Introduction to Digital Logic

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr
naydin@ieee.org

Course Outline

Digital Computers, Number Systems, Arithmetic @fiens, Decimal,
Alphanumeric, and Gray Codes

Binary Logic, Gates, Boolean Algebra, Standard Borm

Circuit Optimization, Two-Level Optimization, Madpanipulation, Multi-Level
Circuit Optimization

Additional Gates and Circuits, Other Gate Types)iisive-OR Operator and Gateq,
High-Impedance Outputs

Implementation Technology and Logic Design, Desipncepts and Automation,
The Design Space, Design Procedure, The majorriesigs

6. Programmable Implementation Technologies: Redg-@emories, Programmable
Logic Arrays, Programmable Array Logic, Technologgpping to programmable
logic devices

7. Combinational Functions and Circuits

8. Arithmetic Functions and Circuits

9. Sequential Circuits Storage Elements and Sequéitiait Analysis

10. Sequential Circuits, Sequential Circuit DesigriSBiagrams, State Tables

11. Counters, register cells, buses, & serial opmrati

12. Sequencing and Control, Datapath and Control, Atgoic State Machines (ASM)

13. Memory Basics

|

o~ wn

Introduction to Digital Logic

Lecture 1

Digital Computers and
Information

Overview

« Digital Systems and Computer Systems

« Information Representation

* Number Systemgbinary, octal and hexadecimal]

¢ Arithmetic Operations

« Base Conversion

« Decimal CodegBCD (binary coded decimal), parity]
¢ Gray Codes

¢ Alphanumeric Codes

The Computer Level Hierarchy

« Each virtual machine
layer is an abstraction of
the level below it.

* The machines at each
level execute their own
particular instructions,
calling upon machines at
lower levels to perform
tasks as required.

« Computer circuits

ultimately carry out the
work.

Digital System

« Takes a set of discrete informationi(iputs) and
discrete internal information (yand
generates a set of discrete informatiorno(itputs).

Discrete :Difscretet_
Inouts nformation _
P Processing glscrete
System utputs

I 1

Copyright 2000 N. AYDIN. All rights
reserved.

Types of Digital Systems

* No state present
— Combinational Logic System
— Output = Function (Input)
» State present
— State updated at discrete times
=> Synchronous Sequential System
— State updated at any time
=>Asynchronous Sequential System
— State= Function (State, Input)

— Output = Function (State)
or Function (State, Input)

Digital System Example:

A Digital Counter

Count Up—]

Rese—] 0/ 0/1/ 3/ 5 6 4

Inputs: Count Up, Reset
Outputs: Visual Display
State: "Value" of stored digits

Synchronous or Asynchronous?

A Digital Computer Example

Memory
cPU C(L’J':]ti{ol Datapath
Inputs: 1 L Outputs: CRT,
Keyboard, LCD, modem
mouse, modem, Input/Output speakers
microphone

Synchronous or
Asynchronous?

Signal

« An information variable represented by physical
quantity.
» For digital systems, the variable takes on discrete
values.
« Two level, or binary values are the most prevalent
values in digital systems.
« Binary values are represented abstractly by:
— digitsOand 1
— words (symbols) False (F) and True (T)
— words (symbols) Low (L) and High (H)
— and words On and Off.
» Binary values are represented by values or ranges of
values of physical quantities

Signal Examples Over Time

Time I T T T

Analog /nw/_/r\

Digital

Asynchronous |
Synchronous | |

Signal Example — Physical Quantity: Voltage

OUTPUT INPUT
HIGH HIGH
4.0
— 3.0
<~——Threshold
— 2.0 Region
1.0
LOW LOW
Volts

Copyright 2000 N. AYDIN. All rights
reserved.

Binary Values: Other Physical Quantities

* What are other physical quantities
represent 0 and 1?

-CPU Voltage
—Disk Magnetic Field Direction
—-CD Surface Pits/Light

—Dynamic RAM Electrical Charge

Number Systems — Representation

* Positive radix, positional number systems
» A number withradix r is represented by a
string of digits:
An Ao AAALA LA LA L

in whichO < A, <r and. is theradix point.
» The string of digits represents the power serig

i=n-1 j=-1
e =(5 5)55 1)
i=0 j=-m
(Integer Portion) + (Fraction Portion)

2

Number Systems — Examples

General Decimal Binary
Radix (Base) r 10 2
Digits 0=>r-1 0=>9 0=>1
0 ro 1 1
1 rt 10 2
2 r2 100 4
3 r3 1000 8
Powers of 4 ré 10,000 16
Radix 5| rs 100,000 32
-1 1 0.1 0.5
-2 2 0.01 0.25
-3 r3 0.001 0.125
-4 r4 0.0001 0.0625
-5 rs 0.00001 0.03125

Special Powers of 2

= 210 (1024) is 1, denoted "< "

= 220(1,048,576) isviega, denoted "M "
= 230(1,073, 741,824) isiga, denoted "G"

= 240(1,099,511,627,776) i5cra, denoted “T"

Positive Powers of 2

» Useful for Base Conversion

Exponent| Value Exponent| Value
0 1 11 2,048
1 2 12 4,094
2 4 13 8,192
3 8 14 16,384
4 16 15 32,764
5 32 16 65,534
6 64 17 131,072
7 128 18 262,144
8 256 19 524,284
9 512 20 1,048,57
10 1024 21 2,097,152

Converting Binary to Decimal

» To convert to decimal, use decimal arithmetid
to form Z (digit x respective power of 2).

» Example:Convert 1101¢ to N1g:

1x24+ 1x23+ 0x22 + 1x21+ Ox20=

Copyright 2000 N. AYDIN. All rights
reserved.

Converting Decimal to Binary

¢ Method 1

— Subtract the largest power of 2 that gives a posite
remainder and record the power.
— Repeat, subtracting from the prior remainder and recording
the power, until the remainder is zero.
— Placel’s in the positions in the binary result correspoding
to the powers recorded; in all other positions plag0’s.
» Example: Convert 625,to N

—625-512=113 ¥, H2=2
— 113-64= 494, 64=2
- 49-32= 17, 32=2
- 17-16= 19, 16=2
- T1-1= 0=\, 1=2

(625),,= 12°+ OM2%+ 02"+ 1025+ 15+ 1@*+ 0%+ O2+ O + 1020
= (1001110001),

Commonly Occurring Bases

Name Radix Digits

Binary 2 0,1

Octal 8 0,1,2,3,4,5,6,7
Decimal 10 0,1,2,3,4,5,6,7,8,9

Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,EH
= The six letters (in addition to the 10
integers) in hexadecimal represent:

A-10,B-11,C- 12,D- 13,E- 14,F-> 15

20|

Numbers in Different Bases

* Good idea to memorize!

Decimal Binary Octal | Hexadecimal
(Base 10) | (Base 2) | (Base 8)| (Base 16)
00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0ocC
13 01101 15 0D
14 01110 16 OE
15 01111 17 OF
16 10000 20 10

21

Conversion Between Bases

= Method 2
= To convert from one base to another:

1) Convert the Integer Part
2) Convert the Fraction Part
3) Join the two results with a radix point

22

Conversion Details

¢ To Convert the Integer Part:
Repeatedly divide the number by the new radix andae
the remainders. The digits for the new radix are the
remainders inreverse ordeof their computation. If the
new radix is > 10, then convert all remainders > 1@
digits A, B, ...

» To Convert the Fractional Part:
Repeatedly multiply the fraction by the new radix aad
save the integer digits that result. The digits fothe new
radix are the integer digits inorder of their computation.

If the new radix is > 10, then convert all integers 10 to
digits A, B, ...

23

Example: Convert 46.6875, To Base 2

e Convert 46 to Base 2:
—(101110)

e Convert 0.6875 to Base 2:
—(0.1011)

« Join the results together with the radix
point:
—(101110.1011)

24|

Copyright 2000 N. AYDIN. All rights
reserved.

Additional Issue - Fractional Part

Note that in the conversion in the previous slide,
the fractional part became 0 as a result of the
repeated multiplications.

In general, it may take many bits to get this to
happen or it may never happen.

Example: Convert 0.65,to0 N,

- 0.65=0.1010011001001 ...

— The fractional part begins repeating every 4 steps
yielding repeating 1001 forever!

Solution: ?

— Specify number of bits to right of radix point andround
or truncate to this number.

25

Checking the Conversion

* To convert back, sum the digits times their
respective powers of.

* From the prior conversion of 46.687%,
10111Q = 125+ 024+ 123+ 122+ 1@+ 0O

1.32 + 016 +1:8 +1.4 + 1.2 +01
32+8+4+2
46

0.1013 =1/2+1/8 + 1/16
=0.5000 + 0.1250 + 0.0625
=0.6875

26|

Octal to Binary and Back

Octal to Binary:

— Restate the octal ashree binary digits starting
at the radix point and going both ways.

Binary to Octal:

— Group the binary digits into three bit groups
starting at the radix point and going both ways,
padding with zeros as needed in the fractional
part.

— Convert each group ofthree bits to an octal
digit.

27

Hexadecimal to Binary and Back

« Hexadecimal to Binary:

— Restate the hexadecimal a®ur binary digits
starting at the radix point and going both ways.

¢ Binary to Hexadecimal:

— Group the binary digits into four bit groups
starting at the radix point and going both ways,
padding with zeros as needed in the fractional
part.

— Convert each group offour bits to a
hexadecimal digit.

28|

Octal to Hexadecimal via Binary

Convert octal to binary.

Use groups offour bits and convert as above to
hexadecimal digits.

Example: Octal to Binary to Hexadecimal
6 3 5.1 7 3
(110011101. 001111111,

(1 9 D .3 F 8

Why do these conversions work?

29

¢ You can use arithmetic in other bases if you

« Example: Convert 10111Qto Base 10 using

A Final Conversion Note

are careful:

binary arithmetic:
Step 1 101110/1010 =100 r 0110

Step 2 100/1010 = 0 r 0100
Converted Digits are0100, | 011G
or (4 6)q

30|

Copyright 2000 N. AYDIN. All rights

reserved.

Binary Numbers and Binary Coding

« Flexibility of representation
— Within constraints below, can assign any binary
combination (called a code word) to any data as lgnas
data is uniquely encoded.

 Information Types
— Numeric
* Must represent range of data needed
« Very desirable to represent data such that simple,
straightforward computation for common arithmetic operations
permitted
« Tight relation to binary numbers
— Non-numeric
 Greater flexibility since arithmetic operations notapplied.
+ Not tied to binary numbers

31

Non-numeric Binary Codes

« Given n binary digits (called bits), a binary code
is a mapping from a set of represented elements
to a subset of the 2binary humbers.

* Example: A Color Binary Number
binary code Red 000
for the seven sfﬁnge 82(1)
cqlors of the Gfeg‘r’]" o
rainbow Blue 1ol

¢ Code 100 is Indigo 110
not used Violet 111

32,

Number of Bits Required

» Given M elements to be represented by a
binary code, the minimum number of bits,
n, needed, satisfies the following
relationships:

M>SM > 2(!’1 -1)

n =[log, M1 where[x], called theceiling
function, is the integer greater than or equal
to x.

» Example: How many bits are required to
representdecimal digitswith a binary code?

— 4 bits are required (1 5 log, 9] = 4)

33

Number of Elements Represented

S1-2-28Eylul

» Givenn digits in radix r, there arer" distinct
elements that can be represented.

 But, you can representm elements,m < "
» Examples:
—You can represent 4 elements in radix = 2 with
n = 2 digits: (00, 01, 10, 11).
—You can represent 4 elements in radix = 2 with
n = 4 digits: (0001, 0010, 0100, 1000).

— This second code is called aghe hot' code.

34

Binary Codes for Decimal Digits

=The usual way of expressing a decimal number in ters of a binary
number is known aspure binary coding

=There are over 8,000 ways that you can chose 10reknts from the 16
binary numbers of 4 bits. A few are useful:

Decimal | 8,4,2,1| ExcessB 8,4,-2,11 Gral
0 0000 0011 0000 0000
1 0001 0100 0111 0001
2 0010 0101 0110 0011
3 0011 0110 0101 0010
4 0100 0111 0100 0110
5 0101 1000 1011 0111
6 0110 1001 1010 0101
7 0111 1010 1001 0100
8 1000 1011 1000 1100
9 1001 1100 1111 1101

35

Binary Coded Decimal (BCD)

¢ In the 8421 Binary Coded Decimal (BCD)

representation each decimal digit is converted to
its 4-bit pure binary equivalent

« This code is the simplest, most intuitive binary

code for decimal digits and uses the same powers
of 2 as a binary number, but only encodes the first
ten values from 0 to 9.

For example: (57)ec = (?) peg

(5 7 ke
= (01010111),

36|

Copyright 2000 N. AYDIN. All rights
reserved.

Excess 3 Code and 8, 4, -2, —1 Code

Decimal Excess 3 8,4,-2,-1
0 0011 0000
1 0100 0111
2 0101 0110
3 0110 0101
4 0111 0100
5 1000 1011
6 1001 1010
7 1010 1001
8 1011 1000
9 1100 1111

* What interesting property is common
to these two codes?

37

Binary to Gray Code Conversion

Decimal 8421 Gray
What special property does the 0 0000 0000
Gray code have in relation to 1 0001 0001
: : Al

adjacent decimal digits? 2 0010 0011
3 0011 0010
4 0100 0110
. The binary number and the 5 0101 0111

Gray-coded number will have
the same number of bits 6 0110 0101
. The Gray code MSB (left-hand 7 0111 0100
bit) and binary MSB will 8 1000 1100
always be the same 9 1001 1101

. To get the Gray code next-to-
MSB (i.e. next digit to the right) 10 1010 111
add the binary MSB and the 11 1011 1110
bhinary next-to-MSB. Record 12 1100 1010

the sum, ignoring any carry.

. Continue in this manner right 13 1101 1011
through to the end. 14 1110 1001
15 1111 1000

38|

Gray Code to Binary conversion

Decimal 8421 Gray
0 0000 0000
1 0001 0001
. 2 0010 0011
1. The binary number and the
Gray-coded number will have 3 0011 0010
the same number of bits 4 0100 0110
2. Thde binary NCI’SB (Ieft-hfla\lnd| bit) 5 0101 0111
and Gray code MSB will always
be the same 6 0110 0101
3. To get the binary next-to-MSB 7 0111 0100
(liﬁ.le.bnext digit to th?1 r:ghl) add 8 1000 1100
the binary MSB and the gray
code next-to-MSB. Record the 9 1001 1101
sum, ignoring any carry. 10 1010 1111
4. Continue in this manner right 11 1011 1110
through to the end. 12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

39

Binary to Gray Conversion Example

Question: Convert the binary numbér110110%o its Gray code
equivalent.

Binary | 11101101 | Gray CodeDigit 1 =1 (same as binary)
Binary 1101101 | Gray Code Digit 2 =1+1=0 (carry 1)
Binary | 11101101 | Gray Code Digit 3 =1+1=0 (carry 1)
Binary | 11101101 | Gray Code Digit 4 =1+0=1
Binary | 11101101 | Gray Code Digit 5 =0+1=1
Binary | 11101101 | Gray Code Digit 6 =1+1=0 (carry 1)
Binary | 11101101 | Gray Code Digit 7 =1+0=1
Binary | 11101101 | Gray Code Digit 8 =0+1=1

11101101, = 10011011,

40

Gray to Decimal Conversion

« Question: Convert the Gray coded numbE¥01101 1o its
binary equivalent.

Gray Code | 10011011 | Binary Digit 1 =1 | (same as Gray code)
Gray Code | 10011011 | Binary Digit2 | =0+1=1
Gray Code | 10011011 | Binary Digit3 | =0+ 1=1
Gray Code | 10011011 | Binary Digit4 | =1+1=0 (carry 1)
Gray Code | 10011011 | Binary Digit5 | =1+0=1
Gray Code | 10011011 | Binary Digit6 | =0+1=1
Gray Code | 10011011 | Binary Digit7 | =1+ 1=0 (carry 1)
Gray Code | 10011011 | Binary Digit8 | =1+0=1
10011011y, = 11101101,

a1

Gray Code (Continued)

Does this special Gray code property have
any value?

An Example: Optical Shaft Encoder

(a) Binary Code for Positions 0 through 7

(b) Gray Code for Positions 0 through 7

42|

Copyright 2000 N. AYDIN. All rights
reserved.

Gray Code (Continued)

* How does the shaft encoder work?

 For the binary code, what codes may be
produced if the shaft position lies between
codes for 3 and 4 (011 and 100)?

Is this a problem?

43

Gray Code (Continued)

» For the Gray code, what codes may be
produced if the shaft position lies between
codes for 3 and 4 (010 and 110)?

Is this a problem?

» Does the Gray code function correctly for
these borderline shaft positions for all cases
encountered in octal counting?

44

4221 BCD Code

1's

« The 4221 BCD code is another ~ Decimal = 4221

binary coded decimal code where complement

each bit is weighted by 4, 2, 2 and 0 0000 1111

1 respectively. Unlike BCD

coding there are no invalid 1 0001 1110

representations. 2 0010 1101
« The 1's complement of a 4221

representation is important in 3 0011 1100

decimal arithmetic. In forming the 4 1000 0111

code remember the following

rules 5 0111 1000
« Below decimal 5 use the right-

most bit representing 2 first 6 1100 0011
« Above decimal 5 use the left-most 7 1101 0010

bit representing 2 first
« Decimal 5 = 2+2+1 and not 4+1 8 1110 0001

9 1111 0000

45

Warning: Conversion or Coding?

» Do NOT mix up conversionof a decimal
number to a binary number with codinga
decimal number with a BINARY CODE.

* 13,,= 1101 (This is conversior)
* 13 = 0001|0011 (This is coding

48

Binary Arithmetic

« Single Bit Addition with Carry

» Multiple Bit Addition

« Single Bit Subtraction with Borrow
» Multiple Bit Subtraction

» Multiplication

» BCD Addition

a7

Single Bit Binary Addition with Carry

Given two binary digits (X,Y), a carry in (Z) we gd the
following sum (S) and carry (C):

Carry in (Z) of 0: z 0 0 0 0
X 0 0 1 1
+Y 40 +1 +0 +1
cS 00 01 01 10

Carry in (Z) of 1: z 1 1 1 1
X 0 0 1 1
+Y +0 +1 +0 +1

O
(2}
(=}
-
[N
o
[N
o
[N
[N

48|

Copyright 2000 N. AYDIN. All rights
reserved.

Multiple Bit Binary Addition

» Extending this to two multiple bit
examples:

Carries 0 0
Augend 01100 10110
Addend +10001 +10111
Sum 11101 101101

* Note: The Ois the default Carry-In to the
least significant bit.

49

Single Bit Binary Subtraction with Borrow

« Given two binary digits (X,Y), a borrow in (Z) we
get the following difference (S) and borrow (B):
e Borrow in (Z2) of 0: Z 0 0 0 0
X 0 0 1 1
-y 0 4 0
BS 00 11 01 0
e Borrowin (Z)of 1. z 1 1 1 1
X 0 0 1 1
-Y -0 -1 -0 -1
BS 11 10 00 11

1
0

Multiple Bit Binary Subtraction

» Extending this to two multiple bit examples:

Borrows 0 0
Minuend 10110 10110
Subtrahend -10010 - 10011
Difference 00100 00011

* Notes: The_Ois a Borrow-In to the least significant
bit. If the Subtrahend > the Minuend, interchange
and append a — to the result.

51

Binary Multiplication

The binary multiplication table is simple:
000=0] 100=0 | O01=0 | 101=1
Extending multiplication to multiple digits:

Multiplicand 1011
Multiplier x 101
Partial Products 1011
0000 -
1011 --
Product 110111

52,

BCD Arithmetic

= Given a BCD code, we use binary arithmetic to addhe digits:
8 1000 Eight

+5 +0101 Plus5
13 1101 is13(>9)
= Note that the result is MORE THAN 9, so must be
represented by two digits!
= To correct the digit, subtract 10 by adding 6 modud 16.

8 1000 Eight
+5 +0101 Plus5
13 1101 is 13 (>9)

+0110 soadd 6
carry =1 0011 leaving 3 +cy
0001|0011 Final answer (two digits)
= If the digit sum is > 9, add one to the next sigrifant digit

53

BCD Addition Example

 Addition is analogous to decimal addition with
normal binary addition taking place from right to
left. For example,

6 BCD for6 42 BCD for 42
+3 BCD for 3 +27 BCD for 27
BCD for 9 BCD for 69

54|

Copyright 2000 N. AYDIN. All rights
reserved.

BCD Addition Example-2

 Add 2905cp to 1897%cp Showing

carries and digit corrections.
11 1 1+ 111
0001 1000 1001 0111

+ 0010 1001 0000 0101
0100 10010 1010 1100

1000 10000 10010
4 8 0 2

55

Error-Detection Codes

Redundancy(e.g. extra information), in the form
of extra bits, can be incorporated into binary code
words to detect and correct errors.

A simple form of redundancy isparity , an extra bit
appended onto the code word to make the number
of 1's odd or even. Parity can detect all single-bi
errors and some multiple-bit errors.

A code word haseven parity if the number of 1's

in the code word is even.

A code word hasodd parity if the number of 1's in
the code word is odd.

56|

4-Bit Parity Code Example

« Fill in the even and odd parity bits:

Even Parity Odd Parity
Message Parity | Message Parity
000. 000.
001. 001_
010. 010.
011. 011
100- 100_
101. 101
110 110
111 1T

¢ The codeword "1111" has even parityand the
codeword "1110" has_odd parity. Both can be
used to represent 3-bit data.

57

ASCII| Character Codes

* American Standard Code for Information
Interchange (Refer to Table 1-4 in the text)

* This code is a popular code used to represent
information sent as character-based data.
7-bits to represent:

— 94 Graphic printing characters.
— 34 Non-printing characters

* Some non-printing characters are used for text
format (e.g. BS = Backspace, CR = carriage
return)

 Other non-printing characters are used for record
marking and flow control (e.g. STX and ETX start
and end text areas).

It uses

58|

ASCII Properties

ASCII has some interesting properties:
= Digits 0 to 9 span Hexadecimal values 30to 39;;.
= Upper case A-Z span 4} to 5A; .
= Lower case a-z span §}t0 7A ;.
* Lower to upper case translation (and vice versa)
occurs by flipping bit 6.
= Delete (DEL) is all bits set, a carryover from when
punched paper tape was used to store messages.
= Punching all holes in a row erased a mistake!

59

UNICODE

« UNICODE extends ASCII to 65,536
universal characters codes

— For encoding characters in world languages
— Available in many modern applications
— 2 byte (16-bit) code words

— See Reading Supplement — Unicode on the
Companion Website
http://www.prenhall.com/mano

60|

Copyright 2000 N. AYDIN. All rights
reserved.

10

Data types

< Our first requirement is to find a way to represeformation
(data) in a form that is mutually comprehensibléhbynan and
machine.

— Ultimately, we will have to develop schemes for
representing all conceivable types of information -
language, images, actions, etc.

— We will start by examining different ways of repeating
integers, and look for a form that suits the computer.

— Specifically, the devices that make up a comparter
switches that can be on or off, i.e. at high or imktage.
Thus they naturally provide us with two symbtaisvork
with: we can call thenon & off, or (more usefullyp and1.

61

Decimal Numbers

« “decimal” means that we have tdiyits to use in our
representation (the symbdighrough 9)
* What is 35467

— it isthree thousandplusfive hundredplusfour tensplus

six ones
—i.e. 3546 = 3.10+ 5.10 + 4.10 + 6.10
« How about negative numbers?
— we use two more symbdis distinguish positive and

negative:

+ and -

62,

Unsigned Binary Integers

Y =“abc” = a.22+ b.21 + ¢.20

(where the digits a, b, ¢ can each take on the valu es of 0 or 1 only)

N = number of bits 3-bits 5-bits 8-bits
Range is: 0 000 00000 00000000
Osi<2V-1 1 001 00001 00000001
2 010 00010 00000010
Problem:
+ How do we represent 3 011 00011 00000011
negative numbers? 4 100 00100 00000100

63

« Leading bit is the sighit -4| 10100
-3 10011
Y =“abc” = (-1)2(b.21 + c.29) -2 10010
-1 10001
Range is: 0 10000

2N+ 1<i <2M-1
+0 00000
Problems: +1| 0000%
» How do we do addition/subtraction? +2 00010
* We have two numbers for zero (+/-)! +3 00011
+4 00100

Signed Magnitude

64

One’s Complement

. -4 11011
* Invert all bits
-3 11100
If msb (most significant bit) is 1 then the 2 11101
number is negative (same as signed =l 11110
magnitude) 0 11111
+0 00000
Range is:

ON1 4 1< <2N1-] +1 00001
+2 00010
Problems: ‘ . +3 00011

*Same as for signed magnitude
+4 00100

65

Two’s Complement

i -16 10000

* Transformation
—To transformainto -a, invert all 3 11101

bits inaand addL to the result

-2 11110
- -1 11111

Range is:
ONLcjeoNt. 0 00000
+1 00001
Advantages: +2 00010
« Operations need not check the sign 3 00011

« Only one representation for zero

« Efficient use of all the bits
+15 01111

66|

Copyright 2000 N. AYDIN. All rights
reserved.

11

Limitations of integer representations

« Most numbers are not integer!
— Even with integers, there are two other considsrat
* Range:

— The magnitude of the numbers we can represent is
determined by how many bits we use:

« e.g. with 32 bits the largest number we can regmteis about +/- 2
billion, far too small for many purposes.

» Precision:

— The exactness with which we can specify a number:
 e.g. a 32 bit number gives us 31 bits of precisiwmoughly 9
figure precision in decimal repesentation.

* We need another data type!

67

Real numbers

¢ Our decimal system handles non-integat numbers
by adding yet another symbol - the decimal painto
make &ixed point notation:

— e.g. 3456.78 = 3.3¢- 4.1C + 5.10 + 6.10+ 7.10* + 8.10?

« Thefloating point, or scientific, notation allows us to
represent very large and very small numbers (imtege
real), with as much or as little precision as néede
— Unit of electric charge e £602 176 462 x 1® Coulomb
— Volume of universe = 1 x $dcm?

« the two components of these numbers are callethéireissa and the
exponent

68|

Real numbers in binary

* We mimic the decimal floating point notation teate a
“hybrid” binary floating point number:
— We first use a “binary point” to separate wholenbers from
fractional numbers to make a fixed point notation:

¢ e.g.00011001.110 = £.2 1.1G+ 1.10+ 1.21+ 1.22=> 25,75
(21=0.5and 2=0.25, etc.)

— We then “float” the binary point:
+ 00011001.110 => 1.1001110 % 2
mantissa = 1.1001110, exponent = 4

— Now we have to express this without the extra)mpx, 2, .)
< by convention, we divide the available bits irticete fields:

sign, mantissaexponent

69

IEEE-754 fp numbers - 1

‘s‘ biased exp. |

fraction ‘

N = (-1)® x 1.fraction x 2(iasedexp. —127)
¢ Sign: 1 bit
¢ Mantissa: 23 bits
— We “normalize” the mantissa by dropping the legdirand
recording only its fractional part (why?)
« Exponent: 8 bits
— In order to handle both +ve and -ve exponents, welad
to the actual exponent to create a “biased exptinent
» 2127=> biased exponent = 0000 0000 (= 0)

+ 2°0=> biased exponent = 0111 1111 (= 127)
e 2*127=> pjased exponent = 1111 1110 (= 254)

70|

IEEE-754 fp numbers - 2

« Example: Find the corresponding fp representatfd®bo/5
« 25.75=>00011001.110 => 1.1001110%x 2
* sign bit =0 (+ve)
« normalized mantissa (fraction):00 1110 0000 0000 0000 0000
+ biased exponent = 4 + 127 = 131 300 0011
* s025.75 =0 1000 0011100 1110 0000 0000 0000 0088 x41CE0000
« Values represented by convention:
— Infinity (+ and -): exponent = 255 (1111 1111) drttion = 0
— NaN (not a number): exponent = 255 and fractiéh
— Zero (0): exponent = 0 and fraction = 0
« note: exponent =0 => fractionds-normalized, i.e no hidden 1

7

IEEE-754 fp numbers - 3

¢ Double precision (64 bit) floating point

‘s‘ biased exp. | fraction ‘

N = (-1)° x 1.fraction x 20asedexp. ~1023)

e Range & Precision:
+ 32 bit:
= mantissa of 23 bits + 1 => approx. 7 digits decimal
= 2+127 => approx. 10 */-38

+ 64 bit:
= mantissa of 52 bits + 1 => approx. 15 digits decima |
= 2+11023 => approx. 10 *-306

72|

Copyright 2000 N. AYDIN. All rights
reserved.

12

Another use for bits: Logic

« Beyond numbers

— logical variables can betrue or false, on or off, etc., and so
are readily represented by the binary system.

— Alogical variable A can take the valdekse = O ortrue= 1
only.

— The manipulation of logical variables is knowrBa®lean
Algebra, and has its own set of operations - whiehnat to
be confused with the arithmetical operations.

— Some basic operatio8OT, AND, OR, XOR

73

Basic Logic Operations

NOT AND OR
A A A B AB A B A+B
0 1 00 0 00 0
1 0 01 0 01 1
10 O 10 1
11 1 11 1
e Equivalent Notations
—notA=A"=A

—Aand B=A.B=AB = A intersection B
—AorB=A+B =A1B = A union B

74|

More Logic Operations

XOR XNOR
A B AOB A B (AOB)
0 0 0 0 O 1
01 1 0 1 0
1 0 1 1 0 0
11 0 1 1 1

— Exclusive OR (XOR): either A or B is 1, not both
—AOB=AB'+A'B

75

Copyright 2000 N. AYDIN. All rights

reserved.

13

