary and Back

- Hexadecimal to Binary:
 - Restate the hexadecimal as four binary digits starting at the radix point and going both ways.
- Binary to Hexadecimal:
 - Group the binary digits into four bit groups starting at the radix point and going both ways, padding with zeros as needed in the fractional part.
 - Convert each group of four bits to a hexadecimal digit.

Octal to Hexadecimal via Binary

- Convert octal to binary.
- Use groups of <u>four bits</u> and convert as above to hexadecimal digits.
- Example: Octal to Binary to Hexadecimal

 (6 3 5 . 1 7 7)₈
 (<u>110 011 101 . 001 111 111)₂</u>
 (<u>0001 1001 1101 . 0011 1111 1000)₂</u>
 (1 9 D . 3 F 8)₁₆
- Why do these conversions work?

A Final Conversion Note

- You can use arithmetic in other bases if you are careful:
- Example: Convert 101110₂ to Base 10 using binary arithmetic:

Step 1 101110 / 1010 = 100 r 0110Step 2 100 / 1010 = 0 r 0100Converted Digits are $0100_2 | 0110_2$ or $(4 \ 6)_{10}$

Binary Numbers and Binary Coding

• Flexibility of representation

- Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded.
- Information Types
 - Numeric
 - Must represent range of data needed
 - Very desirable to represent data such that simple, straightforward computation for common arithmetication for common arithmeticatity arithmetication fo
 - straightforward computation for common arithmetic operations permitted
 - Tight relation to binary numbers
 - Non-numeric
 - Greater flexibility since arithmetic operations not applied.
 Not tied to binary numbers

Non-numeric Binary Codes

- Given *n* binary digits (called <u>bits</u>), a <u>binary code</u> is a mapping from a set of <u>represented elements</u> to a subset of the 2^{*n*} binary numbers.
- Example: A binary code for the seven colors of the rainbow
 Code 100 is

not used

Color	Binary Number
Red	000
Orange	001
Yellow	010
Green	011
Blue	101
Indigo	110
Violet	111

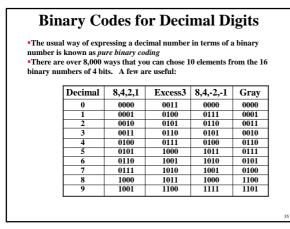
S1-2-28Evlul

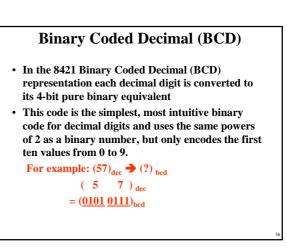
Number of Bits Required

- Given M elements to be represented by a binary code, the minimum number of bits, *n*, needed, satisfies the following relationships:
 - $2^n > M > 2^{(n-1)}$ $n = \log_2 M$ where $\lceil x \rceil$, called the *ceiling function*, is the integer greater than or equal to x.
- Example: How many bits are required to represent <u>decimal digits</u> with a binary code?
 - 4 bits are required $(n = \lceil \log_2 9 \rceil = 4)$

Number of Elements Represented

- Given *n* digits in radix *r*, there are *rⁿ* distinct elements that can be represented.
- But, you can represent *m* elements, $m < r^n$
- Examples:
 - You can represent 4 elements in radix r = 2 with n = 2 digits: (00, 01, 10, 11).
 - You can represent 4 elements in radix r = 2 with n = 4 digits: (0001, 0010, 0100, 1000).
 - This second code is called a "one hot" code.



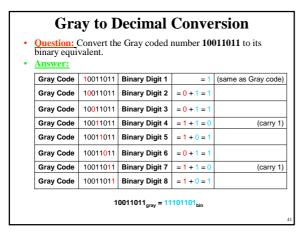


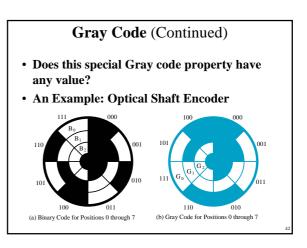
Decimal	Excess 3	8, 4, -2, -1
0	0011	0000
1	0100	0111
2	0101	0110
3	0110	0101
4	0111	0100
5	1000	1011
6	1001	1010
7	1010	1001
8	1011	1000
9	1100	1111

Binary to Gray	Code C	onvei	rsion
	Decimal	8421	Gray
What special property does the	0	0000	0000
Gray code have in relation to	1	0001	0001
adjacent decimal digits? To convert binary to a Gray-	2	0010	0011
coded number then follow this	3	0011	0010
method :	4	0100	0110
The binary number and the	5	0101	0111
Gray-coded number will have he same number of bits	6	0110	0101
The Gray code MSB (left-hand	7	0111	0100
it) and binary MSB will	8	1000	1100
always be the same	9	1001	1101
To get the Gray code next-to- MSB (i.e. next digit to the right)	10	1010	1111
add the binary MSB and the	11	1011	1110
pinary next-to-MSB. Record	12	1100	1010
the sum, ignoring any carry.	13	1101	1011
Continue in this manner right hrough to the end.	14	1110	1001
	15	1111	1000

Gray Code to Binary conversion				
	Decimal	8421	Gray	
To convert a Gray-coded	0	0000	0000	
number to binary then follow	1	0001	0001	
this method :	2	0010	0011	
The binary number and the Gray-coded number will have	3	0011	0010	
the same number of bits	4	0100	0110	
The binary MSB (left-hand bit)	5	0101	0111	
and Gray code MSB will always be the same	6	0110	0101	
To get the binary next-to-MSB	7	0111	0100	
(i.e. next digit to the right) add	8	1000	1100	
the binary MSB and the gray code next-to-MSB. Record the	9	1001	1101	
sum, ignoring any carry.	10	1010	1111	
Continue in this manner right	11	1011	1110	
through to the end.	12	1100	1010	
	13	1101	1011	
	14	1110	1001	
	15	1111	1000	

Binar	Binary to Gray Conversion Example							
equivaler	Question: Convert the binary number 11101101 to its Gray code equivalent. Answer:							
Binary	1 1101101	Gray CodeDigit 1	= 1	(same as binary)				
Binary	11101101	Gray Code Digit 2	= 1 + 1 = 0	(carry 1)				
Binary	1 <mark>11</mark> 01101	Gray Code Digit 3	= 1 + 1 = 0	(carry 1)				
Binary	111 <mark>0</mark> 1101	Gray Code Digit 4	= 1 + 0 = 1					
Binary	111 <mark>01</mark> 101	Gray Code Digit 5	= 0 + 1 = 1					
Binary	1110 <mark>11</mark> 01	Gray Code Digit 6	= 1 + 1 = 0	(carry 1)				
Binary	111011 <mark>0</mark> 1	Gray Code Digit 7	= 1 + 0 = 1					
Binary	111011 <mark>01</mark>	Gray Code Digit 8	= 0 + 1 = 1					
	11101101 _{bin} = 10011011 _{gray}							





Gray Code (Continued)

- How does the shaft encoder work?
- For the binary code, what codes may be produced if the shaft position lies between codes for 3 and 4 (011 and 100)?
- Is this a problem?

Gray Code (Continued)

- For the Gray code, what codes may be produced if the shaft position lies between codes for 3 and 4 (010 and 110)?
- Is this a problem?
- Does the Gray code function correctly for these borderline shaft positions for all cases encountered in octal counting?

4221 BCD Code					
The 4221 BCD code is another binary coded decimal code where	Decimal	4221	1's complement		
each bit is weighted by 4, 2, 2 and	0	0000	1111		
1 respectively. Unlike BCD coding there are no invalid	1	0001	1110		
representations.	2	0010	1101		
The 1's complement of a 4221 representation is important in	3	0011	1100		
decimal arithmetic. In forming the code remember the following	4	1000	0111		
rules	5	0111	1000		
 Below decimal 5 use the right- most bit representing 2 first 	6	1100	0011		
Above decimal 5 use the left-most	7	1101	0010		
bit representing 2 first Decimal $5 = 2+2+1$ and not $4+1$	8	1110	0001		
Decimal $5 = 2+2+1$ and not $4+1$	9	1111	0000		

Warning: Conversion or Coding?

- Do <u>NOT</u> mix up <u>conversion</u> of a decimal number to a binary number with <u>coding</u> a decimal number with a BINARY CODE.
- $13_{10} = 1101_2$ (This is <u>conversion</u>)
- 13 \Leftrightarrow 0001|0011 (This is <u>coding</u>)

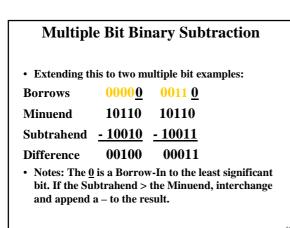
Binary Arithmetic

- Single Bit Addition with Carry
- Multiple Bit Addition
- Single Bit Subtraction with Borrow
- Multiple Bit Subtraction
- Multiplication
- BCD Addition

Single Bit Binary Addition with Carry						
Given two binary di following sum (S) an	,		ry in (2	Z) we g	get the	
Carry in (Z) of 0:	Z	0	0	0	0	
	Х	0	0	1	1	
Carry in (Z) of 1:	+ Y	+ 0	+ 1	+ 0	+ 1	
	C S	00	01	01	10	
	Z	1	1	1	1	
	Х	0	0	1	1	
	+ Y	+ 0	+ 1	+ 0	+ 1	
	CS	01	10	10	11	
						48

iple Bit Bi	nary Addition
g this to tw	o multiple bit
<u>00000</u>	<u>10110 0</u>
01100	10110
<u>+10001</u>	<u>+10111</u>
11101	101101
e <u>0</u> is the def ficant bit.	ault Carry-In to the
	g this to tw :: 000000 01100 <u>+10001</u> 11101 e 0 is the def

Single Bit Binary Subtraction with Borrow							
Given two binary digits get the following difference							
• Borrow in (Z) of 0: Z	0	0	0	0			
Х	0	0	1	1			
<u>- Y</u>	<u>-0</u>	<u>-1</u>	<u>-0</u>	<u>-1</u>			
BS	0 0	11	01	0 0			
• Borrow in (Z) of 1: Z	1	1	1	1			
Х	0	0	1	1			
<u>- Y</u>	<u>-0</u>	<u>-1</u>	<u>-0</u>	<u>-1</u>			
BS	11	10	0 0	11			
				50			

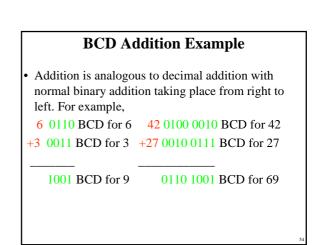


Binary	Multiplication	
--------	----------------	--

The binary multiplication table is simple: 0 * 0 = 0 | 1 * 0 = 0 | 0 * 1 = 0 | 1 * 1 = 1Extending multiplication to <u>multiple digits</u>:

Multiplicand	1011	
Multiplier	<u>x 101</u>	
Partial Products	1011	
	0000 -	
	<u> 1011</u>	
Product	110111	

B	CD Arithmetic
8 1000 <u>+5</u> <u>+0101</u> 13 1101	is 13 (> 9) It is MORE THAN 9, so must be
• •	it, subtract 10 by adding 6 modulo 16.
8 1000	, , 0
	Plus 5
	is 13 (> 9)
	so add 6
carry = 1 0011	leaving 3 + cy
0001 0011	Final answer (two digits)
•	> 9, add one to the next significant digit
	· · , · ·· ··· ··· ··· ···
	53



BCD A	Additio	n Exan	nple-2
• Add 2905	BCD to 1	1897 _{BCI}	o showing
carries a	nd dig	it corr	ections.
0111-	0011-	0011	1110
0001	1000	1001	0111
+ <u>0010</u>	<u>1001</u>	<u>0000</u>	<u>0101</u>
0100	10010	1010	1100
	<u>0110</u>	<u>0110</u>	<u>0110</u>
	1000	- <u>10000</u>	- <u>10010</u>
4	8	0	2

Error-Detection Codes

- <u>Redundancy</u> (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is <u>parity</u>, an extra bit appended onto the code word to make the number of 1's odd or even. Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has <u>even parity</u> if the number of 1's in the code word is even.
- A code word has <u>odd parity</u> if the number of 1's in the code word is <u>odd</u>.

	4-Bit Parity	Code Example
• Fill	in the even and od	d parity bits:
	Even Parity Message - Parity	Odd Parity Message - Parity
	000 -	000_
	001_ 010_	<u> </u>
	011.	011
	<u> </u>	100_
	101.	110
	111.	¹¹¹ -
		as <u>even parity</u> and the <u>dd parity</u> . Both can be
use	d to represent 3-bit o	lata.

ASCII Character Codes

- American Standard Code for Information Interchange (Refer to Table 1-4 in the text)
- This code is a popular code used to represent information sent as character-based data. It uses 7-bits to represent:

 94 Graphic printing characters.
 - 34 Non-printing characters
- Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return)
- Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).

ASCII Properties

ASCII has some interesting properties:

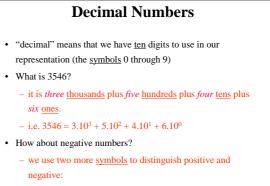
- Digits 0 to 9 span Hexadecimal values 30₁₆ to 39₁₆.
- Upper case A-Z span 41₁₆ to 5A₁₆.
- Lower case a -z span 61₁₆ to 7A₁₆.
 Lower to upper case translation (and vice versa)
- occurs by flipping bit 6. Delete (DEL) is all bits set, a carryover from when
- punched paper tape was used to store messages.
- Punching all holes in a row erased a mistake!

UNICODE

- UNICODE extends ASCII to 65,536 universal characters codes
 - For encoding characters in world languages
 - Available in many modern applications
 - 2 byte (16-bit) code words
 - See Reading Supplement Unicode on the Companion Website <u>http://www.prenhall.com/mano</u>

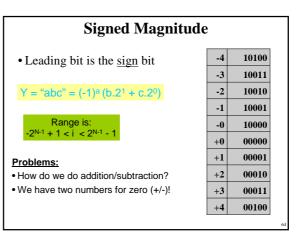
Data types

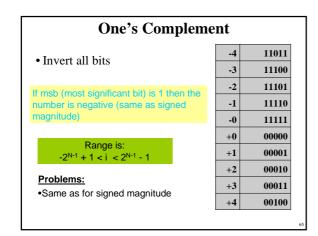
- Our first requirement is to find a way to represent information (data) in a form that is mutually comprehensible by human and machine.
 - Ultimately, we will have to develop schemes for representing all conceivable types of information language, images, actions, etc.
 - We will start by examining different ways of representing *integers*, and look for a form that suits the computer.
 - Specifically, the devices that make up a computer are switches that can be on or off, i.e. at high or low voltage. Thus they naturally provide us with two <u>symbols</u> to work with: we can call them *on & off*, or (more usefully) 0 and 1.

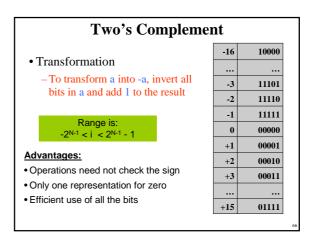


+ and -

Unsigned	Bin	ary I	nteger	`S
Y = "abc" (where the digits a, b, c ca) or 1 only)
N = number of bits		3-bits	5-bits	8-bits
Range is:	0	000	00000	00000000
$0 \le i < 2^N - 1$	1	001	00001	00000001
Problem:	2	010	00010	00000010
 How do we represent 	3	011	00011	00000011
negative numbers?	4	100	00100	00000100







Limitations of integer representations

- · Most numbers are not integer!
 - Even with integers, there are two other considerations:
- Range
 - The magnitude of the numbers we can represent is
 - determined by how many bits we use: e.g. with 32 bits the largest number we can represent is about +/- 2 billion, far too small for many purposes.

• Precision:

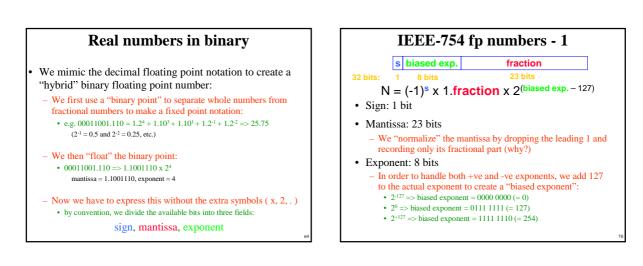
- The exactness with which we can specify a number: e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 figure precision in decimal repesentation.
- We need another data type!

Real numbers

• Our decimal system handles non-integer real numbers by adding yet another symbol - the decimal point (.) to make a *fixed point* notation:

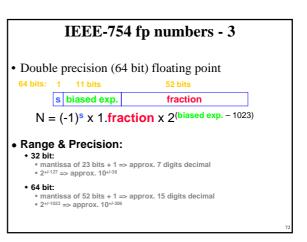
- e.g. $3456.78 = 3.10^3 + 4.10^2 + 5.10^1 + 6.10^0 + 7.10^{-1} + 8.10^{-2}$

- The *floating point*, or scientific, notation allows us to represent very large and very small numbers (integer or real), with as much or as little precision as needed:
 - Unit of electric charge $e = 1.602 \ 176 \ 462 \ x \ 10^{-19}$ Coulomb
 - Volume of universe = $1 \times 10^{85} \text{ cm}^3$
 - the two components of these numbers are called the mantissa and the exponent



IEEE-754 fp numbers - 2

- Example: Find the corresponding fp representation of 25.75 • 25.75 => 00011001.110 => 1.1001110 x 24
 - sign bit = 0 (+ve)
 - normalized mantissa (fraction) = 100 1110 0000 0000 0000 0000
 - biased exponent = 4 + 127 = 131 => 1000 0011
- · Values represented by convention:
 - Infinity (+ and -): exponent = 255 (1111 1111) and fraction = 0
 - NaN (not a number): exponent = 255 and fraction $\neq 0$
 - Zero (0): exponent = 0 and fraction = 0
 - note: exponent = 0 => fraction is *de-normalized*, i.e no hidden 1



Another use for bits: Logic

• Beyond numbers

- *logical variables* can be *true* or *false*, *on* or *off*, etc., and so are readily represented by the binary system.
- A logical variable A can take the values false = 0 or true = 1 only.
- The manipulation of logical variables is known as Boolean Algebra, and has its own set of operations - which are not to be confused with the arithmetical operations.
- Some basic operations: NOT, AND, OR, XOR

Basic	c Logic Ope	rations
 Truth Tables 	of Basic Operat	tions
NOT	AND	<u>OR</u>
<u> </u>	<u>A</u> <u>B</u> <u>A.B</u>	<u>A B</u> <u>A+B</u>
0 1	0 0 0	0 0 0
1 0	0 1 0	0 1 1
	1 0 0	1 0 1
	1 1 1	1 1 1
 Equivalent No 	otations	
$- \operatorname{not} A = A' = A'$	Ā	
-A and $B = A$.	$\mathbf{B} = \mathbf{A} \wedge \mathbf{B} = \mathbf{A} \text{ inte}$	rsection B
-A or B = A + B	$B = A \lor B = A$ unio	n B

	XC	<u>DR</u>		XN	OR
A	<u>B</u>	<u>A⊕B</u>	<u>A</u>	<u>B</u>	<u>(A⊕B)'</u>
0	0	0	0	0	1
0	1	1	0	1	0
1	0	1	1	0	0
1	1	0	1	1	1