
Copyright 2000 N. AYDIN. All rights
reserved. 1

1

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

naydin@ieee.org

Introduction to Digital Logic

2

Course Outline
1. Digital Computers, Number Systems, Arithmetic Operations, Decimal,

Alphanumeric, and Gray Codes
2. Binary Logic, Gates, Boolean Algebra, Standard Forms
3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level

Circuit Optimization
4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates,

High-Impedance Outputs
5. Implementation Technology and Logic Design, Design Concepts and Automation,

The Design Space, Design Procedure, The major design steps
6. Programmable Implementation Technologies: Read-Only Memories, Programmable

Logic Arrays, Programmable Array Logic,Technology mapping to programmable
logic devices

7. Combinational Functions and Circuits
8. Arithmetic Functions and Circuits
9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
11. Counters, register cells, buses, & serial operations
12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
13. Memory Basics

3

Introduction to Digital Logic

Lecture 1

Digital Computers and
Information

4

Overview

• Digital Systems and Computer Systems
• Information Representation
• Number Systems [binary, octal and hexadecimal]

• Arithmetic Operations
• Base Conversion

• Decimal Codes [BCD (binary coded decimal), parity]

• Gray Codes
• Alphanumeric Codes

5

• Each virtual machine
layer is an abstraction of
the level below it.

• The machines at each
level execute their own
particular instructions,
calling upon machines at
lower levels to perform
tasks as required.

• Computer circuits
ultimately carry out the
work.

The Computer Level Hierarchy

6

Digital System

• Takes a set of discrete information (inputs) and
discrete internal information (system state) and
generates a set of discrete information (outputs).

System State

Discrete
Information
Processing
System

Discrete
Inputs Discrete

Outputs

Copyright 2000 N. AYDIN. All rights
reserved. 2

7

Types of Digital Systems

• No state present
– Combinational Logic System
– Output = Function (Input)

• State present
– State updated at discrete times

=> Synchronous Sequential System
– State updated at any time

=>Asynchronous Sequential System
– State= Function (State, Input)
– Output = Function (State)

or Function (State, Input)

8

A Digital Counter

1 30 0 5 6 4
Count Up

Reset

Inputs: Count Up, Reset
Outputs: Visual Display
State: "Value" of stored digits

Synchronous or Asynchronous?

Digital System Example:

9

Synchronous or
Asynchronous?

Inputs:
Keyboard,
mouse, modem,
microphone

Outputs: CRT,
LCD, modem,
speakers

Memory

Control
unit Datapath

Input/Output

CPU

A Digital Computer Example

10

Signal

• An information variable represented by physical
quantity.

• For digital systems, the variable takes on discrete
values.

• Two level, or binary values are the most prevalent
values in digital systems.

• Binary values are represented abstractly by:
– digits 0 and 1
– words (symbols) False (F) and True (T)
– words (symbols) Low (L) and High (H)
– and words On and Off.

• Binary values are represented by values or ranges of
values of physical quantities

11

Analog

Asynchronous

Synchronous

Time

Continuous
in value &

time

Discrete in
value &

continuous
in time

Discrete in
value & time

Digital

Signal Examples Over Time

12

5.0

4.0

3.0

2.0

1.0

0.0

Volts

HIGH

LOW

HIGH

LOW

OUTPUT INPUT

Threshold
Region

Signal Example – Physical Quantity: Voltage

Copyright 2000 N. AYDIN. All rights
reserved. 3

13

• What are other physical quantities
represent 0 and 1?

– CPU Voltage

– Disk Magnetic Field Direction

– CD Surface Pits/Light

– Dynamic RAM Electrical Charge

Binary Values: Other Physical Quantities

14

• Positive radix, positional number systems

• A number with radix r is represented by a
string of digits:

An - 1An - 2 … A1A0 . A- 1 A- 2 … A- m ++++ 1 A- m

in which 0 ≤ ≤ ≤ ≤ Ai < r and . is the radix point.

• The string of digits represents the power series:

() ()(Number)r = ∑∑ +
j = - m

j
j

i

i = 0
i rArA

(Integer Portion) + (Fraction Portion)

i = n - 1 j = - 1

Number Systems – Representation

15

Number Systems – Examples

1

2

4
8

16
32

0.5
0.25

0.125
0.0625

0.03125

1

10

100
1000

10,000
100,000

0.1
0.01

0.001
0.0001

0.00001

r 0

r 1

r 2

r 3

r 4

r 5

r -1

r -2

r -3

r -4

r -5

0

1

2
3

Powers of 4
Radix 5

-1
-2

-3
-4

-5

0 => 10 => 90 => r - 1Digits

210rRadix (Base)

BinaryDecimalGeneral

16

� 210 (1024) is Kilo , denoted "K"

� 220 (1,048,576) is Mega, denoted "M"

� 230 (1,073, 741,824) is Giga, denoted "G"

Special Powers of 2

� 240 (1,099,511,627,776) is Tera, denoted “T"

17

• Useful for Base Conversion

Exponent Value Exponent Value
0 1 11 2,048
1 2 12 4,096
2 4 13 8,192
3 8 14 16,384
4 16 15 32,768
5 32 16 65,536
6 64 17 131,072
7 128 18 262,144

19 524,288
20 1,048,576
21 2,097,152

8 256
9 512
10 1024

Positive Powers of 2

18

• To convert to decimal, use decimal arithmetic
to form ΣΣΣΣ (digit × respective power of 2).

• Example:Convert 110102 to N10:

1××××24 + 1××××23 + 0××××22 + 1××××21 + 0××××20 = 26

Converting Binary to Decimal

Copyright 2000 N. AYDIN. All rights
reserved. 4

19

• Method 1
– Subtract the largest power of 2 that gives a positive

remainder and record the power.
– Repeat, subtracting from the prior remainder and recording

the power, until the remainder is zero.
– Place 1’s in the positions in the binary result corresponding

to the powers recorded; in all other positions place 0’s.
• Example: Convert 62510 to N2

– 625 – 512 = 113 = N1 512 = 29
– 113 – 64 = 49 = N2 64 = 26

– 49 – 32 = 17 = N3 32 = 25

– 17 – 16 = 1 = N4 16 = 24

– 1 – 1 = 0 = N5 1 = 20

(625)10 = 1⋅⋅⋅⋅29 + 0⋅⋅⋅⋅28 + 0⋅⋅⋅⋅27+ 1⋅⋅⋅⋅26 + 1⋅⋅⋅⋅25 + 1⋅⋅⋅⋅24 + 0⋅⋅⋅⋅23+ 0⋅⋅⋅⋅22 + 0⋅⋅⋅⋅21 + 1⋅⋅⋅⋅20

= (1001110001)2

Converting Decimal to Binary

20

Name Radix Digits

Binary 2 0,1

Octal 8 0,1,2,3,4,5,6,7

Decimal 10 0,1,2,3,4,5,6,7,8,9

Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

� The six letters (in addition to the 10
integers) in hexadecimal represent:

A→→→→10, B→→→→ 11, C→→→→ 12, D→→→→ 13, E→→→→ 14, F→→→→ 15

Commonly Occurring Bases

21

Decimal
(Base 10)

Binary
(Base 2)

Octal
(Base 8)

Hexadecimal
(Base 16)

00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0C
13 01101 15 0D
14 01110 16 0E
15 01111 17 0F
16 10000 20 10

• Good idea to memorize!

Numbers in Different Bases

22

� Method 2
� To convert from one base to another:

1) Convert the Integer Part

2) Convert the Fraction Part

3) Join the two results with a radix point

Conversion Between Bases

23

Conversion Details

• To Convert the Integer Part:
Repeatedly divide the number by the new radix and save
the remainders. The digits for the new radix are the
remainders in reverse orderof their computation. If the
new radix is > 10, then convert all remainders > 10 to
digits A, B, …

• To Convert the Fractional Part:

Repeatedly multiply the fraction by the new radix and
save the integer digits that result. The digits for the new
radix are the integer digits inorder of their computation.
If the new radix is > 10, then convert all integers > 10 to
digits A, B, …

24

• Convert 46 to Base 2:
– (101110)2

• Convert 0.6875 to Base 2:
– (0.1011)2

• Join the results together with the radix
point:
– (101110.1011)2

Example: Convert 46.687510 To Base 2

Copyright 2000 N. AYDIN. All rights
reserved. 5

25

Additional Issue - Fractional Part

• Note that in the conversion in the previous slide,
the fractional part became 0 as a result of the
repeated multiplications.

• In general, it may take many bits to get this to
happen or it may never happen.

• Example: Convert 0.6510 to N2
– 0.65 = 0.1010011001001 …
– The fractional part begins repeating every 4 steps

yielding repeating 1001 forever!

• Solution: ?
– Specify number of bits to right of radix point and round

or truncate to this number.

26

Checking the Conversion

• To convert back, sum the digits times their
respective powers of r.
• From the prior conversion of 46.687510

1011102 = 1⋅⋅⋅⋅25 + 0⋅⋅⋅⋅24 + 1⋅⋅⋅⋅23 + 1⋅⋅⋅⋅22 + 1⋅⋅⋅⋅21 + 0⋅⋅⋅⋅20

=1·32 + 0·16 +1·8 +1·4 + 1·2 +0·1
= 32 + 8 + 4 + 2
= 46

0.10112 = 1/2 + 1/8 + 1/16
= 0.5000 + 0.1250 + 0.0625
= 0.6875

27

• Octal to Binary:
– Restate the octal as three binary digits starting

at the radix point and going both ways.

• Binary to Octal:
– Group the binary digits into three bit groups

starting at the radix point and going both ways,
padding with zeros as needed in the fractional
part.

– Convert each group of three bits to an octal
digit.

Octal to Binary and Back

28

• Hexadecimal to Binary:
– Restate the hexadecimal as four binary digits

starting at the radix point and going both ways.

• Binary to Hexadecimal:
– Group the binary digits into four bit groups

starting at the radix point and going both ways,
padding with zeros as needed in the fractional
part.

– Convert each group of four bits to a
hexadecimal digit.

Hexadecimal to Binary and Back

29

• Convert octal to binary.
• Use groups of four bits and convert as above to

hexadecimal digits.
• Example: Octal to Binary to Hexadecimal

(6 3 5 . 1 7 7)8

(110011101. 001111111)2

(0001 10011101. 001111111000)2

(1 9 D . 3 F 8)16

• Why do these conversions work?

Octal to Hexadecimal via Binary

30

• You can use arithmetic in other bases if you
are careful:

• Example: Convert 1011102 to Base 10 using
binary arithmetic:
Step 1 101110 / 1010 = 100 r 0110

Step 2 100 / 1010 = 0 r 0100
Converted Digits are01002 | 01102

or (4 6) 10

A Final Conversion Note

Copyright 2000 N. AYDIN. All rights
reserved. 6

31

• Flexibility of representation
– Within constraints below, can assign any binary

combination (called a code word) to any data as long as
data is uniquely encoded.

• Information Types
– Numeric

• Must represent range of data needed
• Very desirable to represent data such that simple,

straightforward computation for common arithmetic operations
permitted

• Tight relation to binary numbers

– Non-numeric
• Greater flexibility since arithmetic operations not applied.
• Not tied to binary numbers

Binary Numbers and Binary Coding

32

• Given n binary digits (called bits), a binary code
is a mapping from a set of represented elements
to a subset of the 2n binary numbers.

• Example: A
binary code
for the seven
colors of the
rainbow

• Code 100 is
not used

Non-numeric Binary Codes

Binary Number
000
001
010
011
101
110
111

Color
Red
Orange
Yellow
Green
Blue
Indigo
Violet

33

• Given M elements to be represented by a
binary code, the minimum number of bits,
n, needed, satisfies the following
relationships:

2n > M > 2(n – 1)

n =log2 M where x , called the ceiling
function, is the integer greater than or equal
to x.

• Example: How many bits are required to
represent decimal digitswith a binary code?
– 4 bits are required (n =log2 9 = 4)

Number of Bits Required

34

Number of Elements Represented

• Given n digits in radix r, there are rn distinct
elements that can be represented.

• But, you can represent m elements, m < rn

• Examples:
– You can represent 4 elements in radix r = 2 with

n = 2 digits: (00, 01, 10, 11).
– You can represent 4 elements in radix r = 2 with

n = 4 digits: (0001, 0010, 0100, 1000).
– This second code is called a "one hot" code.

S1-2-28Eylul

35

Decimal 8,4,2,1 Excess3 8,4,-2,-1 Gray
0 0000 0011 0000 0000
1 0001 0100 0111 0001
2 0010 0101 0110 0011
3 0011 0110 0101 0010
4 0100 0111 0100 0110
5 0101 1000 1011 0111
6 0110 1001 1010 0101
7 0111 1010 1001 0100
8 1000 1011 1000 1100
9 1001 1100 1111 1101

�The usual way of expressing a decimal number in terms of a binary
number is known as pure binary coding
�There are over 8,000 ways that you can chose 10 elements from the 16
binary numbers of 4 bits. A few are useful:

Binary Codes for Decimal Digits

36

Binary Coded Decimal (BCD)

• In the 8421 Binary Coded Decimal (BCD)
representation each decimal digit is converted to
its 4-bit pure binary equivalent

• This code is the simplest, most intuitive binary
code for decimal digits and uses the same powers
of 2 as a binary number, but only encodes the first
ten values from 0 to 9.
For example: (57)dec���� (?) bcd

(5 7) dec

= (01010111)bcd

Copyright 2000 N. AYDIN. All rights
reserved. 7

37

• What interesting property is common
to these two codes?

111111009

100010118

100110107

101010016

101110005

010001114

010101103

011001012

011101001

000000110

8, 4, –2, –1Excess 3Decimal

Excess 3 Code and 8, 4, –2, –1 Code

38

Binary to Gray Code Conversion

• What special property does the
Gray code have in relation to
adjacent decimal digits?

• To convert binary to a Gray-
coded number then follow this
method :

1. The binary number and the
Gray-coded number will have
the same number of bits

2. The Gray code MSB (left-hand
bit) and binary MSB will
always be the same

3. To get the Gray code next-to-
MSB (i.e. next digit to the right)
add the binary MSB and the
binary next-to-MSB. Record
the sum, ignoring any carry.

4. Continue in this manner right
through to the end.

1000111115
1001111014
1011110113
1010110012
1110101111
1111101010
110110019
110010008
010001117
010101106
011101015
011001004
001000113
001100102
000100011
000000000
Gray8421Decimal

39

Gray Code to Binary conversion

• To convert a Gray-coded
number to binary then follow
this method :

1. The binary number and the
Gray-coded number will have
the same number of bits

2. The binary MSB (left-hand bit)
and Gray code MSB will always
be the same

3. To get the binary next-to-MSB
(i.e. next digit to the right) add
the binary MSB and the gray
code next-to-MSB. Record the
sum, ignoring any carry.

4. Continue in this manner right
through to the end.

1000111115
1001111014
1011110113
1010110012
1110101111
1111101010
110110019
110010008
010001117
010101106
011101015
011001004
001000113
001100102
000100011
000000000
Gray8421Decimal

40

Binary to Gray Conversion Example
• Question:Convert the binary number 11101101to its Gray code

equivalent.
• Answer:

= 0 + 1 = 1Gray Code Digit 8 11101101Binary

= 1 + 0 = 1Gray Code Digit 7 11101101 Binary

(carry 1)= 1 + 1 = 0Gray Code Digit 6 11101101 Binary

= 0 + 1 = 1Gray Code Digit 5 11101101Binary

= 1 + 0 = 1 Gray Code Digit 4 11101101Binary

(carry 1)= 1 + 1 = 0 Gray Code Digit 3 11101101Binary

(carry 1)= 1 + 1 = 0 Gray Code Digit 2 11101101 Binary

(same as binary)= 1 Gray CodeDigit 1 11101101 Binary

11101101bin = 10011011gray

41

Gray to Decimal Conversion
• Question:Convert the Gray coded number 10011011to its

binary equivalent.
• Answer:

= 1 + 0 = 1Binary Digit 8 10011011Gray Code

(carry 1)= 1 + 1 = 0Binary Digit 7 10011011 Gray Code

= 0 + 1 = 1Binary Digit 6 10011011 Gray Code

= 1 + 0 = 1Binary Digit 5 10011011 Gray Code

(carry 1)= 1 + 1 = 0Binary Digit 4 10011011 Gray Code

= 0 + 1 = 1Binary Digit 3 10011011 Gray Code

= 0 + 1 = 1Binary Digit 2 10011011 Gray Code

(same as Gray code)= 1Binary Digit 1 10011011 Gray Code

10011011gray = 11101101bin

42

B0

111

110

000

001

010

011100

101

B1

B2

(a) Binary Code for Positions 0 through 7

G0

G1

G2

111

101

100 000

001

011

010110

(b) Gray Code for Positions 0 through 7

Gray Code (Continued)

• Does this special Gray code property have
any value?

• An Example: Optical Shaft Encoder

Copyright 2000 N. AYDIN. All rights
reserved. 8

43

Gray Code (Continued)

• How does the shaft encoder work?

• For the binary code, what codes may be
produced if the shaft position lies between
codes for 3 and 4 (011 and 100)?

• Is this a problem?

44

Gray Code (Continued)

• For the Gray code, what codes may be
produced if the shaft position lies between
codes for 3 and 4 (010 and 110)?

• Is this a problem?

• Does the Gray code function correctly for
these borderline shaft positions for all cases
encountered in octal counting?

45

4221 BCD Code

• The 4221 BCD code is another
binary coded decimal code where
each bit is weighted by 4, 2, 2 and
1 respectively. Unlike BCD
coding there are no invalid
representations.

• The 1's complement of a 4221
representation is important in
decimal arithmetic. In forming the
code remember the following
rules

• Below decimal 5 use the right-
most bit representing 2 first

• Above decimal 5 use the left-most
bit representing 2 first

• Decimal 5 = 2+2+1 and not 4+1
00001111 9

00011110 8

00101101 7

00111100 6

10000111 5

01111000 4

11000011 3

11010010 2

11100001 1

11110000 0

1's
complement

4221 Decimal

46

Warning: Conversion or Coding?

• Do NOT mix up conversionof a decimal
number to a binary number with coding a
decimal number with a BINARY CODE.

• 1310 = 11012 (This is conversion)

• 13 ⇔⇔⇔⇔ 0001|0011 (This is coding)

47

Binary Arithmetic

• Single Bit Addition with Carry

• Multiple Bit Addition

• Single Bit Subtraction with Borrow

• Multiple Bit Subtraction

• Multiplication
• BCD Addition

48

Given two binary digits (X,Y), a carry in (Z) we get the
following sum (S) and carry (C):

Carry in (Z) of 0:

Carry in (Z) of 1:

Z 1 1 1 1
X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 1 1 0 1 0 1 1

Z 0 0 0 0
X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

Single Bit Binary Addition with Carry

Copyright 2000 N. AYDIN. All rights
reserved. 9

49

• Extending this to two multiple bit
examples:

Carries 00000 101100
Augend 01100 10110
Addend +10001 +10111
Sum 11101 101101
• Note: The 0is the default Carry-In to the

least significant bit.

Multiple Bit Binary Addition

50

• Given two binary digits (X,Y), a borrow in (Z) we
get the following difference (S) and borrow (B):

• Borrow in (Z) of 0:

• Borrow in (Z) of 1: Z 1 1 1 1

X 0 0 1 1

- Y -0 -1 -0 -1

BS 11 1 0 0 0 1 1

Z 0 0 0 0

X 0 0 1 1

- Y -0 -1 -0 -1

BS 0 0 1 1 0 1 0 0

Single Bit Binary Subtraction with Borrow

51

• Extending this to two multiple bit examples:

Borrows 00000 0011 0

Minuend 10110 10110

Subtrahend - 10010 - 10011

Difference 00100 00011
• Notes: The 0is a Borrow-In to the least significant

bit. If the Subtrahend > the Minuend, interchange
and append a – to the result.

Multiple Bit Binary Subtraction

52

Binary Multiplication

The binary multiplication table is simple:

0 ∗∗∗∗ 0 = 0 | 1 ∗∗∗∗ 0 = 0 | 0 ∗∗∗∗ 1 = 0 | 1 ∗∗∗∗ 1 = 1

Extending multiplication to multiple digits :

Multiplicand 1011
Multiplier x 101
Partial Products 1011

0000 -
1011 - -

Product 110111

53

� Given a BCD code, we use binary arithmetic to add the digits:
8 1000 Eight

+5 +0101 Plus 5
13 1101 is 13 (> 9)

� Note that the result is MORE THAN 9, so must be
represented by two digits!

� To correct the digit, subtract 10 by adding 6 modulo 16.
8 1000 Eight

+5 +0101 Plus 5
13 1101 is 13 (> 9)

+0110 so add 6
carry = 1 0011 leaving 3 + cy

0001 | 0011 Final answer (two digits)
� If the digit sum is > 9, add one to the next significant digit

BCD Arithmetic

54

BCD Addition Example

• Addition is analogous to decimal addition with
normal binary addition taking place from right to
left. For example,

6 0110BCD for 6 42 0100 0010BCD for 42

+3 0011BCD for 3 +270010 0111BCD for 27

_______ ____________

1001BCD for 9 0110 1001BCD for 69

Copyright 2000 N. AYDIN. All rights
reserved. 10

55

• Add 2905BCD to 1897BCD showing
carries and digit corrections.

0001 1000 1001 0111
+ 0010 1001 0000 0101

0111 0011 0011 1110

BCD Addition Example-2

0100 10010 1010 1100
0000 0110 0110 0110
0100 1000 10000 10010

4 8 0 2
56

Error-Detection Codes

• Redundancy(e.g. extra information), in the form
of extra bits, can be incorporated into binary code
words to detect and correct errors.

• A simple form of redundancy is parity , an extra bit
appended onto the code word to make the number
of 1’s odd or even. Parity can detect all single-bit
errors and some multiple-bit errors.

• A code word has even parity if the number of 1’s
in the code word is even.

• A code word has odd parity if the number of 1’s in
the code word is odd.

57

4-Bit Parity Code Example

• Fill in the even and odd parity bits:

• The codeword "1111" has even parityand the
codeword "1110" has odd parity. Both can be
used to represent 3-bit data.

Even Parity Odd Parity
Message - Parity Message - Parity

000 - 000 -
001 - 001 -
010 - 010 -
011 - 011 -
100 - 100 -
101 - 101 -
110 - 110 -
111 - 111 -

58

ASCII Character Codes

• American Standard Code for Information
Interchange (Refer to Table 1-4 in the text)

• This code is a popular code used to represent
information sent as character-based data. It uses
7-bits to represent:
– 94 Graphic printing characters.
– 34 Non-printing characters

• Some non-printing characters are used for text
format (e.g. BS = Backspace, CR = carriage
return)

• Other non-printing characters are used for record
marking and flow control (e.g. STX and ETX start
and end text areas).

59

ASCII has some interesting properties:
� Digits 0 to 9 span Hexadecimal values 3016 to 3916.
� Upper case A-Z span 4116 to 5A16 .
� Lower case a-z span 6116 to 7A16.

• Lower to upper case translation (and vice versa)
occurs by flipping bit 6.

� Delete (DEL) is all bits set, a carryover from when
punched paper tape was used to store messages.

� Punching all holes in a row erased a mistake!

ASCII Properties

60

UNICODE

• UNICODE extends ASCII to 65,536
universal characters codes

– For encoding characters in world languages

– Available in many modern applications

– 2 byte (16-bit) code words

– See Reading Supplement – Unicode on the
Companion Website
http://www.prenhall.com/mano

Copyright 2000 N. AYDIN. All rights
reserved. 11

61

Data types

• Our first requirement is to find a way to represent information
(data) in a form that is mutually comprehensible by human and
machine.

– Ultimately, we will have to develop schemes for
representing all conceivable types of information -
language, images, actions, etc.

– We will start by examining different ways of representing
integers, and look for a form that suits the computer.

– Specifically, the devices that make up a computer are
switches that can be on or off, i.e. at high or low voltage.
Thus they naturally provide us with two symbolsto work
with: we can call them on & off, or (more usefully) 0 and 1.

62

Decimal Numbers

• “decimal” means that we have tendigits to use in our

representation (the symbols0 through 9)

• What is 3546?

– it is three thousandsplus five hundredsplus four tensplus

six ones.

– i.e. 3546 = 3.103 + 5.102 + 4.101 + 6.100

• How about negative numbers?

– we use two more symbolsto distinguish positive and

negative:

+ and -

63

Unsigned Binary Integers

00000100001001004

00000011000110113

00000010000100102

00000001000010011

00000000000000000

8-bits5-bits3-bits

Y = “abc” = a.22 + b.21 + c.20

N = number of bits

Range is:
0 ≤ i < 2N - 1

(where the digits a, b, c can each take on the valu es of 0 or 1 only)

Problem:
• How do we represent

negative numbers?

64

Signed Magnitude

• Leading bit is the signbit

00100+4

10100-4

10011-3

10010-2

00011+3

00010+2

00001+1

00000+0

10000-0

10001-1

Range is:
-2N-1 + 1 < i < 2N-1 - 1

Y = “abc” = (-1)a (b.21 + c.20)

Problems:
• How do we do addition/subtraction?
• We have two numbers for zero (+/-)!

65

One’s Complement

• Invert all bits

00100+4

11011-4

11100-3

11101-2

00011+3

00010+2

00001+1

00000+0

11111-0

11110-1

Range is:
-2N-1 + 1 < i < 2N-1 - 1

If msb (most significant bit) is 1 then the
number is negative (same as signed
magnitude)

Problems:
•Same as for signed magnitude

66

Two’s Complement

• Transformation
– To transform a into -a, invert all

bits in aand add 1 to the result

10000-16

……

01111+15

……

00011

00010

00001

00000

11111

11110

11101-3

-2

+3

+2

+1

0

-1
Range is:

-2N-1 < i < 2N-1 - 1

Advantages:

• Operations need not check the sign

• Only one representation for zero

• Efficient use of all the bits

Copyright 2000 N. AYDIN. All rights
reserved. 12

67

Limitations of integer representations

• Most numbers are not integer!
– Even with integers, there are two other considerations:

• Range:
– The magnitude of the numbers we can represent is

determined by how many bits we use:
• e.g. with 32 bits the largest number we can represent is about +/- 2

billion, far too small for many purposes.

• Precision:
– The exactness with which we can specify a number:

• e.g. a 32 bit number gives us 31 bits of precision, or roughly 9
figure precision in decimal repesentation.

• We need another data type!

68

Real numbers

• Our decimal system handles non-integer real numbers
by adding yet another symbol - the decimal point (.) to
make a fixed point notation:
– e.g. 3456.78 = 3.103 + 4.102 + 5.101 + 6.100 + 7.10-1 + 8.10-2

• The floating point, or scientific, notation allows us to
represent very large and very small numbers (integer or
real), with as much or as little precision as needed:
– Unit of electric charge e =1.602 176 462 x 10-19 Coulomb

– Volume of universe = 1 x 1085 cm3

• the two components of these numbers are called the mantissa and the
exponent

69

Real numbers in binary

• We mimic the decimal floating point notation to create a
“hybrid” binary floating point number:
– We first use a “binary point” to separate whole numbers from

fractional numbers to make a fixed point notation:
• e.g. 00011001.110 = 1.24 + 1.103 + 1.101 + 1.2-1 + 1.2-2 => 25.75

(2-1 = 0.5 and 2-2 = 0.25, etc.)

– We then “float” the binary point:
• 00011001.110 => 1.1001110 x 24

mantissa = 1.1001110, exponent = 4

– Now we have to express this without the extra symbols (x, 2, .)
• by convention, we divide the available bits into three fields:

sign, mantissa, exponent
70

IEEE-754 fp numbers - 1
s biased exp. fraction
1 8 bits 23 bits

N = (-1)s x 1.fraction x 2(biased exp. – 127)
32 bits:

• Sign: 1 bit

• Mantissa: 23 bits
– We “normalize” the mantissa by dropping the leading 1 and

recording only its fractional part (why?)

• Exponent: 8 bits
– In order to handle both +ve and -ve exponents, we add 127

to the actual exponent to create a “biased exponent”:
• 2-127 => biased exponent = 0000 0000 (= 0)
• 20 => biased exponent = 0111 1111 (= 127)
• 2+127 => biased exponent = 1111 1110 (= 254)

71

IEEE-754 fp numbers - 2

• Example: Find the corresponding fp representation of 25.75
• 25.75 => 00011001.110 => 1.1001110 x 24

• sign bit = 0 (+ve)

• normalized mantissa (fraction) = 100 1110 0000 0000 0000 0000

• biased exponent = 4 + 127 = 131 => 1000 0011

• so 25.75 => 0 1000 0011100 1110 0000 0000 0000 0000=> x41CE0000

• Values represented by convention:

– Infinity (+ and -): exponent = 255 (1111 1111) and fraction = 0

– NaN (not a number): exponent = 255 and fraction ≠ 0

– Zero (0): exponent = 0 and fraction = 0

• note: exponent = 0 => fraction is de-normalized, i.e no hidden 1

72

IEEE-754 fp numbers - 3

• Double precision (64 bit) floating point
1 11 bits 52 bits

N = (-1)s x 1.fraction x 2(biased exp. – 1023)

64 bits:

� Range & Precision:
� 32 bit:

� mantissa of 23 bits + 1 => approx. 7 digits decimal
� 2+/-127 => approx. 10 +/-38

� 64 bit:
� mantissa of 52 bits + 1 => approx. 15 digits decima l
� 2+/-1023 => approx. 10 +/-306

s biased exp. fraction

Copyright 2000 N. AYDIN. All rights
reserved. 13

73

Another use for bits: Logic

• Beyond numbers

– logical variables can be true or false, on or off, etc., and so
are readily represented by the binary system.

– A logical variable A can take the values false = 0 or true = 1
only.

– The manipulation of logical variables is known as Boolean
Algebra, and has its own set of operations - which are not to
be confused with the arithmetical operations.

– Some basic operations: NOT, AND, OR, XOR

74

Basic Logic Operations

AND

111

001

010

000

A.BBA

OR

111

101

110

000

A+BBA
NOT

01

10

A'A

�Truth Tables of Basic Operations

• Equivalent Notations
– not A = A' = A
– A and B = A.B = A∧B = A intersection B
– A or B = A+B = A∨B = A union B

75

More Logic Operations

– Exclusive OR (XOR): either A or B is 1, not both

– A⊕B = A.B' + A'.B

XOR

011

101

110

000

A⊕BBA

XNOR

111

001

010

100

(A⊕B)'BA

