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Introduction to Bioinformatics Data analysis – “The Concept”

• Approach to de-synthesizing data, informational, 
and/or factual elements to answer research 
questions

• Method of putting together facts and figures to 
solve research problems

• Systematic process of utilizing data to address 
research questions

• Breaking down research issues through utilizing 
controlled data and factual information
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Categories of data analysis

– Narrative (e.g. laws, arts)

– Descriptive (e.g. social sciences)

– Statistical/mathematical (pure/applied sciences)

– Audio-Optical (e.g. telecommunication)

– Others

• Most research analyses adopt the first three

• The second and third are most popular in pure, 

applied, and social sciences
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Statistical Methods

• Something to do with “statistics”
– Statistics

• meaningful quantities about a sample of objects, things, 
persons, events, phenomena, etc. 

• Widely used in many fields (social sciences, engineering, 
etc.)

• Simple to complex issues. E.g.
– correlation
– anova
– manova
– regression
– econometric modelling

• Two main categories:
– Descriptive statistics
– Inferential statistics
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Descriptive statistics

• Use sample information to explain/make 

abstraction of population “phenomena” 

• Common “phenomena”:
– Association
– Tendency 
– Causal relationship
– Trend, 
– Pattern, 
– Dispersion, 
– Range

• Used in non-parametric analysis 
– e.g. chi-square, t-test, 2-way anova
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Inferential statistics

• Using sample statistics to infer some 

phenomena of population parameters

• Common phenomena: cause-and-effect   
– One-way relationship

– Multi-directional relationship

– Recursive

• Use parametric analysis
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Y1 = f(Y2, X, e1)

Y2 = f(Y1, Z, e2)

Y1 = f(X, e1)

Y2 = f(Y1, Z, e2)
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Which one to use?

• Nature of research
– Descriptive in nature?

– Attempts to infer, predict, find cause-and-effect, 

influence, relationship?

– Is it both?

• Research design (including variables involved)
– E.g. outputs/results expected

• research issue

• research questions

• research hypotheses

7

How to avoid mistakes - Useful tips

• Crystalize the research problem 
– operability of it! 

• Read literature on data analysis techniques

• Evaluate various techniques that can do similar 

things with respect to research problem

• Know what a technique does and what it 

doesn’t

• Consult people, esp. supervisor

• Pilot-run the data and evaluate results
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Principles of analysis…

• Goal of an analysis is to…
– explain cause-and-effect  phenomena

– relate research with real-world event

– predict/forecast the real-world phenomena based on 

research

– find answers to a particular problem

– make conclusions about real-world event based on 

the problem

– learn a lesson from the problem
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…Principles of analysis…

• Data cannot talk
• An analysis contains some aspects of 

scientific reasoning/argument:
– Define

– Interpret

– Evaluate

– Illustrate

– Discuss

– Explain

– Clarify

– Compare

– Contrast
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…Principles of analysis…

• An analysis must  have four elements:
– Data/information (what)

– Scientific reasoning/argument 
• what? who? where? how? what happens?

– Finding 
• what results?

– Lesson/conclusion 
• so what? so how?  therefore, …
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…Principles of data analysis…

• Basic guide to data analysis:
– Analyze, not narrate

– Go back to research flowchart

– Break down into research objectives and research 

questions

– Identify phenomena to be investigated

– Visualize the expected answers

– Validate the answers with data

– Do not tell something not supported by data

12
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…Principles of data analysis

• When analyzing:
– Be objective

– Be accurate

– Be true

• Separate facts and opinion

• Avoid “wrong” reasoning/argument. 
– E.g. mistakes in interpretation.
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Description of samples and populations

• Statistics is about making statements about a 

population from data observed from a 

representative sample of the population. 

• A population
– a collection of subjects whose properties are to be 

analyzed. 

– contains all subjects of interest. 

• A sample
– a part of the population of interest 

– a subset selected by some means from the

population. 
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Description of samples and populations

• A parameter 
– a numerical value that describes a characteristic of 

a population

• A statistic
– a numerical measurement that describes a 

characteristic of a sample

• We use a statistic to infer something about a 

parameter.
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Data exploration

• After collecting data, the next step towards 

statistical inference and decision making is to 

perform data exploration, 
– which involves visualizing and summarizing the data.

• The objective of data visualization is to obtain a high level 

understanding of the sample and their observed (measured) 

characteristics.

• To make the data more manageable, we need to 

further reduce the amount of information in some 

meaningful ways so that we can focus on the key 

aspects of the data. 
– Summary statistics are used for this purpose.
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Data exploration

• Using data exploration techniques, we can learn 

about the distribution of a variable.
– The distribution of a variable tells us 

• the possible values it can take, 

• the chance of observing those values, 

• how often we expect to see them in a random sample from the 

population.

• Through data exploration, we might detect 

previously unknown patterns and relationships that 

are worth further investigation.
– We can also identify possible data issues, such as 

unexpected or unusual measurements, known as 

outliers.
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Statistical inference

• We collect data on a sample from the 

population in order to learn about the whole 

population.
– {For example, Mackowiak, et al. (1992) measure 

the normal body temperature for 148 people to 

learn about the normal body temperature for the 

entire population.
• In this case, we say we are estimating the unknown 

population average.
– However, the characteristics and relationships in the whole 

population remain unknown.

• Therefore, there is always some uncertainty associated 

with our estimations.}
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Statistical inference

• The mathematical tool to address uncertainty in 

Statistics

– probability.

• The process of using the data to draw conclusions 

about the whole population, while acknowledging 

the extent of our uncertainty about our findings, is 

called statistical inference.

– The knowledge we acquire from data through statistical 

inference allows us to make decisions with respect to 

the scientific problem that motivated our study and our 

data analysis.
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Data types

• The type(s) of data collected in a study 

determine 
– the type of statistical analysis that can be used 

– which hypotheses can be tested

– which model we can use for prediction. 

• Broadly speaking, data can be classified into 

two major types: 
– categorical 

– quantitative

20

Categorical data

• Categorical data can be grouped into categories 

based on some qualitative trait. 

• The resulting data are merely labels or 

categories, 
– {examples include

• gender (male and female) 

• ethnicity (e.g., Caucasian, Asian, African)}

• We can further sub-classify categorical data 

into two types: 
– nominal 

– ordinal
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Categorical data

• Nominal data
– When there is no natural ordering of the categories 

we call the data nominal. 
• {Hair color is an example of nominal data}

• Ordinal data 
– When the categories may be ordered, the data are 

called ordinal variables. 
• {Categorical variables that judge pain (e.g., none, little, 

heavy) or income (low-level income, middle-level 

income, or high-level income) are examples of ordinal 

variables.}
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Quantitative data

• Quantitative data are numerical measurements 

where 
– the numbers are associated with a scale measure 

rather than just being simple labels. 

• Quantitative data fall in two categories: 
– discrete 

– continuous
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Quantitative data

• Discrete quantitative data
– numeric data variables that have a finite or 

countable number of possible values. 
• When data represent counts, they are discrete. 

– {Examples include household size or the number of kittens in a 

litter.}

• Continuous quantitative data
– The real numbers are continuous with no gaps; 

• physically measurable quantities like length, volume, 

time, mass, etc., are generally considered continuous. 

24
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Categorical vs Quantitative data

• Categorical data are typically summarized 

using frequencies or proportions of 

observations in each category 

• Quantitative data typically are 

summarized using averages or means.
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Describing Data

• Once data are collected, the next step is to 

summarize it all to get a handle on the big 

picture. 

• Statisticians describe data in two major ways: 
– with pictures 

• that is, charts and graphs

– with numbers, 
• called descriptive statistics.
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Charts and graphs

• Data are summarized in a visual way using 

charts and/or graphs
– Some of the basic graphs used include pie charts

and bar charts

– Some data are numerical

– Data representing counts or measurements need a 

different type of graph that either keeps track of the 

numbers themselves or groups them into numerical 

groupings. 
• One major type of graph that is used to graph numerical 

data is a histogram.
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Descriptive statistics

• Numbers that describe a data set in terms of its 

important features
– Categorical data are typically summarized using 

• the number of individuals in each group (the frequency) 

• the percentage of individuals in each group (the relative 

frequency)

– Numerical data represent measurements or counts, 

where the actual numbers have meaning
• more features can be summarized

– measures of center 

– measures of spread

– measures of the relationship between two variables

• Some descriptive statistics are better than others, 

• some are more appropriate than others
28

Data Visualization and Summary Statistics

• Preliminary steps before analysis:
– defining the scientific question we try to

answer,

– selecting a set of representative members from

the population of interest

– collecting data (either through observational

studies or randomized experiments),

• Analysis usually begins with data

exploration.
– We start by focusing on data exploration

techniques for one variable at a time.
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Data Visualization and Summary Statistics

• Objective is
– to develop a high-level understanding of the data,
– learn about the possible values for each

characteristic,
– find out how a characteristic varies among

individuals in our sample.

• Basicaly, we want to learn about the distribution
of variables.
– Recall that for a variable, the distribution shows

• the possible values,
• the chance of observing those values,
• how often we expect to see them in a random sample

from the population.

30
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Data Visualization and Summary Statistics

• The data exploration methods allow us to reduce

the amount of information so that we can focus

on the key aspects of the data.

• We do this by using data visualization techniques

and summary statistics.

• The visualization techniques and summary

statistics we use for a variable depend on its type
– Recall that we can classify them into two general groups:

• Numerical (quantitative) variables
– discrete, continuous

• Categorical variables
– nominal, ordinal
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Graphical summarization of data

• Before blindly applying the statistical analysis, 

it is always good to look at the raw data,
– usually in a graphical form, 

and then use graphical methods to summarize 

the data in an easy to interpret format.
– A Picture is worth a thousand word

• The types of graphical displays that are most 

frequently used by engineers 
– scatterplots, time series, box-and-whisker plots, and 

histograms.
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Exploring Categorical Variables

• A simple way for summarizing the data is to

create a table that shows the number of times

each category has been observed.

• The number of times a specific category is

observed is called frequency.
– We denote the frequency for category c by nc.

• The sum of the frequencies for all catagories is

equal to the total sample size

 

𝑐

𝑛𝑐 = 𝑛
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Relative Frequency and Percentage

• The relative frequency is the sample proportion for each

possible category.

• It is obtained by dividing the frequencies nc by the total

number of observations n:

pc =
nc

n
• Relative frequencies are sometimes presented as percentages

after multiplying proportions pc by 100.

• Since the relative frequencies are proportions of the sample

size, their sum is 1,

 

𝑐

𝑝𝑐 = 1

where pc is the relative frequency of category c.
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Exploring Numerical Variables

• For numerical variables, we are especially

interested in two key aspects of the distribution:
– its location

• refers to the central tendency of values, that is, the point

around which most values are gathered.

– its spread
• refers to the dispersion of possible values, that is, how

scattered the values are around the location.

35

Histograms

• defined as a frequency distribution commonly used to 

visualize numerical variables. 

• A histogram is similar to a bar graph after the values of 

the variable are grouped (binned) into a finite number of 

nonoverlapping intervals (bins), usually of equal width. 

• Given N samples or measurements, xi ranging from Xmin

to Xmax, the samples are binned into bins

• Typically, the number of bins is on the order of 7–14, 

depending on the nature of the data. 
– In addition, we typically expect to have at least 3 samples 

per bin. 
• Sturgess’rule may also be used to estimate the number of bins and is 

given by k = 1 + 3.3 log(n).
– where k is the number of bins and n is the number of samples.
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Histograms

• One bin of a 

histogram plot 

• The bin is 

defined by 
– a lower bound, 

– a midpoint, 

– an upper bound
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Histograms

• constructed by plotting the number of samples 

in each bin. 
– horizontal axis, 

• the sample value, 

– the vertical axis, 
• the number of occurrences of samples falling within a bin

• Next slide illustrates a histogram for 1000 

samples drawn from a normal distribution with 

mean (μ) = 0 and standard deviation (σ) = 1.0. 

38

Histograms

39

Histograms

• Two useful measures in describing a histogram:
– the absolute frequency in one or more bins

• fi = absolute frequency in ith bin

– the relative frequency in one or more bins 
• fi /n = relative frequency in ith bin, 

– where n is the total number of samples being summarized in the 

histogram

• The histogram can exhibit several shapes 
– symmetric, skewed, or bimodal.
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Histograms

• The bar height for each interval could be set to its

relative frequency pc= nc/n, or the percentage pc×100,

of observations that fall into that interval.

• For histograms, however, it is more common to use

the density instead of the relative frequency or

percentage.
– The density is the relative frequency for a unit interval.

• It is obtained by dividing the relative frequency by the interval

width:

fc = pc/wc

– Here, pc= nc/n is the relative frequency with nc as the frequency of interval

c and n as the total sample size.

– The width of interval c is denoted wc .
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Histograms

• The height of each bar in density histogram shows the

density of the corresponding interval (as opposed to its

frequency).

• For each interval c, the area of the corresponding bar

in the density histogram is calculated as follows

(hight×width):
ac = fc × wc = (pc / wc) × wc = pc

• Therefore, the area of each bar (rectangle) is the

relative frequency for the corresponding interval.
– Since the sum of relative frequencies is 1, the total area of

bars in a density histogram is 1.

42
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Histograms

• When creating a histogram, it is
important to choose an appropriate
value for w (Number of Bins) .

• Besides the location and spread of a
distribution, the shape of a
histogram also shows us how the
observed values spread around the
location.

• We say the following histogram is
symmetric around its location (here,
zero) since the densities are the
[almost] same for any two intervals
that are equally distant from the
center.
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Histograms

• In many situations, we find that a histogram is stretched
to the left or right.

• We call such histograms skewed.
– More specifically, we call them left-skewed if they are

stretched to the left, or right-skewed if they are stretched to
the right.
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Histograms

• The histograms in previous slides, whether

symmetric or skewed, have one thing in common
– they all have one peak (or mode).

• We call such histograms (and their corresponding

distributions) unimodal.

• Sometimes histograms have multiple modes.
– The bimodal histogram appears to be a combination of

two unimodal histograms.
• Indeed, in many situations bimodal histograms (and

multimodal histograms in general) indicate that the underlying

population is not homogeneous and may include two (or more

in case of multimodal histograms) subpopulations.

45

Histograms

• Histogram of a bimodal distribution

• A smooth curve is superimposed so that 

the two peaks are more evident

46

• Histogram of protein consumption in 25

European countries for white meat in

Protein data set.

• The histogram is bimodal, which

indicates that the sample might be

comprised of two subgroups

Histograms

• The histogram is important because it serves as 
– a rough estimate of the true probability density

function or

– probability distribution of the underlying random 

process from which the samples are being collected.

• The probability density function or probability 

distribution is a function that quantifies the

probability of a random event, x, occurring. 
– When the underlying random event is discrete in 

nature, we refer to the probability density function 

as the probability mass function

47

Measures of Central Tendency

• Histograms are useful for visualizing numerical

data and identifying their location and spread.

• However, we typically use descriptive

or summary statistics for more precise

specification of the
– central tendency

– dispersion

of observed values.

48



Copyright 2000 N. AYDIN. All rights 

reserved. 9

Measures of Central Tendency

• A central tendency is a central or typical value 

for a probability distribution. 
– also called a center or location of the distribution. 

• Measures of central tendency are often called 

averages.

• There are several measures that reflect the 

central tendency
– sample mean, 

– sample median, 

– sample mode.

49

Mean

• In mathematics, mean has several different

definitions depending on contex.

• In probability and statistics
– mean and expected value are synonymous

• In case of a discrete probability distribution of

random variable x,
– the mean is equal to the sum over every possible

value weighted by the probability of that value

𝜇 =  𝑥𝑃(𝑥)

50

Mean

• For a data set, the terms 
– arithmetic mean, 
– mathematical expectation, 
– sometimes average

are used synonymously to refer to a central value 
of a discrete set of numbers
– specifically, the sum of the values divided by the 

number of values. 

• If the data set were based on a series of 
observations obtained by sampling from a 
statistical population, 
– the arithmetic mean is termed as the sample mean to 

distinguish it from the population mean
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Mean

• Arithmetic mean (or simply mean) of a sample 𝑥1, 
𝑥2…, 𝑥n, usually denoted by  𝑥

 𝑥 =
𝑥1 + 𝑥2 +⋯+𝑥n

𝑛
• It is used when the spread of the data is fairly 

similar on each side of the mid point

52

– when the data are 

“normally distributed”.
• If a value is a lot smaller or larger 

than the others, “skewing” the 

data, the mean will then not give a 

good picture of the typical value.

Mean

• Geometric mean is an average that is useful for sets of 

positive numbers that are interpreted according to their

product, e.g.  rates of growth

 𝑥 = 𝑛 𝑥1𝑥2…𝑥n

• Harmonic mean is an average which is useful for sets

of numbers that are defined in relation to some unit, 

for example speed

 𝑥 =
𝑛

1
𝑥1
+
1
𝑥2
+⋯+

1
𝑥n
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Mean

• The relationship between Arithmetic mean, Geometric mean, and

Harmonic mean:
Arithmetic mean × Harmonic mean = Geometric mean2

• Arithmetic mean, Geometric mean, and Harmonic mean satisfy the

following inequalities:
Arithmetic mean ≥ Geometric mean ≥ Harmonic mean
• Equality holds if and only if all the elements of the given sample are equal

• The arithmetic mean is best used in situations where:
– the data are not skewed (no extreme outliers)

– the individual data points are not dependent on each other

• The geometric mean should be used whenever the data are inter-

related

• The harmonic mean is best to use when there is:
– A large population where the majority of the values are distributed 

uniformly but where there are a few outliers with significantly higher values
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Mean

• Weighted arithmetic mean is used if one wants to

combine average values from samples of the same

population with different sample sizes

 𝑥 =
 𝑖=1
𝑛 𝑤𝑖 × 𝑥𝑖
 𝑖=1
𝑛 𝑤𝑖

– The weights 𝑤𝑖 represent the sizes of the different samples.

– In other applications, they represent a measure for the

reliability of the influence upon the mean by respective

values.
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Mean

• A power mean is a mean of the form

𝑀𝑝 =
1

𝑛
 

𝑘=1

𝑛

𝑥𝑘
𝑝

 1 𝑝

𝑀−∞ minimum

𝑀−1 harmonic mean

𝑀0 geometric mean

𝑀1 arithmetic mean

𝑀2 root-mean-square

𝑀∞ maximum
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Median

• Sometimes known as the mid-point.
– It is used to represent the average when the data are 

not symmetrical (skewed distribution)
• The median value of a group of 

observations or samples, xi, is the 

middle observation when samples, 

xi, are listed in descending order.

• Note that if the number of samples, n, is odd, the median will be the middle 

observation. 

• If the sample size, n, is even, then the median equals the average of two 

middle observations. 

• Compared with the sample mean, the sample median is less susceptible to 

outliers. 
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Median

• The median may be given with its inter-quartile 

range (IQR). 

• The 1st quartile point has the 1⁄4 of the data 

below it 

• The 3rd quartile point has the 3⁄4 of the sample 

below it 

• The IQR contains the middle 1⁄2 of the sample 

• This can be shown in a “box and whisker” plot.
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Mode

• the most common of a set of events
– used when we need a label for the most frequently 

occurring event
• Example: An eye clinic sister noted the eye colour of 100 

consecutive patients. The results are shown below

• Graph of eye colour of 

patients attending an eye 

clinic.

• In this case the mode is 

brown, the commonest 

eye colour.

59

Mean, Median, Mode

• Comparison of the arithmetic mean, 

median and mode of two skewed (log-

normal) distributions.

60

• Geometric visualisation of the 

mode, median and mean of an 

arbitrary probability density 

function.
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Measures of Variability

• When summarizing the variability of a 

population or process, we typically ask, 
– “How far from the center (sample mean) do the 

samples (data) lie?” 

• To answer this question, we typically use the

following estimates that represent the spread of 

the sample data: 
– sample variance,

– sample standard deviation. 

– interquartile ranges, 

61

Variance and standard deviation

• Two common summary statistics for measuring

dispersion are the sample variance and sample

standard deviation.

• These two summary statistics are based on the

deviation of observed values from the mean as

the center of the distribution.

• For each observation, the deviation from the

mean is calculated as

𝑥𝑖 −  𝑥

62

Variance and standard deviation

• The sample variance is a common measure of 

dispersion based on the squared deviations.

• The square root of the variance is called the 

sample standard deviation.
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Measures of Variability

• Standard deviation (SD) is used for data which 

are “normally distributed”, 
– to provide information on how much the data vary 

around their mean.

• SD indicates how much a set of values is 

spread around the average.
• A range of one SD above and below the mean

(abbreviated to ± 1 SD) includes 68.2% of the values.

• ± 2 SD includes 95.4% of the data.

• ± 3 SD includes 99.7%.
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Variance and standard deviation

• Some properties that can help you when 

interpreting a standard deviation:
– The standard deviation can never be a negative 

number.

– The smallest possible value for the standard 

deviation is 0
• (when every number in the data set is exactly the same).

– Standard deviation is affected by outliers, as it’s 

based on distance from the mean, which is affected 

by outliers.

– The standard deviation has the same units as the 

original data, while variance is in square units.

65

Measures of Variability

• It is important to note that for normal 

distributions (symmetrical histograms), 
– sample mean and sample deviation are the only 

parameters needed to describe the statistics of the 

underlying phenomenon. 

• Thus, if one were to compare two or more 

normally distributed populations, 
– one only needs to test the equivalence of the means 

and variances of those populations.

66
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Quantile

• comes from the word quantity
• A quantile is where a sample is divided into 

equal-sized, adjacent, subgroups 
– (quantile is also called a fractile)

• It can also refer to dividing a probability 
distribution into areas of equal probability

• Quartiles are also quantiles; 
– they divide the distribution into 4 equal parts. 

• Percentiles are quantiles;
– they divide a distribution into 100 equal parts 

• Deciles are quantiles;
– they divide a distribution into 10 equal parts.

67

Percentiles

• the most common way to report relative 

standing of a number within a data set 

• A percentile is the percentage of individuals in 

the data set who are below where your 

particular number is located. 
– For example, 

– if your exam score is at the 90th percentile, that 

means 
• 90% of the people taking the exam with you scored 

lower than you did 

• 10 percent scored higher than you did
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Quartile

• For sampled data, the median is also known as 
– the 2nd quartile, Q2. 

• Given Q2, we can find the 1st quartile, Q1, 
– by simply taking the median value of those samples that lie 

below the 2nd quartile. 

• We can find the 3d quartile, Q3, 
– by taking the median value of those samples that lie above 

the 2nd quartile. 

• Quartiles can also be found in terms of 
percentiles:
– 1st quartile is 25th percentile
– 2nd quartile is 50th percentile
– 3rd quartile is 75th percentile
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Measures of Variability

70

Five-number summary

• The minimum (min), which is the smallest value of the
variable in our sample, is in fact the 0 quantile.

• On the other hand, the maximum (max), which is the 
largest value of the variable in our sample, is the 1 
quantile.

• The minimum and maximum along with quartiles (Q1, 
Q2, and Q3) are known as five-number summary.

• These are usually presented in the increasing order: 
– min, 1st quartile, median, 3rd quartile, max
– min, 25th percentile, median, 75th percentile, max

• This way, the five-number summary provides 
– 0, 0.25, 0.50, 0.75, and 1 quantiles
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Five-number summary

• The five-number summary can be used to 

derive two measures of dispersion: 

– the range
• the difference between the maximum observed value and 

the minimum observed value.

– the interquartile range (IQR) 
• the difference between the third quartile (Q3) and the 

first quartile (Q1).

IQR = Q3 - Q1

72
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Boxplot

• This simplest possible box 
plot displays the full range of 
variation (from min to max), 
the likely range of variation 
(the IQR), and a typical value 
(the median). 

• Not uncommonly real datasets 
will display surprisingly high 
maximums or surprisingly low 
minimums called outliers. 

– John Tukey has provided a precise definition for two types of outliers:
• 3×IQR or more above the Q3 => (Q3 + 3 x IQR)
• 3×IQR or more below the Q1 => (Q1 - 3 x IQR)

– Suspected outliers are slightly more central versions of outliers: 
• 1.5×IQR or more above the Q3 => (Q3 + 1.5 x IQR)
• 1.5×IQR or more below the Q1 => (Q1 - 1.5 x IQR)
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Data Transformation

• We rely on data transformation techniques 
– to reduce the influence of extreme values in our 

analysis. 

• The reasons for data transformation:
– to make the distribution of the data normal, 
– to create more informative graphs of the data, 
– better outlier identification 
– increasing the sensitivity of statistical tests 

• Two of the most common transformation 
functions for this purpose are 
– logarithm
– square root.
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Coefficient of Variation

• In general, the coefficient of variation is used to 

compare variables in terms of their dispersion

when the means are substantially different 
– possibly as the result of having different

measurement units.

• To quantify dispersion independently from 

units, we use the coefficient of variation, 
– which is the standard deviation divided by the 

sample mean 

• assuming that the mean is a positive number:

𝐶𝑉 =
𝑠

 𝑥
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Scaling and Shifting Variables

• In general, when we multiply the observed values of a 

variable by a constant a, its mean, standard deviation, 

and variance are multiplied by a, |a|, and a2, 

respectively.
– That is, if y = ax, then

•  𝑦=a  𝑥, 𝑠𝑦= 𝑎 𝑠𝑥, 𝑠𝑦
2=𝑎2𝑠𝑥

2

• The coefficient of variation is not affected. 
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Scaling and Shifting Variables

• If we shift the observed values by b, i.e., y = x + b, then

 𝑦=  𝑥 + 𝑏, 𝑠𝑦=𝑠𝑥 , 𝑠𝑦
2=𝑠𝑥
2

• If we multiply the observed values by the constant a and then 

add the constant b to the result, i.e., y = ax +b, then

 𝑦=a  𝑥 + 𝑏, 𝑠𝑦= 𝑎 𝑠𝑥, 𝑠𝑦
2=𝑎2𝑠𝑥

2

• the coefficient of variation will change.

• If y = ax +b (assuming a >0 and b = 0), then
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Variable Standardization

• Variable standardization is a common linear 
transformation, 
– where we subtract the sample mean  𝑥 from the 

observed values and divide the result by the sample
standard deviation s, 

• in order to shift the mean to zero and make the standard 
deviation 1:

• Using such transformation is especially common 
in regression analysis and clustering.

• Subtracting  𝑥 from the observations shifts the 
sample mean to zero. 
– This, however, does not change the standard deviation. 

• Dividing by s, on the other hand, changes the sample standard
deviation to 1
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Exploring Relationships

• Two numerical variables
– Scatterplot Matrix

• The relationship is simply an association and should not 

be regarded as causation since the data come from an 

observational study
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Exploring Relationships

• Two numerical variables
– Correlation

• To quantify the strength and direction of a linear 

relationship between two numerical variables
– Considering a set of observed pairs of values, (x1, y1), (x2, y2), . . 

. , (xn, yn), for a sample of n observations Pearson's correlation 

coefficient, r , can be used as a summary statistic

– sx and sy denote the sample standard deviations 

• The values of r are always between -1 and +1.

• The relationship is strong when r approaches -1 or +1.

• The sign of r shows the direction (negative or positive) 

of the linear relationship.
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Exploring Relationships

• Two numerical variables
– Cross-correlation

• Is a measure of similarities of two signals 

– Auto-correlation
• when x(n) = y(n)

– Algorithm for Cross/Auto-correlation

for k=1:K+N-1

for n=1:N

r(k)=r(k)+x(n)*y(k+n-1);   

end

end
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Exploring Relationships

• Two numerical variables
– Sample Covariance

• If the standard deviations are removed from the 

denominator in Pearson’s correlation coefficient, the 

statistic is called the sample covariance,

• Therefore
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Exploring Relationships

• Two categorical variables
– contingency tables 

• used to summarize the relationship between several 

categorical variables. 

• a special type of frequency distribution table, where two 

variables are shown simultaneously.

• sample proportion can be calculated
– proportion of people suffered from a heart attack in the placebo 

group p1 = 189/11034 = 0.0171

– proportion of people suffered from heart attack in the aspirin 

group p2 = 104/11037 = 0.0094
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Exploring Relationships

• Two categorical variables
– One way of measuring the strength of the 

relationship is to calculate the difference of 

proportions, p2-p1.
• In the example, p2-p1 = -0.0077

– proportion of people suffered from heart attack reduces by 

0.0077 in the aspirin group compared to the placebo group, or

– Another common summary statistic for comparing 

sample proportions is the relative proportion, p2/p1

• If p2 = p1 , p2/p1= 1, which is interpreted as no 

relationship between the two categorical variables
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Exploring Relationships

• Two categorical variables
– It is more common to compare the sample odds

– where p is the sample proportion for the event of interest

• The odds of a heart attack in the placebo group, o1, and 

in the aspirin group, o2, are

– We usually compare the sample odds using the 

sample odds ratio

• If OR = 1, no relationship between 

• Values of RO away from 1, indicate strong relationship
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Exploring Relationships

• Numerical and Categorical Variables
– dot plots (a.k.a. strip chart) 

• The dot plots of ascorbic acid (one form of vitamin C) 

content (numerical) by cultivar (categorical). 
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Exploring Relationships

• Numerical and Categorical Variables
– boxplots of the numerical variable for different 

values of the categorical variable
• This plot suggests that vitamin C 

content tends to be higher in the c52 

group compared to the c39 group. 
– This is indicative of a possible 

relationship between these two variables.

• Summary statistics of vitamin C 

content by cultivar from the

cabbages data set
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Probability as a Measure of Uncertainty

• Plots and summary statistics are used to learn
about the distribution of variables and to
investigate their relationships.
– However, we always remain uncertain about the

true distributions and relationships in the population
since we almost never have access to all of its
members.

– Furthermore, our findings based on the observed
sample can change if different samples from the
population were obtained.

• Therefore, when we generalize our findings from
a sample to the whole population, we should
explicitly specify the extent of our uncertainty.
– We use probability as a measure of uncertainty.
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Probability as a Measure of Uncertainty

• A phenomenon is called random if its outcome 
(value) cannot be determined with certainty before 
it occurs.

• The collection of all possible outcomes S is called 
the sample space. 

• To each possible outcome in the sample space, we 
assign a probability P, 
– which represents how certain we are about the 

occurrence of the corresponding outcome.

• For an outcome o, we denote the probability as 
P(o), where 0 ≤ P(o) ≤ 1. 

• The total probability of all outcomes in the sample 
space is always 1
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Probability as a Measure of Uncertainty

• An event is a subset of the sample space S. 

• We denote the probability of event E as P(E). 
– The probability of an event is the sum of the 

probabilities for all individual outcomes included in 

that event.

• For any event E, we define its complement, Ec, 

as the set of all outcomes that are in the sample 

space S but not in E.

• The probability of the complement event is 

P(Ec) = 1− P(E)
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Probability as a Measure of Uncertainty

• The odds of an event shows how much more 

certain we are that the event occurs than we are 

that it does not occur. 
– For event E, we calculate the odds as follows:

• For two events E1 and E2 in a sample space S, 

we define their union E1 ∪ E2 as the set of all 

outcomes that are at least in one of the events.

• For two events E1 and E2 in a sample space S, 

we define their intersection E1 ∩ E2 as the set of 

outcomes that are in both events.
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Probability as a Measure of Uncertainty

• We refer to the probability of the intersection of 

two events, P(E1 ∩ E2), as their joint 

probability. 

• In contrast, we refer to probabilities P(E1) and 

P(E2) as the marginal probabilities of events E1

and E2.

• For any two events E1 and E2, we have 
P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2)

• Two events are called disjoint or mutually 

exclusive if they never occur together
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Probability as a Measure of Uncertainty

• The conditional probability, denoted P(E1|E2), is 
– The probability of event E1 given that another event 

E2 has occurred. (P(E2) ≠ 0)

• Two events E1 and E2 are independent if our 

knowledge of the occurrence of one event does 

not change the probability of occurrence of the 

other event.

• If events E1, E2 , ..., En are independent:
P(E1 ∩ E2 ∩ ... ∩ E2) = P(E1) × P(E2) × ... × P(En)
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Probability as a Measure of Uncertainty

• According to Bayes’ theorem or Bayes’ rule
– for two events E1 and E2, the following equation 

shows the relationship between P(E2|E1) and 

P(E1|E2): 

• The general form of Bayes’ theorem
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Interpretation of Probability as the Relative Frequency

• The random phenomena can be observed 
repeatedly.
– These repeated experiments or observations are called

trials. 

• For such random phenomena, the probability of an 
event can be interpreted in terms of the relative 
frequency. 

• The above interpretation of probability requires two 
important assumptions. 
– We assume that the probability of events does not 

change from one trial to another. 
– We also assume that the outcome of one trial does not 

affect the outcome of another trial.
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Gaussian Distribution…

• The spread (distribution) of data may be 

rectangular, skewed, Gaussian, or other. 

• The Gaussian distribution is given by

where μ is the true mean and σ is the true 

standard deviation of a very large number of 

measurements.
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…Gaussian Distribution

• For the normal distribution, 68% of the data lies within ±1 SD. 

• By measuring samples and averaging, we obtain the estimated 

mean , which has a smaller standard deviation sx. 

•  is the tail probability that xs does not differ from  by more 

than .

Frequency

Population standard

deviation 

Estimated mean x
s

standard deviation s
x




x +  

Mean
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Poisson Probability…

• The Poisson probability density function is another type of 

distribution. 
– It can describe, among other things, the probability of radioactive decay 

events, cells flowing through a counter, or the incidence of light photons. 

• The probability that a particular number of events K will occur 

in a measurement (or during a time) having an average number 

of events m is

• The standard deviation of the Poisson distribution is 
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…Poisson Probability

• A typical Poisson distribution for m = 3.
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Parameter Estimation

• The objective of statistics is to make inferences about 

a population based on information contained in a 

sample. 

• Populations are characterized by numerical descriptive 

measures called parameters. 

• Typical population parameters are the mean , the 

median M, the standard deviation , and a proportion 

. 

• Most inferential problems can be formulated as an 

inference about one or more parameters of a 

population.
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Parameter Estimation

• Methods for making inferences about parameters fall 

into one of two categories:
– estimate the value of the population parameter of interest

– test a hypothesis about the value of the parameter 

• These two methods of statistical inference involve 

different procedures, and they answer two different 

questions about the parameter.
– In estimating a population parameter, we are answering the 

question 
• “What is the value of the population parameter?” 

– In testing a hypothesis, we are seeking an answer to the 

question
• “Does the population parameter satisfy a specified condition? ”
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Parameter Estimation

• Estimation refers to the process of guessing the 
unknown value of a parameter (e.g., population mean) 
using the observed data. 

• For this, an estimator, which is a statistic, is used.
– A statistic is a function of the observed data only.

• Sometimes we only provide a single value as our 
estimate.
– This is called point estimation. 

• Point estimates do not reflect our uncertainty when estimating a 
parameter.

• We always remain uncertain regarding the true value of the parameter 
when we estimate it using a sample from the population. 

• To address this issue, we can present our estimates in 
terms of a range of possible values. 
– This is called interval estimation.
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Hypothesis Testing

• A hypothesis (plural: hypotheses), 
– a testable statement about the relationship between two or 

more variables

– a proposed explanation for some observed phenomenon. 

• In a scientific experiment or study, the 

hypothesis is 
– a brief summation of the researcher's prediction of the 

study's findings, which may be supported or not by the 

outcome. 

• Hypothesis testing is the core of the scientific 

method.
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Scientific method 

• an approach to seeking knowledge that involves 
forming and testing a hypothesis. 

• used to answer questions in a wide variety of 
disciplines outside of science, including business. 

• provides a logical, systematic way to answer 
questions and removes subjectivity by requiring 
each answer to be authenticated with objective 
evidence that can be reproduced. 

• Goal of scientific method is to gather data that will 
validate or invalidate a cause and effect 
relationship.
– often carried out in a linear manner, but the approach 

can also be cyclical, because once a conclusion has 
been reached, it often raises more questions. 
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Scientific method 
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Hypothesis

• In general, many scientific investigations start by 
expressing a hypothesis.

• To evaluate hypotheses, we rely on 
– estimators, 
– their sampling distributions, 
– their specific values 

from observed data.
• For example,

– Mackowiak et al.* hypothesized that the average normal 
(i.e., for healthy people) body temperature is less than the 
widely accepted value of 98.6°F. 

– If we denote the population mean of normal body 
temperature as μ, then we can express this hypothesis as 
μ<98.6.
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*Mackowiak, P.A., Wasserman, S.S., Levine, M.M.: A critical appraisal of 98.6°F, the upper limit of the normal body 

temperature, and other legacies of Carl Reinhold AugustWunderlich.JAMA 268, 1578–1580 (1992)

Null and Alternative hypotheses

• The null hypothesis usually reflects the “status quo" or 
“nothing of interest".

• In contrast, we refer to our hypothesis (i.e., the 
hypothesis we are investigating through a scientific 
study) as the alternative hypothesis and denote it as HA.

• The procedure for evaluating a hypothesis is called 
hypothesis testing, and it rises in many scientific 
problems.

• For hypothesis testing, we focus on the null hypothesis 
since it tends to be simpler.

• To this end, we examine the evidence that the observed 
data provide against the null hypothesis H0. 
– If the evidence against H0 is strong, we reject H0. 
– If not, we state that the evidence provided by the data is not 

strong enough to reject H0, and we fail to reject it.
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Null and Alternative hypotheses

• With respect to our decision regarding the null 
hypothesis H0, we might make two types of errors:
– Type I error: 

• we reject H0 when it is true and should not be rejected.

– Type II error: 
• we fail to reject H0 when it is false and should be rejected.

• We denote the probability of making type I error as α
and the probability of making type II error as β.
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Actual Validity of H0

Decision 

Made

H0  is true H0  is false

Accept H0  True Negative False Negative

(Type II Error)

Reject H0  False Positive

(Type I Error)

True Positive 
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Null and alternative hypotheses

• Now suppose that we have a hypothesis testing procedure that 

fails to reject the null hypothesis when it should be rejected 

with probability β. 
– This means that our test correctly rejects the null hypothesis with 

probability 1 − β. 
• Note that the two events are complementary. 

– We refer to this probability (i.e., 1 − β) as the power of the test. 

• In practice, it is common to first agree on a tolerable type I 

error rate α, such as 0.01, 0.05, and 0.1. 

• Then try to find a test procedure with the highest power among 

all reasonable testing procedures.
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Hypothesis testing for the population mean

• To decide whether we should reject the null hypothesis, we 

quantify the empirical support (provided by the observed data) 

against the null hypothesis using some statistics.

• We use statistics to evaluate our hypotheses. 
– We refer to them as test statistics.

• To evaluate hypotheses regarding the population mean, we use the sample mean  𝑋 as 

the test statistic

• For a statistic to be considered as a test statistic, its sampling 

distribution must be fully known (exactly or approximately) 

under the null hypothesis.
– We refer to the distribution of test statistics under the null hypothesis as 

the null distribution.
• For the sample mean, the CLT states that the sampling distribution is approximately 

normal when the sample size is large.
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Regression Analysis

• The modeling of the relationship between a response 

variable and a set of explanatory variables is one of 

the most widely used of all statistical techniques. 
– We refer to this type of modeling as regression analysis. 

• A regression model provides the user with a functional 

relationship between the response variable and 

explanatory variables that allows the user to determine 

which of the explanatory variables have an effect on 

the response. 
– The regression model allows the user to explore what 

happens to the response variable for specified changes in the 

explanatory variables. 
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Regression Analysis

• The basic idea of regression analysis is to obtain a 

model for the functional relationship between a 

response variable (often referred to as the dependent

variable) and one or more explanatory variables (often 

referred to as the independent variables). 

• Regression models have a number of uses:
– The model provides a description of the major features of 

the data set. 
• In some cases, a subset of the explanatory variables will not affect 

the response variable, and, hence, the researcher will not have to 

measure or control any of these variables in future studies. 
– This may result in significant savings in future studies or experiments.
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Regression Analysis

– The equation relating the response variable to the 

explanatory variables produced from the regression analysis 

provides estimates of the response variable for values of the 

explanatory variables not observed in the study. 
• For example, a clinical trial is designed to study the response of a 

subject to various dose levels of a new drug.

• Because of time and budgetary constraints, only a limited number of

dose levels are used in the study. 
– The regression equation will provide estimates of the subjects’ response for 

dose levels not included in the study. 

– In business applications, the prediction of future sales of a 

product is crucial to production planning. 
• If the data provide a model that has a good fit in relating current 

sales to sales in previous months, prediction of sales in future 

months is possible. 
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The linear relationship

• The linear relationship between Y and X in the entire 
population can be presented in a similar form,

Y = α +βX +ε
• where α is the intercept, and β is the slope of the 

regression line , ε is called the error term, 
representing the difference between the estimated and 
the actual values of Y in the population. 

• We refer to the above equation as the linear 
regression model. 
– We refer to α and β as the regression parameters. 
– More specifically, β is called the regression coefficient for 

the explanatory variable. 
– The process of finding the regression parameters is called 

fitting a regression model to the data.
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Supervised learning

• Linear regression models are used to 

predict the unknown values of the 

response variable. 
– In these models, the response variable has a 

central role; 
• the model building process is guided by 

explaining the variation of the response variable 

or predicting its values. 

– Therefore, building regression models is

known as supervised learning. 
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Unsupervised learning

• Building statistical models to identify the 

underlying structure of data is known as 

unsupervised learning. 
– An important class of unsupervised learning is 

clustering,
• which is commonly used to identify subgroups within a 

population. 

• In general, cluster analysis refers to the methods 

that attempt to divide the data into subgroups such 

that 
– the observations within the same group are more similar 

compared to the observations in different groups.
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Distance Measure

• The core concept in any cluster analysis is the notion 

of similarity and dissimilarity.
– It is common to quantify the degree of dissimilarity based on 

a distance measure, 
• which is usually defined for a pair of observations.

• The most commonly used distance measure is the 

squared distance,

dij = (xi −xj )2,
where dij refers to the distance between observations i

and j , xi is the value of random variable X for 

observation i, and xj is the value for observation j.
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Similarity and Dissimilarity

• Similarity
– is a numerical measure of how alike two data 

objects are
– is higher when objects are more alike
– often falls in the range [0,1]

• Dissimilarity
– is a numerical measure of how two data objects are 

different 
– is lower when objects are more alike

• Minimum dissimilarity is often 0
• Upper limit varies

• Proximity refers to a similarity or dissimilarity
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Distance

• Euclidean Distance

𝑑𝑖𝑠𝑡 =  

𝑘=1

𝑛

(𝑝𝑘 − 𝑞𝑘)
2

where n is the number of dimensions (attributes) and pk and qk are, 
respectively, the kth attributes (components) of data objects p and q.

• Minkowski Distance is a generalization of Euclidean Distance

𝑑𝑖𝑠𝑡 =  

𝑘=1

𝑛

|𝑝𝑘 − 𝑞𝑘|
𝑟

1
𝑟

where r is a parameter, n is the number of dimensions (attributes) and 
pk and qk are, respectively, the kth attributes (components) of data 
objects p and q.
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Distance

• In Minkowski Distance,
– if r = 1  dist is City block (Manhattan, taxicab, L1 norm) distance 

– if r = 2 dist is Euclidean distance

– if r =  dist is “supremum” (Lmax norm, L norm) distance 

• In general, if we measure p random variables 

X1, . . . , Xp, the squared distance between two 

observations i and j in our sample is

dij = (xi1 −xj1)
2 +・・・+(xip −xjp)

2

• This measure of dissimilarity is called the 

squared Euclidean distance
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K-means Clustering

• K-means clustering is a simple algorithm that uses the 
squared Euclidean distance as its measure of 
dissimilarity.

• After randomly partitioning the observations into K 
groups and finding the center or centroid of each 
cluster, the K-means algorithm finds the best clusters by 
iteratively repeating the following steps
– For each observation, find its squared Euclidean distance to 

all K centers, and assign it to the cluster with the smallest 
distance.

– After regrouping all the observations into K clusters, 
recalculate the K centers.

• These steps are applied until the clusters do not change 
– i.e., the centers remain the same after each iteration.
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K-means Clustering

• An example of visualizing the results of K-

means clustering with a scatterplot

• The three clusters 

are represented by

circles, triangles,

and crosses. 
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Hierarchical Clustering

• There are two potential problems with the K-means

clustering algorithm.
– It is a flat clustering method. 

– We need to specify the number of clusters K a priori. 

• An alternative approach that avoids these issues is 

hierarchical clustering. 

• The result of this method is a dendrogram (a tree). 
– The root of the dendrogram is its highest level and 

contains all n observations. 

– The leaves of the tree are its lowest level and are each a 

unique observation.
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Hierarchical Clustering

• There are two general algorithms for 

hierarchical clustering:
– Divisive (top-down): 

• We start at the top of the tree, where all observations are 

grouped in a single cluster. 

• Then we divide the cluster into two new clusters that are 

most dissimilar. 
– Now we have two clusters. 

• We continue splitting existing clusters until every 

observation is its own cluster.

124

Hierarchical Clustering

– Agglomerative (bottom-up):
• We start at the bottom of the tree, where every

observation is a cluster 
– i.e., there are n clusters. 

• Then we merge two of the clusters with the smallest 

degree of dissimilarity 
– i.e., the two most similar clusters. 

– Now we have n − 1 clusters. 

• We continue merging clusters until we have only one 

cluster (the root) that includes all observations.
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Hierarchical Clustering

• We can use one of the following methods to

calculate the overall distance between two 

clusters
– Single linkage clustering uses the minimum dij among 

all possible pairs as the distance between the two 
clusters. 

– Complete linkage clustering uses the maximum dij as the 
distance between the two clusters. 

– Average linkage clustering uses the average dij over all 
possible pairs as the distance between the two clusters.

– Centroid linkage clustering finds the centroids of the 
two clusters and uses the distance between the centroids 
as the distance between the two clusters.
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Hierarchical Clustering

• The following figure illustrates the difference between the single linkage 
method, the complete linkage method, and the centroid linkage method to
determine the distance dij between the two clusters shown as circles and 
squares.

• Note that the dotted 
line connects the 
centers (as opposed to 
observations) of the 
two clusters. 

• There are of course 
other ways for defining 
the distance between 
two clusters. 

• However, the above 
measures are the most 
commonly used.
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