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Introduction to statistics
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Introduction

• All sorts of data are collected from 

– patients, animals, cell counters, microarrays, imaging 
systems, pressure transducers, bedside monitors, 
manufacturing processes, material testing systems, and 
other measurement systems 

• that support a broad spectrum of 

– research, 

– design,

– manufacturing environments. 

• Ultimately, the reason for collecting data is to 
make a decision.
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Introduction

• Example of an ECG recording
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• R-R interval is 

defined as the 

time interval 

between

successive R 

waves of the 

QRS complex, 

Introduction

• A normally functioning heart exhibits considerable 

variability in beat-to-beat intervals. 

– variability reflects the body’s continual effort to maintain

homeostasis 

• so that the body may continue to perform its most essential 

functions and supply the body with the oxygen and nutrients 

required to function normally. 

• It has been demonstrated through biomedical research 

that there is a loss of heart rate variability associated 

with some diseases, 

– such as diabetes and ischemic heart disease. 
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Introduction

• Researchers seek to determine 

– if this difference in variability between normal subjects and 

subjects with heart disease is significant 

• meaning, it is due to some underlying change in biology and not 

simply a result of chance 

– whether it might be used to predict the progression of the 

disease. 

• One will note that the probability model changes 

– as a consequence of changes in the underlying biological 

function or process.
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Introduction

• To make sound decisions in the context of the 
uncertainty with some level of confidence,

– we need to assume some probability models for the 
populations from which the samples have been
collected. 

• Once we have assumed an underlying model, 

– we can select the appropriate statistical tests for 
comparing two or more populations

– then we can use these tests to draw conclusions 
about our hypotheses for which we collected the 
data in the first place

7

Introduction

• The steps for performing statistical analysis of data.
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Collecting Data and Experimental Design

• The value of any statistical analysis is only as 

good as the data collected

• Because we are using data or samples to draw 

conclusions about entire populations or 

processes, 

– it is critical that the data collected are 

representative of the larger, underlying population.

• we must have enough samples to represent the 

variability of the underlying population
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Collecting Data and Experimental Design

• Capturing variability is often the greatest challenge 

that scientists/engineers face in collecting data and

using statistics to draw meaningful conclusions. 

– The experimentalist must ask questions such as the

following:

• What type of person, object, or phenomenon do I sample?

• What variables that impact the measure or data can I control?

• How many samples do I require to capture the population 

variability to apply the appropriate statistics and draw 

meaningful conclusions?

• How do I avoid biasing the data with the experimental 

design?
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Collecting Data and Experimental Design

• Experimental design is the most critical step to 

support the statistical analysis 

– that will lead to meaningful conclusions and hence 

sound decisions.

• Two elements of experimental design that are 

critical to prevent biasing the data or selecting

samples that do not fairly represent the 

underlying population are

– randomization 

– blocking.
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Collecting Data and Experimental Design

• Randomization 

– the process by which we randomly select samples 

or experimental units from the larger underlying 

population such that we maximize our chance of 

capturing the variability in the underlying 

population.

• Blocking

– the arranging of experimental units in groups 

(blocks) that are similar to one another

• Blocking will help to eliminate the effect of intersubject 

variability.

12
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Collecting Data and Experimental Design

• Some important concepts and definitions to 

keep in mind when designing experiments:

– experimental unit 

• the item, object, or subject to which we apply the 

treatment and from which we take sample measurements

– randomization

• allocate the treatments randomly to the experimental 

units

– blocking

• assigning all treatments within a factor to every level of 

the blocking factor

13

Collecting Data and Experimental Design

• The experimentalist must always think about how 
representative the sample population is with 
respect to the greater underlying population. 

• Because it is virtually impossible to test every
member of a population, the scientist/engineer 
must often collect data from a much smaller
sample drawn from the larger population. 

• It is important, if the statistics are going to lead to 
useful conclusions, 

– that the sample population captures the variability of 
the underlying population.
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Why statistics?

• Reasons for using statistical data summary and 

analysis:

– The real world is full of random events that cannot 

be described by exact mathematical expressions

– Variability is a natural and normal characteristic of 

the natural world

– We like to make decisions with some confidence.

• This means that we need to find trends within the 

variability
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Questions to address

• There are several basic questions we hope to 

address when using numerical and graphical 

summary of data:

– Can we differentiate between groups or 

populations?

• probably the most frequent aim of biomedical research

– Are there correlations between variables or 

populations?

– Are processes under control?

• Such a question may arise if there are tight controls on 

the manufacturing specifications for a medical device
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Graphical summarization of data

• Before blindly applying the statistical analysis, 

it is always good to look at the raw data,

– usually in a graphical form, 

and then use graphical methods to summarize 

the data in an easy to interpret format.

– A Picture is worth a thousand word

• The types of graphical displays that are most 

frequently used by scientists/engineers 

– scatterplots, time series, box-and-whisker plots, 

and histograms.
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Scatterplots

• graphs the occurrence of one variable with 

respect to another. 

• In most cases, one of the variables may be 

considered the independent variable 

– such as time or subject number,

• the second variable is considered the dependent 

variable. 

• Next slide illustrates an example of a

scatterplot for two sets of data. 

18
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Scatterplots

19

Scatterplots

• In general, we are interested in whether there is 

a predictable relationship that 

– maps our independent variable 

• such as respiratory rate

– into our dependent variable

• such as heart rate

• If there is a linear relationship between the two 

variables, 

– the data points should fall close to a straight line
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Time Series

• used to plot the changes in a variable as a 

function of time. 

• The variable is usually

– a physiological measure, 

• such as electrical activation in the brain or hormone 

concentration in the blood stream, that changes with 

time. 

• Next slide illustrates an example of a time 

series plot. 
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Time Series

• a simple sinusoid function changing with time.

22

Box-and-Whisker Plots

• illustrate the 1st, 2nd, and 3rd quartiles as well as the 

minimum and maximum values of the data collected. 

– The 2nd quartile (Q2) is also known as the median of the 

data. 

– The 1st quartile (Q1) can be thought of as the median value 

of the samples that fall below the 2nd quartile. 

– The 3rd quartile (Q3) can be thought of as the median value 

of the samples that fall above the 2nd quartile. 

• Box-and-whisker plots are useful in that they 

highlight whether there is skew to the data or any 

unusual outliers in the samples.
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Box-and-Whisker Plots

24
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Histogram

• defined as a frequency distribution. 

• Given N samples or measurements, xi ranging
from Xmin to Xmax, the samples are grouped into 
nonoverlapping intervals (bins), usually of equal 
width. 

– Typically, the number of bins is on the order of 7–14, 
depending on the nature of the data. 

– In addition, we typically expect to have at least 3
samples per bin. 

• Sturgess’rule may also be used to estimate the number of bins 
and is given by k = 1 + 3.3 log(n).

– where k is the number of bins and n is the number of samples.

25

Histogram

• One bin of a 

histogram plot 

• The bin is 

defined by 

– a lower bound, 

– a midpoint, 

– an upper bound

26

Histogram

• constructed by plotting the number of samples 

in each bin. 

– horizontal axis, 

• the sample value, 

– the vertical axis, 

• the number of occurrences of samples falling within a bin

• Next slide illustrates a histogram for 1000 

samples drawn from a normal distribution with 

mean (μ) = 0 and standard deviation (σ) = 1.0. 

27

Histogram

28

Histogram

• Two useful measures in describing a 

histogram:

– the absolute frequency in one or more bins

• fi = absolute frequency in ith bin

– the relative frequency in one or more bins 

• fi /n = relative frequency in ith bin, 

– where n is the total number of samples being summarized in the 

histogram

• The histogram can exhibit several shapes 

– symmetric, skewed, or bimodal.
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Histogram

• In each case, 2000 

samples were drawn 

from the underlying 

populations.

30
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Histogram

• For example, a skewed histogram may be attributed to 

the following:

– mechanisms of interest that generate the data 

• e.g., the physiological mechanisms that determine the beat-to-beat 

intervals in the heart

– an artifact of the measurement process or a shift in the 

underlying mechanism over time

• e.g., there may be time-varying changes in a manufacturing process 

that lead to a change in the statistics of the manufacturing process 

over time

– a mixing of populations from which samples are drawn 

• this is typically the source of a bimodal histogram

31

Histogram

• The histogram is important because it serves as 

– a rough estimate of the true probability density
function or

– probability distribution of the underlying random 
process from which the samples are being collected.

• The probability density function or probability 
distribution is a function that quantifies the
probability of a random event, x, occurring. 

– When the underlying random event is discrete in 
nature,

• we refer to the probability density function as the probability 
mass function

32

Histogram

• The probability density function for a discrete random variable (probability 

mass function).

• In this case, the random 

variable is the value of a 

toss of a single dice. 

– Note that each of the six 

possible outcomes has a 

probability of occurrence of 1 

of 6. 

• This probability density 

function is also known as a 

uniform probability 

distribution.
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Histogram

• Histograms representing the outcomes of experiments in which 

a single dice is tossed 50 and 2000 times, respectively 

– Note that as the sample size increases, the histogram approaches the 

true probability distribution (uniform probability distribution)
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Histogram

• Scientists/engineers are trying to make decisions about 
populations or processes to which they have limited 
access. 

• Thus, they design experiments and collect samples that 
they think will fairly represent the underlying population 
or process. 

• Regardless of what type of statistical analysis will result 
from the investigation or study, 

– all statistical analysis should follow the same general approach:

• Measure a limited number of representative samples from a larger 
population.

• Estimate the true statistics of larger population from the sample 
statistics.

35

• Once the researcher has estimated the sample 

statistics from the sample population, 

– he or she will try to draw conclusions about the 

larger (true) population. 

• The most important question to ask when 

reviewing the statistics and conclusions drawn 

from the sample population is 

– how well the sample population represents the 

larger, underlying population.

36
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DESCRIPTIVE STATISTICS

• Once the data have been collected, we use 

some basic descriptive statistics to summarize 

the data. 

• Basic descriptive statistics include the 

following general measures: 

– central tendency,

– variability, 

– correlation.

37

DESCRIPTIVE STATISTICS

• There are a number of descriptive statistics 

– that help us to picture the distribution of the 

underlying population. 

• Ultimate goal is to 

– assume an underlying probability model for the

population and then 

– select the statistical analyses that are appropriate 

for that probability model.

38

DESCRIPTIVE STATISTICS

• The underlying model for any sample, or measure

(the outcome of the experiment) is as follows:

X = μ ± individual differences ± situational factors ±

unknown variables,

• where X is our measure or sample value and is influenced by 

μ, which is the true population mean;

• individual differences such as genetics, training, motivation, 

and physical condition; 

• situational factors, such as environmental factors; and 

• unknown variables such as unidentified/nonquantified factors

that behave in an unpredictable fashion from moment to 

moment.

39

Measures of Central Tendency

• A central tendency is a central or typical value 

for a probability distribution. 

– also called a center or location of the distribution. 

• Measures of central tendency are often called 

averages.

• There are several measures that reflect the 

central tendency

– sample mean, 

– sample median, 

– sample mode.

40

Mean

41

Mean

• For a data set, the terms arithmetic mean, 
mathematical expectation, and sometimes average
are used synonymously to refer to a central value 
of a discrete set of numbers

– specifically, the sum of the values divided by the 
number of values. 

• If the data set were based on a series of 
observations obtained by sampling from a 
statistical population, 

– the arithmetic mean is termed the sample mean to 
distinguish it from the population mean

42
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Mean

• Outside of probability and statistics, a wide range of 

other notions of mean are often used in geometry and 

analysis:

– Pythagorean means

• Arithmetic mean, Geometric mean, Harmonic mean

– Generalized means

• Power mean, ƒ-mean

– Weighted arithmetic mean

– Truncated mean

– Interquartile mean

– Fréchet mean

– … 

43

Mean

44

Mean

45

Mean

46

Mean (Arithmetic)

• It is used when the spread of the data is fairly 

similar on each side of the mid point, 

– when the data are “normally distributed”.

• If a value (or a number of 

values) is a lot smaller or

larger than the others, 

“skewing” the data, the 

mean will then not give a 

good picture of the 

typical value.
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Median

• Sometimes known as the mid-point.

– It is used to represent the average when the data are 

not symmetrical (skewed distribution)

• The median value of a group of 

observations or samples, xi, is the 

middle observation when samples, 

xi, are listed in descending order.

• Note that if the number of samples, n, is odd, the median will be the middle 

observation. 

• If the sample size, n, is even, then the median equals the average of two 

middle observations. 

• Compared with the sample mean, the sample median is less susceptible to 

outliers. 

48
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Median

• The median may be given with its inter-

quartile range (IQR). 

• The 1st quartile point has the 1⁄4 of the data 

below it 

• The 3rd quartile point has the 3⁄4 of the sample 

below it 

• The IQR contains the middle 1⁄2 of the sample 

• This can be shown in a “box and whisker” plot.
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Median (example)

• A dietician measured the energy intake over 24 hours of 50 patients on a

variety of wards. One ward had two patients that were “nil by mouth”. The

median was 12.2 megajoules, IQR 9.9 to 13.6. The lowest intake was 0, the 

highest was 16.7. 

• This distribution is represented by the box and whisker plot below.

• Box and whisker plot of energy 

intake of 50 patients over 24 hours. 

• The ends of the whiskers represent 

the maximum and minimum values, 

excluding extreme results like those 

of the two “nil by mouth” patients.
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Mode

• the most common of a set of events

– used when we need a label for the most frequently 

occurring event

• Example: An eye clinic sister noted the eye colour of 

100 consecutive patients. The results are shown below

• Graph of eye colour of 

patients attending an 

eye clinic.

• In this case the mode is 

brown, the commonest 

eye colour.

51

Mode

• You may see reference to a bi-modal distribution.

– Generally when this is mentioned in papers it is as a concept 

rather than from calculating the actual values, 

• e.g. “The data appear to follow a bi-modal distribution”. 

• Graph of ages of patients with 

asthma in a practice

– The arrows point to the modes at 

ages 10–19 and 60–69.

• Bi-modal data may suggest that 

two populations are present 

that are mixed together, 

– so an average is not a suitable 

measure for the distribution.
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Mean, Median, Mode

• Comparison of the arithmetic mean, 

median and mode of two skewed (log-

normal) distributions.

53

• Geometric visualisation of the 

mode, median and mean of an 

arbitrary probability density 

function.
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An applicaton of mean: moving AVERAGE filter

• Highlights trends in a signal (smoothing, blurring)

k: pozitif integer, wj: weights,  wj =1

• Algorithm
for n=1:N

y(n)=0.5*(x(n)+x(n+1));

end

• Example (2 point moving AVERAGE filter)

x=(x1, x2 , x3 , x4 , x5 , x6 , x7 , x8 , …)

y=([x1+x2]/2, [x2+x3]/2, [x3+x4 ]/2, …)




 



k

kj

jnjn

n

kNknxwy

Nnx

,,...,1:

,...,1:
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55

Complementary procedure: moving DIFFERENCE filter

• Removes trends from a signal (sharpening, 
deblurring)

• 1st order differencing

Dyt=yt-yt-1

• Higher order differences (2nd order)

D2yt= D(Dyt)=Dyt-Dyt-1=yt-2yt-1+yt-2

• Example (1st order moving DIFFERENCE filter)

x=(x1, x2 , x3 , x4 , x5 , x6 , x7 , x8 , …)

y=([x2-x1], [x3-x2], [x4-x3 ], …)
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Moving MEDIAN filtering

• Useful in impulsive noise removal (image 

processing, moving/sliding MEDIAN filtering)

• Example (3 point moving MEDIAN filtering)

x=(x1, x2 , x3 , x4 , x5 , x6 , x7 , x8 , …)

y=(med[x1,x2,x3], med[x2,x3,x4], med[x3,x4,x5], …)

• If a window with even number of samples are selected 

median is average of two mid-point samples
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Convolution

• Is a mathematical way of combining two signals to 

form a third signal

• Is the relationship between a system’s input signal, 

output signal, and impulse response







1

0

)()()(
N

n

nkxnhky
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Correlation

• Is a measure of similarities of two signals (cross-correlation)

• Is a way to detect a known waveform in a noisy background 
(matched filter)

• Algorithm

for k=1:K+N-1

for n=1:N

y(k)=y(k)+a(n)*b(k+n-1);   

end

end







1

0

)()()(
N

n

xy nkynxkr
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A correlation example

(a) A PN code

(b) A noisy binary 

signal (10101010) 

coded by the PN 

code in (a)

(c) Result of the 

correlation between 

(a) and (b)

(d) Recovered signal 

(10101010) after 

thresholding

(a) (b)

(c) (d)

Measures of Variability

• When summarizing the variability of a 

population or process, we typically ask, 

– “How far from the center (sample mean) do the 

samples (data) lie?” 

• To answer this question, we typically use the

following estimates that represent the spread of 

the sample data: 

– interquartile ranges, 

– sample variance,

– sample standard deviation.

60
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Measures of Variability

• The interquartile range is the difference between 

the 1st and 3rd quartiles of the sample data. 

• For sampled data, the median is also known as the 

2nd quartile, Q2. 

• Given Q2, we can find the 1st quartile, Q1, by 

simply taking the median value of those samples 

that lie below the 2nd quartile. 

• We can find the 3d quartile, Q3, by taking the 

median value of those samples that lie above the 

2nd quartile. 
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Measures of Variability

• As an illustration, we have the following samples:
1, 3, 3, 2, 5, 1, 1, 4, 3, 2.

• If we list these samples in descending order,
5, 4, 3, 3, 3, 2, 2, 1, 1, 1,

• the median value (2nd quartile) for these samples is 2.5. 

• The 1st quartile, Q1, can be found by taking the median of the 
following samples,

2.5, 2, 2, 1, 1, 1,

which is 1.5. 

• The 3d quartile, Q3, may be found by taking the median value of the
following samples:

5, 4, 3, 3, 3, 2.5,

which is 3. 

• Thus, the interquartile range, 

Q3 − Q1 = 3 − 1.5 = 2.

62

Measures of Variability

63

Measures of Variability

• Standard deviation (SD) is used for data which 

are “normally distributed”, to provide

information on how much the data vary around 

their mean.

– SD indicates how much a set of values is spread

around the average.

• A range of one SD above and below the mean

(abbreviated to ± 1 SD) includes 68.2% of the values.

• ± 2 SD includes 95.4% of the data.

• ± 3 SD includes 99.7%.

64

Measures of Variability

• Example:
• Let us say that a group of patients enrolling for a trial had a normal

distribution for weight. The mean weight of the patients was 80 kg. For this 

group, the SD was calculated to be 5 kg.

• normal distribution of weights of patients enrolling in a trial with mean 80 kg, SD 5 kg.

• 1 SD below the average is 80 – 5 = 75 kg.

• 1 SD above the average is 80 + 5 = 85 kg.

• ± 1 SD will include 68.2% of the subjects, 

so 68.2% of patients will weigh between 

75 and 85 kg.

• 95.4% will weigh between 70 and 90 kg 

(± 2 SD).

• 99.7% of patients will weigh between 65 

and 95 kg (± 3 SD)

65

Measures of Variability

• It is important to note that for normal 

distributions (symmetrical histograms), sample 

mean and sample deviation are the only 

parameters needed to describe the statistics of 

the underlying phenomenon. 

• Thus, if one were to compare two or more 

normally distributed populations, one only

need to test the equivalence of the means and 

variances of those populations.
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Gaussian Distribution…

• The spread (distribution) of data may be 

rectangular, skewed, Gaussian, or other. 

• The Gaussian distribution is given by

where μ is the true mean and σ is the true 

standard deviation of a very large number of 

measurements.

67





2
)(

)2/()( 22


Xe

Xf

…Gaussian Distribution

• For the normal distribution, 68% of the data lies within ±1 standard 

deviation. By measuring samples and averaging, we obtain the estimated 

mean , which has a smaller standard deviation sx.  is the tail probability 

that xs does not differ from  by more than .

Frequency

Population standard

deviation 

Estimated mean x
s

standard deviation s
x




x +  

Mean
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Poisson Probability…

• The Poisson probability density function is another type of 

distribution. 

– It can describe, among other things, the probability of radioactive decay 

events, cells flowing through a counter, or the incidence of light 

photons. 

• The probability that a particular number of events K will occur 

in a measurement (or during a time) having an average number 

of events m is

• The standard deviation of the Poisson distribution is 
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!
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K
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Km



m

…Poisson Probability

• A typical Poisson distribution for m = 3.
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Hypothesis testing…

• In hypothesis testing, there are two hypotheses. 

– H0, the null hypothesis, 

• a hypothesis that assumes that the variable in the experiment will have no effect on 

the result

– Ha is the alternative hypothesis that states that the variable will affect 

the results. 

• For any population, one of the two hypotheses must be true. 

• The goal of hypothesis testing is to find out which hypothesis 

is true by sampling the population.

• In reality, H0 is either true or false and we draw a conclusion 

from our tests of either true or false. 

• This leads to four possibilities (next slide)

71

…Hypothesis testing…

• The four outcomes of hypothesis testing.

72

Conclusion Real situation

H0 true Ha true

Accept H0 Correct decision Type II error, p = b

Reject H0 Type I error, p = a Correct decision
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…Hypothesis testing…

• Equivalent table of the table given in previous slide 

for results relating to a condition or disease.

73

Test result Has condition?

No Yes

Negative True negative (TN) False negative (FN)

Postitive False positive (FP) True positive (TP)

…Hypothesis testing…

• The terms in the Table in previous slide are 

useful for defining measures that 

– describe the proportion of, for example, a disease 

in a population and the success of a test in 

identifying it.

• Incidence 

– is the number of cases of a disease during a stated 

period, such as x cases per 1000 per year.

74

…Hypothesis testing…

• Prevalence 

– the number of cases of a disease at a given time 

such as y cases per 1000. 

• It is all diseased persons divided by all persons.

75

FPFNTPTN

FNTP
Prevalence






…Hypothesis testing…

• Sensitivity 

– the probability of a positive test result when the disease is present.

– Among all diseased persons, it is the percent who test positive.

• Specificity 

– the probability of a negative diagnostic result in the absence of the 

disease. 

– Among all normal persons, it is the percent who test negative.
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%100
FNTP

TP
ySensitivit




%100
FPTN

TN
ySpecificit




…Hypothesis testing…

• Considering only those who test positive, 

– positive predictive value (PPV) is the ratio of patients who have the 

disease to all who test positive.

• Considering only those who test negative, 

– negative predictive value (NPV) is the ratio of nondiseased patients to all 

who test negative.
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%100
FPTP

TP
PPV




%100
FNTN

TN
NPV




…Hypothesis testing

• The test result threshold is set to minimize 

false positives and false negatives.

78

Normal

population

Diseased

population

True

negative

False

positive, p = 

True

positive

Threshold

False

negative, p = b
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Errors in measurements…

• When we measure a variable, we seek to determine the true 

value. 

• This true value may be corrupted by a variety of errors. 

• For example 

– Movement of electrodes on the skin may cause an undesired added 

voltage called an artifact. 

– Electric and magnetic fields from the power lines may couple into the 

wires and cause an undesired added voltage called interference

– Thermal voltages in the amplifier  semiconductor junctions may cause 

an undesired added random voltage called noise. 

– Temperature changes in the amplifier electronic components may cause 

undesired slow changes in voltage called drift.

• We must evaluate each of these error sources to determine their 

size and what we can do to minimize them. 

79

…Errors in measurements…

(a) (b)

(a) Signals without noise are uncorrupted. 

(b) Interference superimposed on signals causes 

error. 

Frequency filters can be used to reduce noise and 

interference.
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…Errors in measurements…

(a) (b) (c)

(a) Original waveform. 

(b)An interfering input may shift the baseline.

(c) A modifying input may change the gain.
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Accuracy and precision…

• Resolution 

– the smallest incremental quantity that can be reliably measured. 

• a voltmeter with a larger number of digits has a higher resolution than 

one with fewer digits. 

– However, high resolution does not imply high accuracy.

• Precision

– the quality of obtaining the same output from repeated 

measurements from the same input under the same conditions. 

– High resolution implies high precision.

• Repeatability 

– the quality of obtaining the same output from repeated 

measurements from the same input over a period of time.
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…Accuracy and precision…

• Data points with 

(a) low precision 
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(b) high precision

…Accuracy and precision…

• Accuracy

– the difference between the true value and 

the measured value divided by the true 

value. 

• Obtaining the highest possible precision, 

repeatability, and accuracy is a major goal in 

bioinstrumentation design.
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…Accuracy and precision…

• Data points with 

(a) low accuracy
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(b) high accuracy

Calibration…

• Measuring instruments should be calibrated 

against a standard that 

– has an accuracy 3 to 10 times better than the 

desired calibration accuracy. 

• The accuracy of the standard should be  

traceable to the institutions regulating the 

standards 

– National Institute of Standards and Technology, 

TSI, etc. .

86

Calibration…

• If the instrument is linear, 

– its output can be set to zero for zero input. 

– Then a one-point calibration defines the calibration curve that plots output 

versus input (next slide).

• If the linearity is unknown, 

– a two-point calibration should be performed and these two points plus the zero 

point plotted to ensure linearity (next slide). 

• If the resulting curve is nonlinear, 

– many points should be measured and plotted to obtain the calibration curve.

• If the output cannot be set to zero for zero input, 

– measurements should be performed at zero and full scale for linear instruments 

and at more points for nonlinear instruments.

• Calibration curves should be obtained at several expected temperatures 

to determine temperature drift of the zero point and the gain.
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…Calibration

(a) (b)

(a) The one-point calibration may miss nonlinearity. 

(b) The two-point calibration may also miss nonlinearity.

Output

Input

Output

Input
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