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Localized Alignments

• Just like with pairwise alignments, we may not be 
interested in the global alignment of multiple 
sequences, but rather only specific regions that are 
conserved. 

• Local Alignment of MSAs are important:
– Given regions of genomic DNA occurring upstream or 

before a certain gene, there might be sequences where 
transcription factors bind to the DNA so that the gene can be 
transcribed.  

– Thus, if we are interested in determining if there is any signal 
in the regions upstream of a certain family of genes across 
several different organisms, it would be important to only 
find the conserved region, and not try to align all of the 
genomic DNA.

– Localized alignments of protein sequences can yield 
information about conserved domains found in otherwise 
unrelated proteins. 
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Approaches to Local Alignment

• Profile Analysis

• Block Analysis

• Pattern-searching or statistical methods
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Profile Analysis…

• Profiles are found by first multiply aligning the 

sequences, determining which regions are the most 

highly conserved, 

• and then creating a scoring matrix for the alignment 

of the highly conserved region.  

• Profile is composed of:

– Columns: 

• one for each residue; 

– columns for insertions and deletions as well

– Rows: 

• one for each position in the conserved region or motif
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…Profile Analysis

• Profiles describe a MSA by a scoring matrix:
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Profile Searches

• Once a profile is created, it can be used to 
search a target sequence or database for 
possible matches to the profile using the 
profiles scores to evaluate the likelihood at 
each position. 

• Profile scores evaluate likelihood of a match at 
each position

mailto:naydin@yildiz.edu.tr
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Drawback to Profiles

• Profiles only as representative as the variation 

in the training sets. 

• Thus, there is a bias in the profile towards the 

training data. 

• Training sets can be erroneous if not carefully 

constructed
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Calculating Profiles

• Each cell is the log-odds score 
– The value of an individual cell is calculated as the log odds 

score of finding a particular residue in a particular location 
in an alignment divided by the probability of aligning the 
two amino acids by random chance using a particular 
scoring scheme (such as PAM250, BLOSUM80, …).

• PAM (Percent Accepted Mutation)

• BLOSUM (Blocks Substitution Matrix)

– Additional penalties must be calculated for gap opening and 
gap extension in the profile as well. 

• Some methods take in sequence weights as well
– One method (average method) weighs the proportion of the 

amino acids found in a particular column, and weights the 
score of matching the consensus residue at a given position 
to that particular residue.
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Shannon Entropy

• One method to calculate the observed column 
variation given the expected variation in the 
evolutionary model is to use an information 
measure known as entropy. 

– Entropy is the amount of information of the
observed column variation if expected variation in 
the evolutionary model is known

• The smaller the entropy, the more conserved a 
column is.  
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Entropy…

• The entropy (H) for a single column is 
calculated by the following formula:

• a: is a residue (amino acid), 

• fa: frequency of residue a in a column, 

• pa : probability (expected frequency) of 
residue a in that column
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…Entropy…

• H is calculated for each 20 ancestor amino acids 

and for a large number of evolutionary distances 

(PAM1, PAM2, PAM4, ...).

• The distance that gives the minimum value for H

for each column-possible ancestor combination is 

the best estimate of the distance that generates the 

column diversity from that ancestor. 

• This analysis provides 20 possible models (Ma for 

a = 1,2,3....20) as to how the amino acid 

frequencies in a column (F) may have originated. 
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…Entropy…

• The next step in the evolutionary profile construction 
determines the extent to which each Ma predicts F by 
the Bayes conditional probability analysis.

– where the prior distribution P(Ma) is given by the 
background amino acid frequencies and

– i.e., the product of the expected amino acid frequencies in 
Ma raised to the power of the fraction observed for each 
amino acid in the msa column.
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…Entropy

• From P(Ma|F), the weights for each of the 20 

possible distributions that give rise to the msa 

column diversity are calculated as follows:

– where Wa is the weight given to Ma and P(Mrandom|F) is 

calculated as above using amino acid distribution.

)()( FMPFMPW randomaa 

14

Log-odds score…

• Another measure of creating a profile is by using log-
odds score.  

• In this method, 
– the log2 of the ratio of observed/background frequencies is 

calculated for each position.  

– What results is the amount of information available in an 
alignment given in bits.  

• A new sequence can then be searched to see if it 
possibly contains the motif.

• Profiles can also indicate log-odds score:

– Log2(observed÷expected)

• Result is a bit score
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…Log-odds score

• The log odds scores for the profile (Profileij) are 

given by

where

– Wai is the weight of an ancestral amino acid a at row i in 

the profile,

– Paij is the frequency of amino acid j in the PAM amino 

acid distribution that best matches at row i,

– Prandomj is the background frequency of amino acid j.
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BLOCK Analysis…

• Blocks are similar to profiles in the sense that 

– they represent locally conserved regions within a MSA.  

• However, the difference is that ...

– blocks lack insert and delete (indels) positions in the 

sequences.

– Instead, every column includes only matches and 

mismatches

• Blocks can be determined either 

– by performing a multiple sequence alignment, or 

– by searching a database for similar sequences of the same 

length. 

17

…BLOCK Analysis…

• Generally determined by performing multiple 
alignment first

• Ungapped regions are then separated into 
blocks

• Algorithms have been developed for searching 
for blocks

18

…BLOCK  Analysis

• Statistical approaches to finding the most alike 
sequences have been proposed, such as 

– the Expectation-Maximization algorithms and 

– the Gibbs sampler. 

• In any case, once a set of blocks has been 
determined, the information contained within 
the block alignment can be displayed as a 
sequence profile. 
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BLOCKS Programs

• A global sequence alignment will usually contain 

ungapped regions that are aligned between multiple 

sequences.  

• These regions can be extracted to produce blocks.

• Two widely used programs:

– BLOCKS

– eMOTIF

http://www.blocks.fhcrc.org/blocks/process_blocks.html

http://dna.stanford.edu/emotif/

20

Example…

• 10 Truncated Kinase proteins

– Approximately 75 residues in length

• A protein kinase is a kinase enzyme that modifies other 

proteins by chemically adding phosphate groups to them 

(phosphorylation). 

• The human genome contains about 500 protein kinase 

genes and they constitute about 2% of all human genes.

• Protein kinases are also found in bacteria and plants. 

• Up to 30% of all human proteins may be modified by 

kinase activity, and kinases are known to regulate the 

majority of cellular pathways, especially those involved 

in signal transduction.

21

>D28     CD28  S. CEREVISIAE CELL CYCLE CONTROL PROTEIN KINASE

ANYKRLEKVGEGTYGVVYKALDLRPGQGQRVVALKKIRLESEDEGVPSTAIREISLLKEL

>SKH   SKH HELA MYSTERY PUTATIVE PROTEIN KINASE

AKYDIKALIGRGSFSRVVRVEHRATRQPYAIKMIETKYREGREVCESELRVLRRVRHANI

>APK   CAPK  BOVINE CARDIAC MUSCLE CYCLIC AMP-DEPENDENT (ALPHA)

DQFERIKTLGTGSFGRVMLVKHMETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNF

>EE1   WEE1  S. POMBE MITOTIC INHIBITOR

TRFRNVTLLGSGEFSEVFQVEDPVEKTLKYAVKKLKVKFSGPKERNRLLQEVSIQRALKG

>GFR   EGFR  HUMAN EPIDERMAL GROWTH FACTOR RECEPTOR

TEFKKIKVLGSGAFGTVYKGLWIPEGEKVKIPVAIKELREATSPKANKEILDEAYVMASV

>DGM  PDGF RECEPTOR, MOUSE KINASE REGION 

DQLVLGRTLGSGAFGQVVEATAHGLSHSQATMKVAVKMLKSTARSSEKQALMSELYGDLV

>FES  THIS IS VFES TYROSINE KINASE

VLNRAVPKDKWVLNHEDLVLGEQIGRGNFGEVFSGRLRADNTLVAVKSCRETLPPDIKAK

>AF1   RAF1  HUMAN C-RAF-1 ONCOGENE

SEVMLSTRIGSGSFGTVYKGKWHGDVAVKI LKVVDPTPEQFQAFRNEVAVLRKTRHVNIL

>MOS   CMOS  HUMAN C-MOS ONCOGENE

EQVCLLQRLGAGGFGSVYKATYRGVPVAIKQVNKCTKNRLASRRSFWAELNVARLRHDNI

>SVK   HSVK  HERPES SIMPLEX VIRUS PUTATIVE PROTEIN KINASE

MGFTIHGALTPGSEGCVFDSSHPDYPQRVIVKAGWYTSTSHEARLLRRLDHPAILPLLDL

…Example…
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BLOCKS Server located blocks

…Example…

AF1  1 -SEVMLSTRIGSGSFGTVYKGKWHGDVAVKILKVVDPTPEQFQAFRNEVAVLRKT—RHVNIL

MOS  1 -EQVCLLQRLGAGGFGSVYKATYRG-VPVAIKQVNKCTKNRLASRRSFWAELNVARLRHDNI-

DGM  1 -DQLVLGRTLGSGAFGQVVEATAHG-LSHSQATMKVAVKMLKSTARSSEKQALMSELYGDLV-

GFR  1 -TEFKKIKVLGSGAFGTVYKGLWIP-EGEKVKIPVAIKELREATSPKANKEILDEAYVMASV-

D28  1 -ANYKRLEKVGEGTYGVVYKALDLR—PGQGQRVVALKKIRLESEDEGVPSTAIREISLLKEL

SKH  1 -AKYDIKALIGRGSFSRVVRVEHRA-TRQPYAIKMIETKYREGREVCESELRVLRRVRHANI-

APK  1 -DQFERIKTLGTGSFGRVMLVKHME-TGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNF-

EE1  1 -TRFRNVTLLGSGEFSEVFQVEDPVEKTLKYAVKKLKVKFSGPKERNRLLQEVSIQRALKG—

FES  1 VLNRAVPKDKWVLNHEDLVLGEQIG-RGNFGEVFSGRLRADNTLVAVKSCRETLPPDIKAK—

SVK  1 -MGFTIHGALTPGSEGCVFDSSHPD-YPQRVIVKAGWYTSTSHEARLLRRLDHPAILPLLDL

cons 1   qf ll  lgsgsfg vykg   g    k  i v   k      r       v  l    i

Multiple Alignment created using ClustalW; Colors Added using BoxShade
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• Taking this alignment, blocks can be generated using 
the BLOCKS server:

ID   x6676xbli; BLOCK

AC   x6676xbliA; distance from previous blocks=(1,1)

DE   ../tmp/6676.blin

BL   UNK motif;  width=24; seqs=10; 99.5%=0; strength=0

AF1              (   1) SEVMLSTRIGSGSFGTVYKGKWHG  41

MOS              (   1) EQVCLLQRLGAGGFGSVYKATYRG  48

DGM              (   1) DQLVLGRTLGSGAFGQVVEATAHG  49

GFR              (   1) TEFKKIKVLGSGAFGTVYKGLWIP  41

D28              (   1) ANYKRLEKVGEGTYGVVYKALDLR  61

SKH              (   1) AKYDIKALIGRGSFSRVVRVEHRA  54

APK              (   1) DQFERIKTLGTGSFGRVMLVKHME  46

EE1              (   1) TRFRNVTLLGSGEFSEVFQVEDPV  55

FES              (   1) LNRAVPKDKWVLNHEDLVLGEQIG 100

SVK              (   1) MGFTIHGALTPGSEGCVFDSSHPD  73

//

…Example…
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ID   x6676xbli; BLOCK

AC   x6676xbliB; distance from previous blocks=(2,2)

DE   ../tmp/6676.blin

BL   UNK motif;  width=28; seqs=10; 99.5%=0; strength=0

AF1             (  27) AVKILKVVDPTPEQFQAFRNEVAVLRKT  87

MOS             (  27) PVAIKQVNKCTKNRLASRRSFWAELNVA  75

DGM             (  27) SHSQATMKVAVKMLKSTARSSEKQALMS  92

GFR             (  27) GEKVKIPVAIKELREATSPKANKEILDE  83

D28             (  27) PGQGQRVVALKKIRLESEDEGVPSTAIR  83

SKH             (  27) RQPYAIKMIETKYREGREVCESELRVLR  74

APK             (  27) GNHYAMKILDKQKVVKLKQIEHTLNEKR  85

EE1             (  27) TLKYAVKKLKVKFSGPKERNRLLQEVSI  77

FES             (  27) GNFGEVFSGRLRADNTLVAVKSCRETLP 100

SVK             (  27) PQRVIVKAGWYTSTSHEARLLRRLDHPA  92

//

…Example

http://www.blocks.fhcrc.org/blocks/process_blocks.html
http://dna.stanford.edu/emotif/
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Statistical Methods for Aiding Alignments

• Commonly used methods for locating motifs:

– Expectation-Maximization (EM)

– Gibbs Sampling

26

Expectation-Maximization…

• EM algorithm has been used to identify both conserved 
domains in unaligned proteins and protein-binding sites 
in unaligned DNA sequences, including sites that may 
include gaps

• In the EM algorithms, 

– the starting point is a set of sequences expected to have a 
common sequence pattern that may not be easily detectible.  

– An initial guess is made as to the location and size of the site 
of interest in each of the sequences.  

– These initial sites are then aligned. 

– Approximate length of signal must be given

• Randomly assign locations of this motif in each 
sequence
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…Expectation-Maximization…

• The EM algorithm consists of two steps, which 

are repeated consecutively:

– Expectation Step

• In the expectation step, background residue frequencies are 

calculated based on those residues that are not in the initially 

aligned sites.  

• Column specific residues are calculated for each position in 

the initial motif alignment. 

• Using this information, the probability of finding the site at 

any position in the sequences can then be calculated. 

• Residues not in a motif are background

– Frequencies used to determine probability of finding 

site at any position in a sequence to fit motif model

28

…Expectation-Maximization

– Maximization Step

• In the maximization step, the counts of residues for each 

position in the site as found in the expectation step are 

used to calculate the location within each sequence that 

maximally aligns to the motif pattern calculated in the 

expectation step.  

• This is done for each of the sequences.  

• Once a new motif location has been calculated, 

the expectation step is repeated.  

• This cycle continues until the solution converges.

29

TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT

CCCACGCAGCCGCCCTCCTCCCCGGTCACTGACTGGTCCTG

TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG

AAAACACTTGAGGGAGCAGATAACTGGGCCAACCATGACTC

GGGTGAATGGTACTGCTGATTACAACCTCTGGTGCTGC

AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA

GCCTCAGGATCCAGCACACATTATCACAAACTTAGTGTCCA

CATTATCACAAACTTAGTGTCCATCCATCACTGCTGACCCT

TCGGAACAAGGCAAAGGCTATAAAAAAAATTAAGCAGC

GCCCCTTCCCCACACTATCTCAATGCAAATATCTGTCTGAAACGGTTCC

CATGCCCTCAAGTGTGCAGATTGGTCACAGCATTTCAAGG

GATTGGTCACAGCATTTCAAGGGAGAGACCTCATTGTAAG

TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCTTTTGA

CCTTATCTGTGGGGGAGGCTTTTGAAAAGTAATTAGGTTTAGC

ATTATTTTCCTTATCAGAAGCAGAGAGACAAGCCATTTCTCTTTCCTCCCGGT

AGGCTATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTC

CCAGCACACACACTTATCCAGTGGTAAATACACATCAT

TCAAATAGGTACGGATAAGTAGATATTGAAGTAAGGAT

ACTTGGGGTTCCAGTTTGATAAGAAAAGACTTCCTGTGGA

TGGCCGCAGGAAGGTGGGCCTGGAAGATAACAGCTAGTAGGCTAAGGCCAG

CAACCACAACCTCTGTATCCGGTAGTGGCAGATGGAAA

CTGTATCCGGTAGTGGCAGATGGAAAGAGAAACGGTTAGAA

GAAAAAAAATAAATGAAGTCTGCCTATCTCCGGGCCAGAGCCCCT

TGCCTTGTCTGTTGTAGATAATGAATCTATCCTCCAGTGACT

GGCCAGGCTGATGGGCCTTATCTCTTTACCCACCTGGCTGT

CAACAGCAGGTCCTACTATCGCCTCCCTCTAGTCTCTG

CCAACCGTTAATGCTAGAGTTATCACTTTCTGTTATCAAGTGGCTTCAGCTATGCA

GGGAGGGTGGGGCCCCTATCTCTCCTAGACTCTGTG

CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC

begin with an 

initial, random

alignment:

Example of EM - initial alignment…

30

• From this alignment, the frequency of each base occurring is 

calculated.  

• In this case, the motif we are searching for is six bases wide.  

– Therefore, we need to calculate seven different sets of frequencies:  

• One for the background, 

• one for each of the columns in the motif.  

• Calculating the total counts, we get:

…Example of EM - Residue Counts…
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…Example of EM - Residue Frequencies…

• After calculating the observed counts for each of the 

positions, we can convert these to observed 

frequencies: 

– Frequency of nucletide a for the background (Col0): 
# of nucletide a in Col0 in Rowa / # of all nucletides in Col0

– Frequency of a in Colc:
# of nucletide a in Colc / # of all nucletides in Colc

32

…Example of EM - Residue Frequencies…

• However, in order to alleviate the issue of zero counts and 

overtraining of the data, pseudocounts are introduced to the 

observed counts: 

– In this case, frequency of nucleotide a in Colc:

Pca = (nca + bca) / (Nc + Bc)
Pca: Probability of residue a in column c ; nca: count of a’s in column c ; bca: pseudocount of a’s in column c ; 

Nc: total count in column c ; Bc: total pseudocount in column c

– Chosing a pseudocaunt is arbitrary

– For example, assuming that 4 nucleotides have equal probabilities,  if total pseudocount (Bc ) is chosen as 1, 

pseudocount of each nucletide will be  bca= Bc/4. 

– Note that a different pseudocount scheme is used in the following table 
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…Example of EM - Maximization Step…

• In the expectation step, the residue frequencies for the motif are 
used to estimate the composition of the motif site.  

• The expectation step attempts to maximally discriminate between 
sequence within and not within the site.  

• For each sequence, each possible motif location is considered in 
order to find the most probable location given the current motif.

• Consider the first sequence:

– TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT

– There are 41 residues; 41- 6 + 1 = 36 sites to consider

• Starting from the first site (TCAGAA), 36 scores for the first 
sequence are calculated

34

…Example of EM - Residue Frequencies…

• Let us consider the eigth site CAGTTA.

– In order to calculate site score, observed frequency table is used:

• Position: 1 2 3 4 5 6

C A G T T A

SCAGTTA =       0.263×0.296×0.246×0.261×0.241×0.263

SCAGTTA = 0.000317

0.267 0.256 0.296 0.256 0.256 0.289 0.263

0.267 0.263 0.230 0.243 0.256 0.256 0.256

0.216 0.240 0.233 0.246 0.226 0.213 0.233

0.250 0.241 0.241 0.254 0.261 0.241 0.248

35

1 2 3 4 5 6 1*2*3*4*5*6 RANDOM ODDS

TCAGAA .241 .230 .256 .226 .289 .263 0.000244 0.000274 0.89

CAGAAC .263 .296 .246 .256 .289 .256 0.000363 0.000362 1.00

AGAACC .256 .233 .256 .256 .256 .256 0.000256 0.000362 0.71

GAACCA .240 .296 .256 .256 .256 .263 0.000313 0.000362 0.87

AACCAG .256 .296 .243 .256 .289 .233 0.000317 0.000362 0.88

ACCAGT .256 .230 .243 .256 .213 .248 0.000193 0.000274 0.71

CCAGTT .263 .230 .256 .226 .241 .248 0.000209 0.000257 0.81

CAGTTA .263 .296 .246 .261 .241 .263 0.000317 0.000257 1.23

AGTTAT .256 .233 .254 .261 .289 .248 0.000283 0.000241 1.18

GTTATA .240 .241 .254 .256 .241 .263 0.000238 0.000241 0.99

TTATAA .241 .241 .256 .261 .289 .263 0.000295 0.000297 0.99

TATAAA .241 .296 .254 .256 .289 .263 0.000353 0.000297 1.19

ATAAAT .256 .241 .256 .256 .289 .248 0.000290 0.000318 0.91

TAAATT .241 .296 .256 .256 .241 .248 0.000279 0.000297 0.94

AAATTT .256 .296 .256 .261 .241 .248 0.000303 0.000297 1.02

AATTTA .256 .296 .254 .261 .241 .263 0.000318 0.000297 1.07

ATTTAT .256 .241 .254 .261 .289 .248 0.000293 0.000278 1.05

TTTATC .241 .241 .254 .256 .241 .256 0.000233 0.000278 0.84

…Example of EM - Maximization Step…

36

TTATCA .241 .241 .256 .261 .256 .263 0.000261 0.000297 0.88

TATCAT .241 .296 .254 .256 .289 .248 0.000332 0.000297 1.12

ATCATT .256 .241 .243 .256 .241 .248 0.000229 0.000297 0.77

TCATTT .241 .230 .256 .261 .241 .248 0.000221 0.000278 0.80

CATTTC .263 .296 .254 .261 .241 .256 0.000318 0.000297 1.07

ATTTCC .256 .241 .254 .261 .256 .256 0.000268 0.000297 0.90

TTTCCT .241 .241 .254 .256 .256 .248 0.000240 0.000278 0.86

TTCCTT .241 .241 .243 .256 .241 .248 0.000216 0.000278 0.78

TCCTTC .241 .230 .243 .261 .241 .256 0.000217 0.000297 0.73

CCTTCT .263 .230 .254 .261 .256 .248 0.000255 0.000297 0.86

CTTCTC .263 .241 .254 .256 .241 .256 0.000254 0.000297 0.86

TTCTCC .241 .241 .243 .261 .256 .256 0.000241 0.000297 0.81

TCTCCA .241 .230 .254 .256 .256 .263 0.000243 0.000318 0.76

CTCCAC .263 .241 .243 .256 .289 .256 0.000292 0.000339 0.86

TCCACT .241 .230 .243 .256 .256 .248 0.000219 0.000318 0.69

CCACTC .263 .230 .256 .256 .241 .256 0.000245 0.000339 0.72

CACTCC .263 .296 .243 .261 .256 .256 0.000324 0.000339 0.95

ACTCCT .256 .230 .254 .256 .256 .248 0.000243 0.000318 0.76

…Example of EM - Maximization Step…
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…Example of EM - Maximization Step…

• The six base site CAGTTA beginning at base 8 is 
calculated to have the highest odds probability.  

• Therefore, it is chosen as the new site in sequence 1. 

• This is repeated for each of the sequences.  

• In the maximization step, the newly chosen sites for 
each of the sequences are used to recalculate the 
frequency table.

• The expectation/maximization cycle is then repeated, 
until the results converge on a set of motifs.

38

…Example of EM - Maximization Step

• Before: 

– Random Alignment

• TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT

• After: 

– Maximal location (given random motif alignment) 

(first round)

• TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT

39

Available E-M Programs

• MEME – Uses E-M algorithms as explained

– Multiple EM for Motif Elicitation (MEME) is a program 
developed that uses the expectation-maximization methods 
as described previously.

• ParaMEME searches for blocks using the EM algorithm, 

• MetaMEME searches for profiles using Hidden Markov Models 
(HMMs).

• MEME locates one or more ungapped patterns in a 
single DNA or protein sequence, or in a series of 
sequences.  

• A search is conducted on a variety of motif widths in 
order to determine the most likely width for the profile.  

– This likelihood is based on the log likelihood score 
calculated after the EM algorithm. 

The MEME Suite

• Motif-based sequence analysis tools

• http://meme-suite.org/index.html

40

41

MEME Software

• One of three types of motif models can be chosen:

– OOPS (One expected Occurrence Per Sequence)

• simplest model type since it assumes that there is exactly one 

occurrence per sequence of the motif in the dataset. 

– ZOOPS (Zero or One expected Occurrence Per Sequence)

• generalization of OOPS

• assumes zero or one motif occurrences per dataset sequence

– TCM (Two-Component Mixture) 

• assumes that there are zero or more non-overlapping occurrences of 

the motif in each sequence in the dataset

– Bailey, Timothy L. and Charles Elkan. “The Value of Prior Knowledge in Discovering 

Motifs with MEME.” Proceedings. International Conference on Intelligent Systems for 

Molecular Biology 3 (1995): 21-9 .

– https://tlbailey.bitbucket.io/papers/cs95_143.pdf

42

MEME Software

• Various prior knowledge can be added to 

MEME, including 

– the expected number of motifs, 

– the expected length of the motif, 

– whether or not the motif is palindromic 

• only applicable for DNA sequences

http://meme-suite.org/index.html
https://tlbailey.bitbucket.io/papers/cs95_143.pdf
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Gibbs Sampling…

• Similar in nature to the EM algorithms.  

– Combines both EM and simulated annealing 

techniques in order to determine a maximal local 

alignment of multiple sequences.

– Goal is to find most probable pattern by sampling 

from motif probabilities to maximize 

model÷background probabilities

• The idea behind Gibbs sampling is to determine the 

most probable pattern common to all of the sequences 

by sliding them back and forth until the ratio of the 

motif probability to the background probability is a 

maximum. 

44

…Gibbs Sampling…

• Predictive Update Step
– Random motif start position chosen for all sequences 

except one 

– Initial alignment used to calculate residue frequencies 
for motif and background 

– Similar to the Expectation Step of EM

• Sampling Step

– Model probability÷background probability normalized 
and weighted

– Motif start position chosen based on a random 
sampling with the given weights

– Different than EM algorithm

45

…Gibbs Sampling

• Process repeated until residue frequencies in each column 
do not change 

• The sampling step is then repeated for a different initial 
random alignment

– Sampling allows escape from local maxima

– Employs a shifting routine that will take a current multiple motif 
alignment, and shift it a few bases to the left or the right, in order 
to see if only part of the motif is being found

– A range of motif sizes can be explored in Gibbs sampling as well 

• Gibbs sampling can be extended 

– to search for multiple motifs in the same set of sequences, 

– to find a pattern in only a fraction of the sequences.  

• In addition, certain model-specific parameters can be 
enforced, such as palindromic sequences 

46

Hidden Markov Models…

• Hidden Markov Models (HMMs) 

– probabilistic models for studying sequences of 

symbols.  

• HMMs can model matches, mismatches, 

insertions and deletions of symbols.  

• HMMs have been deeply rooted in speech 

recognition problems.

• In speech recognition, the problem is the 

phonemes (or words) that have been spoken in 

a particular time frame.  

47

…Hidden Markov Models…

• Consider the difficulty.  

– Everyone you meet has a different voice.  

– Everyone speaks with a slight variation 

• this might be caused by an accent, the person having a 

cold, or differences in physiological development.  

• However, humans are able to distinguish what 

the speaker is saying. 

– The idea behind speech recognition is to take in a 

spoken word and to try to fit it to a specific model 

of possible words.  

• This may in fact be close to what the brain does

…Hidden Markov Models

• Problems in sequence analysis are similar.  

• For instance, 

• given an amino acid sequence, we may want to 

determine the protein family to which it 

belongs.  

• The amino acid sequence can be treated 

similarly to the speech signal in a given frame, 

and the amino acids can be treated as the 

phonemes.  

48
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Markov Chain

• A probabilistic model that generates a sequence where the 
probability of a symbol depends upon the previous 
symbol.  

– A traffic light is an example of a Markov chain.

• A Markov Chain can be used to model a random DNA 
sequence, where there are four states: 

– A, C, G, T

• one for each letter in the alphabet.  

• When we are given a certain state, there is a transition 
from that state to another state with an associated 
probability 

– called a transition probability.   

• An example Markov Chain can be drawn as follows:

49

Markov Chain

• The key property of a 

Markov chain is that 

– the probability of a symbol S

at position p(Sp) depends only 

upon the previous symbol S at 

position p–1(Sp-1), and not on 

the entire previous sequence.

• Since the probability of a symbol is dependent upon the 

previous symbol, a prime example for the use of Markov 

chains is in the detection of CpG islands, which are rich in the 

dinucleotide CG.

– CpG (CG) islands is a short stretch of DNA in which the frequency of 

the CG sequence is higher than other regions. 

• "p" simply indicates that "C" and "G" are connected by a phosphodiester bond.

50

Markov Chain

• The process of methylation in biological systems will 

typically convert the nucleotide C to a T with a high 

probability when a CG nucleotide is encountered.  

– As a result, there will be an overabundance of the 

dinucleotide TG, and an underabundance of the 

dinucleotide CG.  

• If we ignore the start and end states for now, we can 

see that there are sixteen different transitions.  

– A study of regions of genomic DNA has determined normal 

genomic transition probabilities to be the following, 

• where the FROM node is labeled along the rows to the left, and the 

TO node is labeled along the columns above:

51

Markov Chain

52

• The model shown above can then assign these weights 

to the edges of the graph

A C G T

A 0.300 0.205 0.285 0.210

C 0.322 0.298 0.078 0.302

G 0.248 0.246 0.298 0.208

T 0.177 0.239 0.292 0.292

Markov Chain

• In some regions of the genome, such as the 

promoter region of genes, methylation is 

suppressed.  

– In these regions, the dinucleotide CG is found in 

greater quantities.  

• In fact, the nucleotides C and G are found to a 

greater degree than elsewhere in the genome.  

– A study of regions of genomic DNA where CpG

islands exist has determined the transition 

probabilities to be the following:

53

Markov Chain

54

• A new model just like the one above can have its transition 

properties assigned according to the new table.  

• Now we have two different models:  

– the first where CpG islands are absent, 

– the second where CpG islands are present. 

A C G T

A 0.180 0.274 0.426 0.120

C 0.171 0.368 0.274 0.188

G 0.161 0.339 0.375 0.125

T 0.079 0.355 0.384 0.182
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Markov Chain

• Let’s call the first model the non-CpG model

and the second model the CpG model.

• Given a new sequence, how would we 

determine whether it belongs to the non-CpG

model or the CpG model?

• Remember, the key property of a Markov chain 

– the probability of a symbol S at position p(Sp)

depends only upon the previous symbol S at 

position p–1(Sp-1), 

• not on the entire previous sequence.

55

Markov Chain

• Therefore, to find the probability that a sequence fits a 

model, 

– you would multiply all of the conditional probabilities:

P(x) = P(xL|xL-1)P(x L-1|x L-2)…P(x2|x1)P(x1)

• which can be rewritten as:

• where is the probability from residue at 

posistion i-1 to the residue at position i
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Markov Chain

• Let’s consider for now that in the non-CpG model, 

P(A) = P(T) = 0.3; P(C) = P(G) = 0.2, 

– so that A and T are more probable.  

• In the CpG model, consider P(A) = P(C) = P(G) = 

P(T) = 0.25.

• Now consider the sequence: GGCGACG

• The probability for this sequence:

P(G)P(G|G)P(C|G)P(G|C)P(A|G)P(C|A)P(G|C)

57

Markov Chain

• For the non-CpG model can be calculated as: 

(0.20)(0.298)(0.246)(0.078)(0.248)(0.205)(0.078) 

= 0.000000453499

• For the CpG model can be calculated as:

(0.25)(0.375)(0.339)(0.274)(0.161)(0.274)(0.274)(0.125) = 

0.0010526

• Given this information, it is more likely that this sequence fits 

the CpG model.  

• One thing to note is how quickly the probability gets to zero.  

– This shows the importance of using log statistics.
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Using Markov models for discrimination

• How different the non-CpG and CpG models are 

in relation to each other?
– If they are not different enough, then there is not 

enough information to determine from which model a 

particular sequence is derived.  

• In order to test whether we are able to 

discriminate between the two models, a log ratio 

is taken for each of the scores in the two previous 

tables to create a third table, where each entry, x, 

in the new table is equal to: 

log2(P(x|CpG model) / P(x| non-CpG model))  
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Using Markov models for discrimination

• The resulting table is as follows:

• Using this log-odds ratio table as the scores, we 
can then see that 

– a sequence with a negative score will belong to the 
non-CpG model, 

– a sequence with a positive score will belong to the CpG
model.

60

A C G T

A -0.740 0.419 0.580 -0.803

C -0.913 0.302 1.812 -0.685

G -0.624 0.461 0.331 -0.730

T -1.169 0.573 0.393 -0.679
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Position Specific Scoring Matrix (PSSM)

• Position Specific Scoring Matrices incorporate 

information theory in order to gain a measure of how 

much information is contained within each column of a 

multiple alignment.  
– The information contained within a PSSM is a logarithmic 

transformation of the frequency of each residue in the motif.

• One problem with creating a model of a sequence 

alignment that is then used to search databases is that 

there is a bias towards the training data 
– Some residues may be underrepresented

– Other columns may be too conserved
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Pseudocounts…

• Solution: 
– Introduce Pseudocounts to get a better indication

• The goal of adding pseudocounts is to obtain an 

improved estimate of the probability pca that amino 

acid a is in column c in all occurrences of the 

blocks, and not just the ones in the present sample. 

• The current estimate of pca is fca, the frequency of 

counts in the data.

• A simplified Bayesian prediction improves the 

estimate of pca by adding prior information in the 

form of pseudocounts
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…Pseudocounts

• Now the estimated probability is changed from a 

frequency of counts in the data to the following form: 

– Pca: Probability of residue a in column c

– nca: count of a’s in column c

– bca: pseudocount of a’s in column c

– Nc: total count in column c

– Bc: total pseudocount in column c

• These probabilities are then converted into a log-odds

form (usually log2 so the information can be reported 

in bits) and placed in the PSSM .

cc

caca
ca

BN
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Searching PSSMs

• In order to search a sequence against a PSSM, the 
value for the first residue in the sequence occurring in 
the first column is calculated by searching the PSSM.  

• Similarly, the value for the residue occurring in each 
column is calculated.  

• These values are added (since they are logarithms) to 
produce a summed log odds score, S.  

• This score can be converted to an odds score using the 
formula 2S.  

• The odds scores for the motif beginning at each 
position can be summed together and normalized to 
produce a probability of the motif occurring at each 
location.
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Information in PSSMs

• Information theory can give an appreciation for the 

amount of information contained within each 

sequence.

• When there is no information contained within a 

column, the amount of uncertainty can be measured as
– log220 = 4.32 for amino acids (20 amino acids)

– log24 = 2 for nucleic acid sequences (4 nucletides)

• If only one amino acid is found in a particular column, 

then the uncertainty is 0 ( there is only one choice).  

• If there are two amino acids occurring with equal 

probability, then there is an uncertainty to deciding 

which residue it is. 
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Measure of Uncertainty

• The amount of uncertainty for a particular 

column is measured as the entropy, as 

introduced previously 

• The uncertainty for the whole PSSM can be 

calculated as a sum over all columns:
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)log(
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67

Relative Entropy

• In addition to the entropy measure given before, a 

relative entropy measure could be calculated as well.  
– Relative entropy takes into account not only the data in the 

columns of the motif, but also the overall composition of 

the organism being studied.  

• Relative entropy can be measured as:

• ba is background frequency of residue a in the 

organism


)(

2 )/(log
aresidues

aacacC bpfR
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Sequence Logos…

• One way to look at a particular PSSM is to view it 

visually.  
– Sequence logos are one way to do so, by illustrating the 

information in each column of a motif.  

• Such a graph can indicate which residues and which 

columns are the most important as far as sequence 

conservation is concerned.  
– The height of the logo is calculated as the amount by which 

uncertainty has been decreased 

– If the frequency in the column is less than the frequency in 

the background, then a negative relative entropy can be 

computed, which can be shown by an inverted character in 

the logo. 
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…Sequence Logos…

70

…Sequence Logos…

71

…Sequence Logos

72

Sequence Editors

• Allow manual editing of alignments

• Add color to alignments

• Prepare images for publication

• Some sequence editors:
– BoxShade http://www.ch.embnet.org/software/BOX_form.html

– Serial Cloner http://serialbasics.free.fr/Serial_Cloner.html

– GenBeans http://www.genbeans.org/

– GeneStudio http://genestudio.com/

– Seqtools http://www.seqtools.dk/

– GENtle http://gentle.magnusmanske.de/

– pDRAW32 http://www.acaclone.com/

– DAMBE http://dambe.bio.uottawa.ca/DAMBE/dambe.aspx

http://www.ch.embnet.org/software/BOX_form.html
http://serialbasics.free.fr/Serial_Cloner.html
http://www.genbeans.org/
http://genestudio.com/
http://www.seqtools.dk/
http://gentle.magnusmanske.de/
http://www.acaclone.com/
http://dambe.bio.uottawa.ca/DAMBE/dambe.aspx
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Sequence File Formats

• We have been using DNA and amino acid 

sequences already

• What is the typical format for these?

– ANSWER: Many different options

• In order to standardize sequence data, The 

Nomenclature Committee of the International 

Union of Biochemistry and the International 

Union of Pure and Applied Chemistry (IUPAC)

has established a standard code to represent 

bases that are uncertain or ambiguous.  

74

Standard Codes (IUPAC)

A = adenine                 

C = cytosine               

G = guanine        

T = thymine                   

U = uracil        

R = G or A (purine)                

Y = T or C (pyrimidine)            

K = G or T (keto)            

M = A or C (amino)

S = G or C         

W = A or T       

B = G or T or C        

D = G or A or T        

H = A or C or T        

V = G or C or A       

N = A or G or C or T (any)

. or - = gap

• IUPAC nucleotide codes and corresponding bases:

• Any other character represents an error that will not 
be tolerated by nearly all sequence analysis programs. 
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Standard IUPAC Codes

A Ala Alanine

R Arg Arginine

N Asn Asparagine

D Asp Aspartic acid

C Cys Cysteine

Q Gln Glutamine

E Glu Glutamic acid

G Gly Glycine

H His Histidine

I Ile Isoleucine

L Leu Leucine

K Lys Lysine

M Met Methionine

F Phe Phenylalanine

P Pro Proline

S Ser Serine

T Thr Threonine

W Trp Tryptophan

Y Tyr Tyrosine

V Val Valine

B Asx Aspartic acid or 
Asparagine

Z Glx Glutamine or Glutamic 
acid

X Xaa or Xxx Any amino acid

• IUPAC standard single letter and three letter amino 
acid codes:
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Fasta File Format

• Fasta sequence format is one of the most basic and 

widespread sequence formats.  

• A sequence in fasta format has as its first line a 

descriptor beginning with a ‘>’ character.  

• The proceeding lines contain the sequence (either 

nucleotide or amino acid) using standard one-letter 

symbols.  

• This format is extremely useful for sequence analysis 

programs, since it is devoid of numerical and non-

sequence characters (with the exception of the 

newline character). 
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Fasta File Format

• Example Fasta Sequence:

>gi|27819608|ref|NP_776342.1| hemoglobin, beta [beta globin] [Bos taurus]

MLTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPKVKAHGKKVLDSF

SNGMKHLDDLKGTFAALSELHCDKLHVDPENFKLLGNVLVVVLARNFGKEFTPVLQADFQKVVAGVANAL

AHRYH

• first line begins with ‘>’, followed by gi, 
– next field surrounded by ‘|’ is GenBank identifier

• the keyword ‘ref’
– field will be the reference for the version of this 

sequence.  

• final field is the description
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Fasta File Format

• Example Fasta Sequence:

>gi|27819608|ref|NP_776342.1| hemoglobin, beta [beta globin] [Bos taurus]

MLTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPKVKAHGKKVLDSF

SNGMKHLDDLKGTFAALSELHCDKLHVDPENFKLLGNVLVVVLARNFGKEFTPVLQADFQKVVAGVANAL

AHRYH

• nearly all sequence based programs treat 
anything following the ‘>’ as a comment 

• a few sequence analysis programs expect 
sequences to be in a strict fasta format
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GenBank

• GenBank is the National Center for Biotechnology 
Information’s nucleic acid and protein sequence 
database.  

• It is the most widely used source of biological 
sequence data.  

• GenBank file format contains information about the 
sequence, including literature references, functions of 
the sequence, locations of various features, etc. 

• information organized into fields, each with an 
identifier, justified to the farthest left column.  

• Some identifiers have additional subfields. 
• sequence data lies between the identifier ORIGIN and 

the ‘//’ which signals the end of a GenBank record. 
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GenBank Record

LOCUS       HBB                      145 aa            linear   MAM 22-JAN-2003

DEFINITION  hemoglobin, beta [beta globin] [Bos taurus].

ACCESSION  NP_776342

VERSION     NP_776342.1  GI:27819608

DBSOURCE    REFSEQ: accession NM_173917.1

KEYWORDS    .

SOURCE     Bos taurus (cow)  

ORGANISM  Bos taurus Eukaryota; Metazoa; Chordata; Craniata; 
Vertebrata; Euteleostomi; Mammalia; Eutheria; Cetartiodactyla; 
Ruminantia; Pecora; Bovoidea;            Bovidae; Bovinae; Bos.

REFERENCE   1  (residues 1 to 145)  

AUTHORS   Duncan,C.H.  

JOURNAL   Unpublished (1991)

COMMENT     PROVISIONAL REFSEQ: This record has not yet been subject to final            
NCBI review. The reference sequence was derived from M63453.1.

FEATURES            Location/Qualifiers     source          1..145 
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ASN.1

• Abstract Syntax Notation (ASN.1): 

– formal description language developed to encode various 
data to be easily connected across computer systems 

• ASN.1 is highly structured and detailed

• ASN.1 format contains all of the other information 
found in other formats

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_173917.1
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9913
http://www.ncbi.nlm.nih.gov/RefSeq/
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=M63453.1

