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Introduction to sequence alignment

• In molecular biology, a common question is to 

ask whether or not two sequences are related. 

• The most common way to tell whether or not 

they are related is to compare them to one 

another to see if they are similar.

• Question: 

– Are two sequences related?

• Compare the two sequences, 

– see if they are similar
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Sequence Alignment

• Sequence Alignment 

– the identification of residue-residue 

correspondences.

• It is the basic tool of bioinformatics.

• Example: 

– pear and tear

• Similar words, different meanings
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Biological Sequences

• Similar biological sequences tend to be related

• Information:

– Functional

– Structural

– Evolutionary

• Common mistake: 

– sequence similarity is not homology!

• Homologous sequences: 

– derived from a common ancestor

5

Relation of sequences

• Homologs: 

– similar sequences in 2 different organisms derived from a common 
ancestor sequence.

• Orthologs: 

– Similar sequences in 2 different organisms that have arisen due to a 
speciation event.   Functionality Retained.

• Paralogs: 

– Similar sequences within a single organism that have arisen due to a 
gene duplication event.

• Xenologs: 

– similar sequences that have arisen out of horizontal transfer events 
(symbiosis, viruses, etc)
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Relation of sequences

Image Source: 

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Orthology.html
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Use Protein Sequences for Similarity 

Searches

• DNA sequences tend to be less informative than 

protein sequences

• DNA bases vs. 20 amino acids - less chance similarity

• Similarity of AAs can be scored

– # of mutations, chemical similarity, PAM matrix

• Protein databanks are much smaller than DNA 

databanks

– less random matches.

• Similarity is determined by pairwise alignment of 

different sequences
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Pairwise Alignment

• The alignment of two sequences (DNA or 

protein) is a relatively straightforward 

computational problem.

• There are lots of possible alignments.

• Two sequences can always be aligned.

• Sequence alignments have to be scored.

• Often there is more than one solution with the 

same score.
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Sequence Alignment

The concept

• An alignment is a mutual arrangement of two 
sequences. 
– Pairwise sequence alignment

• It exhibits where the two sequences are similar, 
and where they differ. 

• An optimal alignment is one that exhibits the 
most correspondences, and the least 
differences. 

• Sequences that are similar probably have the 
same function 
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Sequence Alignment

Terms of sequence comparison

• Sequence identity
– exactly the same Amino Acid or Nucleotide in the 

same position

• Sequence similarity
– substitutions with similar chemical properties

• Sequence homology
– general term that indicates evolutionary relatedness 

among sequences

– sequences are homologous if they are derived from 
a common ancestral sequence
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Sequence Alignment

Things to consider:

• to find the best alignment one needs to examine 
all possible alignments

• to reflect the quality of the possible alignments 
one needs to score them

• there can be different alignments with the same 
highest score

• variations in the scoring scheme may change the 
ranking of alignments

12
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Sequence Alignment

Ancestral sequence: ABCD

ACCD (B  C)            ABD (C  ø)

ACCD             or             ACCD          Pairwise Alignment

AB─D                             A─BD

mutation                        deletion

true alignment

Evolution:

13

A protein sequence alignment
MSTGAVLIY--TSILIKECHAMPAGNE-----

---GGILLFHRTHELIKESHAMANDEGGSNNS

*  *    *  **** ***

A DNA sequence alignment
attcgttggcaaatcgcccctatccggccttaa

att---tggcggatcg-cctctacgggcc----

***   ****  **** **    ******

Sequence Alignment
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Hamming or edit distance

• Simplest method in determining sequence 

similarity is to determine the edit distance 

between two sequences

• If we take the example of pear and tear, how 

similar are these two words? 

• An alignment of these two is as follows:

P E A R

| | |

T E A R

15

Hamming Distance

• Minimum number of letters by which two 
words differ

• Calculated by summing number of mismatches

• Hamming Distance between PEAR and TEAR 
is 1
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Gapped Alignments

• With biological sequences, it is often necessary to 
align two sequences that are of 
– different lengths, 

– that have regions that have been inserted or deleted over 
time.  

• Thus, the notion of gaps needs to be introduced.  
– gaps denoted by ‘-’

• Consider the words alignment and ligament.  
– One alignment of these two words is as follows:

A L I G N M E N T

| | |   | | | |

- L I G A M E N T
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Possible Residue Alignments

• An alignment can produce one of the 

following:  

– a match between two characters 

– a mismatch between two characters 

• also called a substitution or mutation

– a gap in the first sequence 

• which can be thought of as the deletion of a character in 

the first sequence

– a gap in the second sequence 

• which can be thought of as the insertion of a character in 

the first sequence 

18
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Alignments

• Consider the following two nucleic acid sequences:  

– ACGGACT and ATCGGATCT.  

• The followings are two valid alignments:

A – C – G G – A C T

|   |   |       | |

A T C G G A T _ C T

A T C G G A T C T

|   | | |     | |

A – C G G – A C T

• Which alignment is the better alignment?

19

Alignment Scoring Scheme

• One way to judge this is to assign 
– a + score for each match, 

– a - score for each mismatch, 

– a - score for each insertion/deletion (indels).

• Possible scoring scheme:
match: +2 mismatch: -1 indel: –2

– Alignment 1: 
• 5 * 2 – 1(1) – 4(2) = 10 – 1 – 8 = 1

– Alignment 2: 
• 6 * 2 – 1(1) – 2 (2) = 12 – 1 – 4 = 7

• Using the above scoring scheme, the 2nd alignment is a 
better alignment, 
– since it produces a higher alignment score.

20

Alignment Methods

• Visual

• Brute Force

• Dynamic Programming

• Word-Based (k tuple)

21

Visual Alignments (Dot Plots)

• One of basic techniques for determining the alignment 
between two sequences is by using a visual alignment 
known as dot plots.

• Matrix

– Rows: 
• Characters in one sequence

– Columns: 
• Characters in second sequence

• Filling

– Loop through each row; 

• if character in row-column match, fill in the cell

– Continue until all cells have been examined
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The Dot Matrix

A   G   C   T   A   G   G   A

G

A

C

T

A

G

G

C

• each sequence builds one axis of

the grid

• one puts a dot, at the intersection 

of same letters appearing in both

sequences

• scan the graph for a series of 

dots

• reveals similarity

• or a string of same 

characters

• longer sequences can also be 

compared on a single page, by   

using smaller dots

• established in 1970 by A.J. Gibbs and G.A.McIntyre

• method for comparing two amino acid or nucleotide sequences

23

Example Dot Plot

24
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An entire software module of a telecommunications switch;

about two million lines of C
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• Darker areas indicate 

regions with a lot of 

matches 
– a high degree of similarity 

• Lighter areas indicate 

regions with few matches 
– a low degree of similarity 

• Dark areas along the main 

diagonal indicate sub-

modules. 

• Dark areas off the main 

diagonal indicate a degree 

of similarity between sub-

modules.

• The largest dark squares 

are formed by redundancies 

in initializations of signal-

tables and finite-state 

machines.

Information within Dot Plots

• Dot plots are useful as a first-level filter for determining an 
alignment between two sequences. 
– It reveals the presence of insertions or deletions

• Comparing a single sequence to itself can reveal the presence 
of a repeat of a subsequence

– Inverted repeats = reverse complement

• Used to determine folding of RNA molecules

• Self comparison can reveal several features:
– similarity between chromosomes

– tandem genes

– repeated domains in a protein sequence

– regions of low sequence complexity (same characters are often 
repeated)

26

Insertions/Deletions

27

• Regions containing 
insertions/deletions
can be readily 
determined.   

• One potential 
application is to 
determine the 
number of coding 
regions (exons) 
contained within a 
processed mRNA.

Insertions/Deletions

Two similar, but not identical, sequences An indel (insertion or deletion): 

28

Duplication

A tandem duplication: Self-dotplot of 

a tandem duplication: 

29

Repeats/Inverted Repeats

30
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Repeats/Inverted Repeats

An inversion: 

31

Self dot plot with repeats:

The Dot Matrix

32

Joining sequences: 

Comparing Genome Assemblies

• Dot plots can also be used in order to compare two different assemblies of the 
same sequence. 

• Below are three dotplots of various chromosomes.  

• The 1st shows two separate assemblies of human chromosome 5 compared 
against each other.  

• The 2nd shows one assembly of chromosome 5 compared against itself, 
indicating the presence of repetitive regions.  

• The 3rd shows chromosome Y compared against itself, indicating the presence 
of inverted repeats.

33 34

Noise in Dot Plots

The very stringent, self-dotplot: The non-stringent self-dotplot: 

35

• Stringency is the quality or state of being stringent. 

• stringent: marked by rigor, strictness, or severity especially with regard to rule or standard

• Stringency is a situation in which a law, test, etc. is extremely severe or limiting and must 

be obeyed

Noise in Dot Plots

• Nucleic Acids (DNA, RNA)

– 1 out of 4 bases matches at random

• To filter out random matches, 

– sliding windows are used

– Percentage of bases matching in the window is set as 
threshold

• A dot is printed only if a minimal number of matches occur

• Rule of thumb:

– larger windows for DNAs (only 4 bases, more random 
matches)

– typical window size is 15 and stringency of 10

36
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Reduction of Dot Plot Noise

Self alignment of ACCTGAGCTCACCTGAGTTA

37

Available Dot Plot Programs

• Vector NTI 

software package 

(under AlignX)

38

Available Dot Plot Programs

• Vector NTI software package (under AlignX)

GCG software package:

• Compare http://www.hku.hk/bruhk/gcgdoc/compare.html

• DotPlot+ http://www.hku.hk/bruhk/gcgdoc/dotplot.html

• http://www.isrec.isb-sib.ch/java/dotlet/Dotlet.html

• http://bioweb.pasteur.fr/cgi-bin/seqanal/dottup.pl

• Dotter (http://www.cgr.ki.se/cgr/groups/sonnhammer/Dotter.html)

39

Available Dot Plot Programs

40

Available Dot Plot Programs

Dotlet (Java Applet) http://www.isrec.isb-sib.ch/java/dotlet/Dotlet.html

41

Available Dot Plot Programs

Dotter (http://www.cgr.ki.se/cgr/groups/sonnhammer/Dotter.html)

42
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Available Dot Plot Programs

EMBOSS DotMatcher, DotPath,DotUp

43

The Dot Plot (Dot Matrix)

• When to use the Dot Plot method?

– unless the sequences are known to be very much 
alike

• limits of the Dot Matrix

– doesn’t readily resolve similarity that is interrupted 
by insertion or deletions

– Difficult to find the best possible alignment 
(optimal alignment)

– most computer programs don’t show an actual 
alignment

44

Dot Plot References

Gibbs, A. J. & McIntyre, G. A. (1970). 

The diagram method for comparing sequences. its use with 

amino acid and nucleotide sequences. 

Eur. J. Biochem. 16, 1-11. 

Staden, R. (1982). 

An interactive graphics program for comparing and aligning 

nucleic-acid and amino-acid sequences. 

Nucl. Acid. Res. 10 (9), 2951-2961.
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Next step

• We must define quantitative measures of 

sequence similarity and difference!

– Hamming distance:

• # of positions with mismatching characters

– Levenshtein (or edit) distance:

• # of operations required to change one string into the 

other (deletion, insertion, substitution)

46

AGTC

CGTA
Hamming distance = 2

AG-TCC

CGCTCA
Levenshtein distance = 3

Scoring

• +1 for a match -1 for a mismatch?

• should gaps be allowed?

– if yes how should they be scored?

• what is the best algorithm for finding the 

optimal alignment of two sequences?

• is the produced alignment significant?

47

Determining Optimal Alignment

• Two sequences: X and Y

– |X| = m; |Y| = n

– Allowing gaps, |X| = |Y| = m+n

• Brute Force

• Dynamic Programming

48

http://bioinfo.pbi.nrc.ca:8090/EMBOSS/runs/filejKtqWM/dotmatcher.1.png
http://bioinfo.pbi.nrc.ca:8090/EMBOSS/runs/fileZr0f9M/dottup.1.png
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Brute Force

• Determine all possible subsequences for X and 
Y

– 2m+n subsequences for X, 2m+n for Y!

• Alignment comparisons

– 2m+n * 2m+n = 2(2(m+n)) = 4m+n comparisons

• Quickly becomes impractical

49

Dynamic Programming

• Used in Computer Science

• Solve optimization problems by dividing the problem 

into independent subproblems

• Sequence alignment has optimal substructure property

– Subproblem: alignment of prefixes of two 

sequences

– Each subproblem is computed once and stored in a 

matrix
50

Dynamic Programming

• Optimal score: 

– built upon optimal alignment computed to that 

point

• Aligns two sequences beginning at ends, 

attempting to align all possible pairs of 

characters

51

Dynamic Programming

• Scoring scheme for matches, mismatches, gaps

• Highest set of scores defines optimal alignment 
between sequences

• Match score: DNA – exact match; Amino 
Acids – mutation probabilities

• Guaranteed to provide optimal alignment 
given:

– Two sequences

– Scoring scheme

52

Steps in Dynamic Programming

 Initialization

 Matrix Fill (scoring)

 Traceback (alignment)

DP Example:

Sequence #1: GAATTCAGTTA; M = 11

Sequence #2: GGATCGA; N = 7

 s(aibj) = +5 if ai = bj (match score)

 s(aibj) = -3 if aibj (mismatch score)

 w = -4 (gap penalty)

53

View of the DP Matrix

• M+1 rows, N+1 columns

54
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Global Alignment (Needleman-Wunsch)

• Attempts to align all residues of two sequences

• INITIALIZATION: First row and first column 

set

• Si,0 = w * i

• S0,j = w * j

55

Initialized Matrix(Needleman-Wunsch)

56

Matrix Fill (Global Alignment)

Si,j = MAXIMUM[

Si-1, j-1 + s(ai,bj) (match/mismatch in the diagonal),

Si,j-1 + w (gap in sequence #1),     

Si-1,j + w (gap in sequence #2)

]

57

Matrix Fill (Global Alignment)

• S1,1 = MAX[S0,0 + 5, S1,0 - 4, S0,1 - 4] = MAX[5, -8, -8]

58

Matrix Fill (Global Alignment)

• S1,2 = MAX[S0,1 -3, S1,1 - 4, S0,2 - 4] = MAX[-4 - 3, 5 – 4, -8 – 4] = MAX[-

7, 1, -12] = 1

59

Matrix Fill (Global Alignment)

60
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Filled Matrix (Global Alignment)

61

Trace Back (Global Alignment)

• maximum global alignment score = 11 (value in the 
lower right hand cell). 

•

• Traceback begins in position SM,N; i.e. the position 
where both sequences are globally aligned.  

•

• At each cell, we look to see where we move next 
according to the pointers.  

62

Trace Back (Global Alignment)

63

Global Trace Back

G A A T T C A G T T A

|   |   | |   |     |

G G A – T C – G - — A

64

65

Checking Alignment Score

G A A T T C A G T T A

|   |   | |   |     |

G G A – T C – G - — A

+ - + - + + - + - - +

5 3 5 4 5 5 4 5 4 4 5

5 – 3 + 5 – 4 + 5 + 5 – 4 + 5 – 4 – 4 + 5 = 11

66



Copyright 2000 N. AYDIN. All rights 

reserved. 12

Local Alignment

• Smith-Waterman: obtain highest scoring local 

match between two sequences

• Requires 2 modifications:

– Negative scores for mismatches

– When a value in the score matrix becomes 

negative, reset it to zero (begin of new alignment)

67

Local Alignment Initialization

• Values in row 0 and column 0 set to 0.

68

Matrix Fill (Local Alignment)

Si,j = MAXIMUM [

Si-1, j-1 + s(ai,bj) (match/mismatch in the diagonal),

Si,j-1 + w (gap in sequence #1),     

Si-1,j + w (gap in sequence #2),      

0 ]

69

Matrix Fill (Local Alignment)

S1,1 = MAX[S0,0 + 5, S1,0 - 4, S0,1 – 4,0] = MAX[5, -4, -4, 0] = 5

70

Matrix Fill (Local Alignment)

S1,2 = MAX[S0,1 -3, S1,1 - 4, S0,2 – 4, 0] = MAX[0 - 3, 5 – 4, 0 – 4, 0] = MAX[-

3, 1, -4, 0] = 1

71

Matrix Fill (Local Alignment)

S1,3 = MAX[S0,2 -3, S1,2 - 4, S0,3 – 4, 0] = MAX[0 - 3, 1 – 4, 0 – 4, 0] =    

MAX[-3, -3, -4, 0] = 0

72
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Filled Matrix (Local Alignment)

73

Trace Back (Local Alignment)

• maximum local alignment score for the two sequences 
is 14

• found by locating the highest values in the score 
matrix

• 14 is found in two separate cells, indicating multiple 
alignments producing the maximal alignment score

74

Trace Back (Local Alignment)

• Traceback begins in the position with the highest 
value. 

• At each cell, we look to see where we move next 
according to the pointers

• When a cell is reached where there is not a pointer to 
a previous cell, we have reached the beginning of the 
alignment

75

Trace Back (Local Alignment)

76

Trace Back (Local Alignment)

77

Trace Back (Local Alignment)

78
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Maximum Local Alignment

G A A T T C - A

|   | |   |   |

G G A T – C G A

+ - + + - + - +

5 3 5 5 4 5 4 5

G A A T T C - A

|   |   | |   |

G G A – T C G A

+ - + - + + - +

5 3 5 4 5 5 4 5

79 80

81

Overlap Alignment

Consider the following problem:

Find the most significant overlap between two sequences?

Possible overlap relations:

a. 

b.

Difference from local alignment: 

Here we require alignment between the endpoints of the two sequences. 

82

Overlap Alignment

Initialization: Si,0 = 0 , S0,j = 0 

Recurrence: as in global alignment

Si,j = MAXIMUM [     

Si-1, j-1 + s(ai,bj) (match/mismatch in the diagonal),

Si,j-1 + w (gap in sequence #1),     

Si-1,j + w (gap in sequence #2) ]

Score: maximum value at the bottom line and rightmost line

global local overlap

83

Overlap Alignment - example

  
 

H E A G A W G H E E 

        0 0 0 0 0 0 0 0 0 0 0 

P  0           

A  0           

W  0           

H  0           

E  0           

A 0           

E  0           
 

 

PAWHEAE

HEAGAWGHEE

Scoring scheme :
Match: +4

Mismatch:  -1

Gap penalty: -5

84

  
 

H E A G A W G H E E 

        0 0 0 0 0 0 0 0 0 0 0 

P  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

A  0 -1          

W  0 -1          

H  0 4          

E  0 -1          

A 0 -1          

E  0 -1          
 

 

Overlap Alignment

PAWHEAE

HEAGAWGHEE

Scoring scheme :

Match: +4

Mismatch:  -1

Gap penalty: -5
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85

  
 

H E A G A W G H E E 

        0 0 0 0 0 0 0 0 0 0 0 

P  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

A  0 -1 -2 3 -2 3 -2 -2 -2 -2 -2 

W  0 -1 -2 -2 2 -2 7 2 -3 -3 -1 

H  0 4 -1 -3 -3 1 2 6 6 1 -2 

E  0 -1 8 3 -2 -3 0 1 5 10 5 

A 0 -1 3 12 7 2 -2 -1 0 5 9 

E  0 -1 3 7 11 6 1 -3 -2 4 9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Overlap Alignment

PAWHEAE

HEAGAWGHEE

Scoring scheme:
Match: +4

Mismatch:  -1

Gap penalty: -5

86

The best overlap is:

Pay attention!
A different scoring scheme could yield a different 

result, such as:

Overlap Alignment

Scoring scheme :
Match: +4

Mismatch:  -1

Gap penalty: -2

P A W H E A E - - - - - -

- - - H E A G A W G H E E

- - - P A W - H E A E

H E A G A W G H E E -

87

Sequence Alignment Variants 

• Global alignment  (The Needelman-Wunsch
Algorithm)
– Initialization: Si,0 = i*w, S0,j = j*w

– Score:  Si,j = MAX [Si-1, j-1 + s(ai,bj), Si,j-1 + w, Si-1,j + w]

• Local alignment    (The Smith-Waterman 
Algorithm)
– Initialization: Si,0 = 0, S0,j = 0 

– Score: Si,j = MAX [Si-1, j-1 + s(ai,bj), Si,j-1 + w, Si-1,j + w, 0]

• Overlap alignment
– Initialization: Si,0 = 0, S0,j = 0 

– Score:  Si,j = MAX [Si-1, j-1 + s(ai,bj), Si,j-1 + w, Si-1,j + w]

Scoring Matrices

• match/mismatch score

– Not bad for similar sequences

– Does not show distantly related sequences

• Likelihood matrix

– Scores residues dependent upon likelihood 
substitution is found in nature

– More applicable for amino acid sequences

88

Parameters of Sequence Alignment

Scoring Systems:

• Each symbol pairing is assigned a numerical 

value, based on a symbol comparison table.

Gap Penalties:

• Opening: The cost to introduce a gap

• Extension: The cost to elongate a gap

89

DNA Scoring Systems -very simple

actaccagttcatttgatacttctcaaa

taccattaccgtgttaactgaaaggacttaaagact

Sequence 1

Sequence 2

A G C T

A 1 0 0 0

G 0 1 0 0

C 0 0 1 0

T 0 0 0 1

Match: 1

Mismatch: 0

Score = 5

90
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Protein Scoring Systems

PTHPLASKTQILPEDLASEDLTI

PTHPLAGERAIGLARLAEEDFGM

Sequence 1

Sequence 2

Scoring

matrix

T:G =   -2 

T:T =    5

Score =  48

C S T P A G N D . .

C 9

S -1 4

T -1 1 5

P -3 -1 -1 7

A 0 1 0 -1 4

G -3 0 -2 -2 0 6

N -3 1 0 -2 -2 0 5

D -3 0 -1 -1 -2 -1 1 6       

.

.

A scoring matrix is a table 
of values that describe the 
probability of a residue pair 
occurring in alignment.

91

• Amino acids have different biochemical and physical properties
that influence their relative replaceability in evolution.

C
P

G
GAVI

L

M
F

Y

W H

K

R

E
Q

D
N

S

T

C
SH

S+S

positive

charged

polar

aliphatic

aromatic

small

tiny

hydrophobic

Protein Scoring Systems

92

• Scoring matrices reflect:
– # of mutations to convert one to another
– chemical similarity
– observed mutation frequencies

• Log odds matrices:
– the values are logarithms of probability ratios

of the probability of an aligned pair to 
the probability of a random alignment.

• Widely used scoring matrices:

• PAM 

• BLOSUM

Protein Scoring Systems

93

PAM matrices 
(Percent Accepted Mutations)

• Derived from global alignments of protein families . Family members  
share at least 85% identity (Dayhoff et al., 1978).

• Construction of phylogenetic tree and ancestral sequences of  each 
protein family

• Computation of number of replacements for each pair of amino acids

94

.

PAM matrices

• The numbers of replacements were used to compute a so-called   
PAM-1 matrix.

• The PAM-1 matrix reflects an average change of 1% of all amino 
acid positions. 

• PAM matrices for larger evolutionary distances can  be 
extrapolated from the PAM-1 matrix by multiplication.

• PAM250 = 250 mutations per 100 residues.

• Greater numbers mean bigger evolutionary distance

95

A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B  Z

A   2 -2  0  0 -2  0  0  1 -1 -1 -2 -1 -1 -3  1  1  1 -6 -3  0  2  1   

R  -2  6  0 -1 -4  1 -1 -3  2 -2 -3  3  0 -4  0  0 -1  2 -4 -2  1  2   

N   0  0  2  2 -4  1  1  0  2 -2 -3  1 -2 -3  0  1  0 -4 -2 -2  4  3   

D   0 -1  2  4 -5  2  3  1  1 -2 -4  0 -3 -6 -1  0  0 -7 -4 -2  5  4   

C  -2 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3  0 -2 -8  0 -2 -3 -4   

Q   0  1  1  2 -5  4  2 -1  3 -2 -2  1 -1 -5  0 -1 -1 -5 -4 -2  3  5   

E   0 -1  1  3 -5  2  4  0  1 -2 -3  0 -2 -5 -1  0  0 -7 -4 -2  4  5   

G   1 -3  0  1 -3 -1  0  5 -2 -3 -4 -2 -3 -5  0  1  0 -7 -5 -1  2  1   

H  -1  2  2  1 -3  3  1 -2  6 -2 -2  0 -2 -2  0 -1 -1 -3  0 -2  3  3   

I  -1 -2 -2 -2 -2 -2 -2 -3 -2  5  2 -2  2  1 -2 -1  0 -5 -1  4 -1 -1   

L  -2 -3 -3 -4 -6 -2 -3 -4 -2  2  6 -3  4  2 -3 -3 -2 -2 -1  2 -2 -1   

K  -1  3  1  0 -5  1  0 -2  0 -2 -3  5  0 -5 -1  0  0 -3 -4 -2  2  2 

M  -1  0 -2 -3 -5 -1 -2 -3 -2  2  4  0  6  0 -2 -2 -1 -4 -2  2 -1  0  

F  -3 -4 -3 -6 -4 -5 -5 -5 -2  1  2 -5  0  9 -5 -3 -3  0  7 -1 -3 -4   

P   1  0  0 -1 -3  0 -1  0  0 -2 -3 -1 -2 -5  6  1  0 -6 -5 -1  1  1   

S   1  0  1  0  0 -1  0  1 -1 -1 -3  0 -2 -3  1  2  1 -2 -3 -1  2  1   

T   1 -1  0  0 -2 -1  0  0 -1  0 -2  0 -1 -3  0  1  3 -5 -3  0  2  1   

W  -6  2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4  0 -6 -2 -5 17  0 -6 -4 -4   

Y  -3 -4 -2 -4  0 -4 -4 -5  0 -1 -1 -4 -2  7 -5 -3 -3  0 10 -2 -2 -3   

V   0 -2 -2 -2 -2 -2 -2 -1 -2  4  2 -2  2 -1 -1 -1  0 -6 -2  4  0  0   

B   2  1  4  5 -3  3  4  2  3 -1 -2  2 -1 -3  1  2  2 -4 -2  0  6  5   

Z   1  2  3  4 -4  5  5  1  3 -1 -1  2  0 -4  1  1  1 -4 -3  0  5  6   

PAM 250

C

-8 17

W

W

A value of 0 indicates the frequency of alignment is random

log(freq(observed)/freq(expected))
96
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Amino Acid

Frequency

1978 1991

L 0.085 0.091

A 0.087 0.077

G 0.089 0.074

S 0.070 0.069

V 0.065 0.066

E 0.050 0.062

T 0.058 0.059

K 0.081 0.059

I 0.037 0.053

D 0.047 0.052

R 0.041 0.051

P 0.051 0.051

N 0.040 0.043

Q 0.038 0.041

F 0.040 0.040

Y 0.030 0.032

M 0.015 0.024

H 0.034 0.023

C 0.033 0.020

W 0.010 0.014

freq(expected) = f(AAi)*f(AAj)

97

Use Different PAM’s for

Different Evolutionary Distances

(Adapted from D Brutlag, Stanford) 98

• Derived from alignments of domains of distantly related

proteins (Henikoff & Henikoff,1992).

• Occurrences of each amino acid pair

in each column of each block alignment

is counted.

• The numbers derived from all blocks were 

used to compute the BLOSUM matrices.

A

A

C

E

C

A - C  = 4

A - E  = 2

C - E  = 2

A - A  = 1

C - C  = 1

BLOSUM
(Blocks Substitution Matrix)

A
A

C
E
C

99

BLOSUM 
(Blocks Substitution Matrix)

• Sequences within blocks are clustered according to their level of identity.

• Clusters are counted as a single sequence.

• Different BLOSUM matrices differ in the percentage of sequence identity  
used in clustering.

• The number in the matrix name (e.g. 62 in BLOSUM62) refers to the   
percentage of sequence identity used to build the matrix.

• Greater numbers mean smaller evolutionary distance.

100

TIPS on choosing a scoring matrix

•Generally, BLOSUM matrices perform better than 
PAM matrices   for local similarity searches 
(Henikoff & Henikoff, 1993).

•When comparing closely related proteins one should 
use lower PAM or higher BLOSUM matrices, 
•For distantly related proteins higher PAM or lower 

BLOSUM matrices.

•For database searching the commonly used matrix is 
BLOSUM62.

101

Nucleic Acid Scoring Scheme

• Transition mutation (more common)

– purine purine A G

– pyrimidine pyrimidine T C

• Transversion mutation

– purine pyrimidine A, G T, C

A G T C

A 20 10 5 5

G 10 20 5 5

T 5 5 20 10

C 5 5 10 20

102
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Amino acids are not equal:

1. Some are easily substituted because they have 

similar:

• physico-chemical properties

• structure

2. Some mutations between amino acids occur more 

often due to similar codons

The two above observations give us ways to define 

substitution matrices

Amino acid exchange matrices

103

Properties of Amino Acids

Sequence similarity

• substitutions with similar chemical properties

104

Scoring Matrices

• table of values that describe  

the probability of a residue 

pair occurring in an 

alignment

• the values are logarithms of 

ratios of two probabilities

1. probability of random 

occurrence of an amino 

acid (diagonal) 

2. probability of meaningful 

occurrence of a pair of 

residues

105

Scoring Matrices

• PAM (Percent Accepted Mutation) / MDM (Mutation Data Matrix ) / Dayhoff
– Derived from global alignments of closely related sequences. 

– Matrices for greater evolutionary distances are extrapolated from those for lesser ones. 

– The number with the matrix (PAM40, PAM100) refers to the evolutionary distance; greater numbers 
are greater distances. 

– PAM-1 corresponds to about 1 million years of evolution

– for distant (global) alignments, Blosum50, Gonnet, or (still) PAM250

• BLOSUM (Blocks Substitution Matrix)
– Derived from local, ungapped alignments of distantly related sequences 

– All matrices are directly calculated; no extrapolations are used 

– The number after the matrix (BLOSUM62) refers to the minimum percent identity of the blocks used 
to construct the matrix; greater numbers are lesser distances. 

– The BLOSUM series of matrices generally perform better than PAM matrices for local similarity 
searches.

– For local alignment, Blosum 62 is often superior

• Structure-based matrices

• Specialized Matrices

Widely used matrices

106

Scoring Matrices

• BLOSUM matrices with higher numbers and PAM matrices with low numbers 

are designed for comparisons of closely related sequences. 

• BLOSUM matrices with low numbers and PAM matrices with high numbers 

are designed for comparisons of distantly related proteins. 

The relationship between BLOSUM and PAM substitution matrices

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Scoring2.html

107

Percent Accepted Mutation (PAM or Dayhoff) Matrices

• Studied by Margaret Dayhoff

• Amino acid substitutions 

– Alignment of common protein sequences

– 1572 amino acid substitutions

– 71 groups of protein, 85% similar

• “Accepted” mutations – do not negatively affect a 
protein’s fitness

• Similar sequences organized into phylogenetic trees

• Number of amino acid changes counted

• Relative mutabilities evaluated

• 20 x 20 amino acid substitution matrix calculated

108
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Percent Accepted Mutation (PAM or Dayhoff) Matrices

• PAM 1: 1 accepted mutation event per 100 amino acids; PAM 

250: 250 mutation events per 100 …

• PAM 1 matrix can be multiplied by itself N times to give 

transition matrices for sequences that have undergone N 

mutations

• PAM 250: 20% similar; PAM 120: 40%; PAM 80: 50%; PAM 

60: 60%

109

PAM1 matrix

normalized probabilities multiplied by 10000

Ala  Arg  Asn  Asp  Cys  Gln  Glu  Gly  His  Ile  Leu  Lys  Met  Phe  Pro  Ser  Thr  Trp  Tyr  Val           

A    R    N    D    C    Q    E    G    H    I    L    K    M    F    P    S    T    W    Y    V 

A 9867    2    9   10    3    8   17   21    2    6    4    2    6    2   22   35   32    0    2   18    

R    1 9913    1    0    1   10    0    0   10    3    1   19    4    1    4    6    1    8    0    1 

N    4    1 9822   36    0    4    6    6   21    3    1   13    0    1    2   20    9    1    4    1 

D    6    0   42 9859    0    6   53    6    4    1    0    3    0    0    1    5    3    0    0    1 

C    1    1    0    0 9973    0    0    0    1    1    0    0    0    0    1    5    1    0    3    2 

Q    3    9    4    5    0 9876   27    1   23    1    3    6    4    0    6    2    2    0    0    1 

E   10    0    7   56    0   35 9865    4    2    3    1    4    1    0    3    4    2    0    1    2 

G   21    1   12   11    1    3    7 9935    1    0    1    2    1    1    3   21    3    0    0    5 

H    1    8   18    3    1   20    1    0 9912    0    1    1    0    2    3    1    1    1    4    1 

I    2    2    3    1    2    1    2    0    0 9872    9    2   12    7    0    1    7    0    1   33

L    3    1    3    0    0    6    1    1    4   22 9947    2   45   13    3    1    3    4    2   15   

K    2   37   25    6    0   12    7    2    2    4    1 9926   20    0    3    8   11    0    1    1

M    1    1    0    0    0    2    0    0    0    5    8    4 9874    1    0    1    2    0    0    4 

F    1    1    1    0    0    0    0    1    2    8    6    0    4 9946    0    2    1    3   28    0 

P   13    5    2    1    1    8    3    2    5    1    2    2    1    1 9926   12    4    0    0    2    

S   28   11   34    7   11    4    6   16    2    2    1    7    4    3   17 9840   38    5    2    2 

T   22    2   13    4    1    3    2    2    1   11    2    8    6    1    5   32 9871    0    2    9 

W    0    2    0    0    0    0    0    0    0    0    0    0    0    1    0    1    0 9976    1    0   

Y    1    0    3    0    3    0    1    0    4    1    1    0    0   21    0    1    1    2 9945    1      

V   13    2    1    1    3    2    2    3    3   57   11    1   17    1    3    2   10    0    2 9901

110

Log Odds Matrices

• PAM matrices converted to log-odds matrix
– Calculate odds ratio for each substitution

• Taking scores in previous matrix

• Divide by frequency of amino acid

– Convert ratio to log10 and multiply by 10

– Take average of log odds ratio for converting A to B and converting B 

to A

– Result: Symmetric matrix

– EXAMPLE: Mount pp. 80-81

111

PAM250 Log odds matrix

112

Blocks Amino Acid Substitution Matrices (BLOSUM)

• Larger set of sequences considered

• Sequences organized into signature blocks

• Consensus sequence formed

– 60% identical: BLOSUM 60

– 80% identical: BLOSUM 80

113

DNA Mutations

A

C

G

T

PURINES: A, G

PYRIMIDINES C, T

Transitions: AG; 

CT

Transversions: AC, 

AT,     

CG, 

GT

In addition to using a match/mismatch scoring scheme for DNA sequences, nucleotide 

mutation matrices can be constructed as well.  These matrices are based upon two 

different models of nucleotide evolution:  the first, the Jukes-Cantor model, assumes 

there are uniform mutation rates among nucleotides, while the second, the Kimura 

model, assumes that there are two separate mutation rates: one for transitions (where 

the structure of purine/pyrimidine stays the same), and one for transversions.  

Generally, the rate of transitions is thought to be higher than the rate of transversions.
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Nucleic Acid Scoring Matrices

• Two mutation models:

– Jukes-Cantor Model of evolution:  = 

common rate of base substitution

– Kimura Model of Evolution:  = rate of 

transitions;  = rate of transversions

• Transitions

• Transversions

115

Nucleotide substitution matrices with the equivalent distance of 1 PAM

A. Model of uniform mutation rates among nucleotides.

A G T C
A 0.99 
G 0.00333 0.99 
T 0.00333 0.00333 0.99 
C 0.00333 0.00333 0.00333 0.99

B. Model of 3-fold higher transitions than transversions.

A G T C
A 0.99 
G 0.006 0.99 
T 0.002 0.002 0.99 
C 0.002 0.002 0.006 0.99

116

Nucleotide substitution matrices with the equivalent distance of 1 PAM

A. Model of uniform mutation rates among nucleotides.

A G T C
A 2 
G -6 2 
T -6 -6 2 
C -6 -6 -6 2

B. Model of 3-fold higher transitions than transversions.

A G T C
A 2 
G -5 2 
T -7 -7 2 
C -7 -7 -5 2
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Linear vs. Affine Gaps

• The scoring matrices used to this point assume a 

linear gap penalty where each gap is given the same 

penalty score.  

• However, over evolutionary time, it is more likely 

that a contiguous block of residues has become 

inserted/deleted in a certain region (for example, it is 

more likely to have 1 gap of length k than k gaps of 

length 1).  

• Therefore, a better scoring scheme to use is an initial 

higher penalty for opening a gap, and a smaller 

penalty for extending the gap. 
118

Linear vs. Affine Gaps

• Gaps have been modeled as linear

• More likely contiguous block of residues inserted or 

deleted

– 1 gap of length k rather than k gaps of length 1

• Scoring scheme should penalize new gaps more

119

Affine Gap Penalty

• wx = g + r(x-1)

• wx : total gap penalty; g: gap open penalty; r: gap 

extend penalty; x: gap length

•

• gap penalty chosen relative to score matrix

– Gaps not excluded

– Gaps not over included

– Typical Values: g = -12;  r = -4

120
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Affine Gap Penalty and Dynamic Programming

Mi, j = max { Di - 1, j - 1 + subst(Ai, Bj) ,

Mi - 1, j - 1 + subst(Ai, Bj) ,

Ii - 1, j - 1 + subst(Ai, Bj) }

Di, j = max { Di , j - 1 – extend, Mi , j - 1 - open }

Ii, j = max { Mi-1 , j – open, Ii-1 , j - extend }

where M is the match matrix, D is delete matrix, 
and I is insert matrix

121

Drawbacks to DP Approaches

• Dynamic programming approaches are guaranteed to give the 
optimal alignment between two sequences given a scoring 
scheme.  

• However, the two main drawbacks to DP approaches is that 
they are compute and memory intensive, in the cases discussed 
to this point taking at least O(n2) space, between O(n2) and 
O(n3) time.

• Linear space algorithms have been used in order to deal with 
one drawback to dynamic programming.  The basic idea is to 
concentrate only on those areas of the matrix more likely to 
contain the maximum alignment.  The most well-known of 
these linear space algorithms is the Myers-Miller algorithm. 
Compute intensive
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Alternative DP approaches

• Linear space algorithms Myers-Miller

• Bounded Dynamic Programming

• Ewan Birney’s Dynamite Package

– Automatic generation of DP code
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Assessing Significance of Alignment

• When two sequences of length m and n are not 
obviously similar but show an alignment, it 
becomes necessary to assess the significance of 
the alignment.  The alignment of scores of 
random sequences has been shown to follow a 
Gumbel extreme value distribution.

124

Significance of Alignment

• Determine probability of alignment occurring 
at random

– Sequence 1: length m

– Sequence 2: length n

• Random sequences:

– When two sequences of length m and n are not 
obviously similar but show an alignment, it 
becomes necessary to assess the significance of the 
alignment.  

– The alignment of scores of random sequences has 
been shown to follow a Gumbel extreme value 
distribution.

125

Gumbel Extreme Value Distribution

• http://roso.epfl.ch/mbi/papers/discretechoice/node11.html

• http://mathworld.wolfram.com/GumbelDistribution.html

• http://en.wikipedia.org/wiki/Generalized_extreme_value_distribution

126

http://roso.epfl.ch/mbi/papers/discretechoice/node11.html
http://mathworld.wolfram.com/GumbelDistribution.html
http://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
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Probability of Alignment Score

• Using a Gumbel extreme value distribution, 
the expected number of alignments with a 
score at least S (E-value) is:

E = Kmn e-λS

– m,n: Lengths of sequences

– K ,λ:  statistical parameters dependent upon scoring 
system and background residue frequencies

127

• Recall that the log-odds scoring schemes 

examined to this point normally use a 

S = 10*log10x scoring system.  

• We can normalize the raw scores obtained 

using these non-gapped scoring systems to 

obtain the amount of bits of information 

contained in a score (or the amount of nats of 

information contained within a score).

128

Converting to Bit Scores

A raw score can be normalized to a bit score 

using the formula:

• The E-value corresponding to a given bit score 

can then be calculated as:

129

• Converting to nats is similar.  However, we 

just substitute e for 2 in the above equations.  

Converting scores to either bits or nats gives a 

standardized unit by which the scores can be 

compared.
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P-Value

• P values can be calculated as the probability of 

obtaining a given score at random.  P-values 

can be estimated as:

P = 1 – e-E

which is approximately e-E

131

A quick determination of significance

• If a scoring matrix has been scaled to bit scores, then it 

can quickly be determined whether or not an alignment 

is significant.  

• For a typical amino acid scoring matrix, K = 0.1 and 

lambda depends on the values of the scoring matrix.  

• If a PAM or BLOSUM matrix is used, then lambda is 

precomputed.  

• For instance, if the log odds matrix is in units of bits, 

then lambda = loge2, and the significance cutoff can be 

calculates as log2(mn).
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Significance of Ungapped Alignments

• PAM matrices are 10 * log10x

• Converting to log2x gives bits of information

• Converting to logex gives nats of information

Quick Calculation:

• If bit scoring system is used, significance 

cutoff is:

log2(mn)

133

Example

• Suppose we have two sequences, each 

approximately 250 amino acids long that are 

aligned using a Smith-Waterman approach.

• Significance cutoff is:  

– log2(250 * 250) = 16 bits

134

Example

• Using PAM250, the following alignment is 

found:

• F W L E V E G N S M T A P T G

• F W L D V Q G D S M T A P A G

135

Example

• Using PAM250, the score is calculated:

• F W L E V E G N S M T A P T G

• F W L D V Q G D S M T A P A G

• S = 9 + 17 + 6 + 3 + 4 + 2 + 5 + 2 + 2 + 6 + 3 + 2 + 6 + 1 + 5 = 73

136

PAM250 matrix

137

Significance Example

• S is in 10 * log10x, so this should be converted to a bit score:

• S = 10 log10x

• S/10 = log10x

• S/10 = log10x * (log210/log210)

• S/10 * log210 = log10x / log210

• S/10 * log210 = log2x

• 1/3 S ~ log2x

• S’ ~ 1/3S

138
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Significance Example

• S’ = 1/3S = 1/3 * 73 = 24.333 bits

• The significance cutoff is: 

log2(mn) = log2(250 * 250) = 16 bits

• Since the alignment score is above the 

significance cutoff, this is a significant local 

alignment.
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Estimation of E and P

• When a PAM250 scoring matrix is being used, K is estimated 
to be 0.09, while lambda is estimated to be 0.229. 

• For PAM250, K = 0.09;  = 0.229

• We can convert the score to a bit score as follows:

• S’= S-lnKmn

• S’ = 0.229 * 73 – ln 0.09 * 250 * 250

• S’ = 16.72 – 8.63 = 8.09 bits

• P(S’ >= x) = 1 – e(-e-x)

• P(S’ >= 8.09) = 1 – e(-e-8.09) = 3.1* 10-4

• Therefore, we see that the probability of observing an 
alignment with a bit score greater than 8.09 is about 3 in 1000.
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Significance of Gapped Alignments

• Gapped alignments make use of the same 

statistics as ungapped alignments in 

determining the statistical significance.  

• However, in gapped alignments, the values for 

 and K cannot be easily estimated.  

• Empirical estimations and gap scores have 

been determined by looking at the alignments 

of randomized sequences.
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Bayesian Statistics

• Bayesian statistics are built upon conditional 

probabilities, 

– which are used to derive the joint probability of 

two events or conditions.

• P(B|A) is the probability of B given condition 

A is true.

• P(B) is the probability of condition B

occurring, regardless of conditions A.

• P(A, B): Joint probability of A and B occurring 

simultaneously

142

Bayesian Statistics

• Suppose that A can have two states, A1 and 
A2, and B can have two states, B1 and B2.  

• Suppose that P(B1) = 0.3 is known.  

• Therefore, P(B2) = 1 – 0.3 = 0.7.  

• These probabilities are known as marginal 
probabilities.  

• Now we would like to determine the 
probability of A1 and B1 occurring together, 
which is denoted as: P(A1, B1) and is called 
the joint probability
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Joint Probabilities

• Note that in this case the marginal probabilities A1

and A2 are missing.  Thus, there is not enough 

information at this point to calculate the marginal 

probability.  

• However, if more information about the joint 

occurrence of A1 and B1 are given, then the joint 

probabilities may be derived using Bayes Rule:

– P(A1,B1) = P(B1)P(A1|B1)

– P(A1,B1) = P(A1)P(B1|A1)
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Bayesian Example

• Suppose that we are given P(A1|B1) = 0.8.  

• Then, since there are only two different possible states 
for A, 

• P(A2|B1) = 1 – 0.8 = 0.2.  

• If we are also given P(A2|B2) = 0.7, 

• then P(A1|B2) = 0.3.  

• Using Bayes Rule, the joint probability of having states 
A1 and B1 occurring at the same time is 

• P(B1)P(A1|B1) = 0.3 * 0.8 = 0.24 and 

• P(A2,B2) = P(B2)P(A2|B2) = 0.7 * 0.7 = 0.49.  

• The other joint probabilities can be calculated from these 
as well.
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Posterior Probabilities

• Calculation of joint probabilities results in 

posterior probabilities 

– Not known initially

– Calculated using

• Prior probabilities

• Initial information
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Applications of Bayesian Statistics

• Evolutionary distance between two sequences

• Sequence Alignment

• Significance of Alignments

• Gibbs Sampling
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Pairwise Sequence Alignment Programs

• Blast 2 Sequences

– NCBI

– word based sequence 

alignment

• LALIGN

– FASTA package

– Mult. Local alignments

• needle

– Global 

Needleman/Wunsch 

alignment

• water

– Local Smith/Waterman 

alignment
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Various Sequence Alignments

Wise2 -- Genomic to protein

Sim4 -- Aligns expressed DNA to genomic 
sequence

spidey -- aligns mRNAs to genomic sequence

est2genome -- aligns ESTs to genomic sequence
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