Pairwise Sequence Alignment

Prof. Dr. Nizamettin AYDIN
naydin@yildiz.edu.tr
http://www3.yildiz.edu.tr/~naydin

Introduction to sequence alignment

- In molecular biology, a common question is to ask whether or not two sequences are related.
- The most common way to tell whether or not they are related is to compare them to one another to see if they are similar.
- Question:
- Are two sequences related?
- Compare the two sequences,
- see if they are similar

Outline

- Introduction to sequence alignment
- pair wise sequence alignment
- The Dot Matrix
- Scoring Matrices
- Gap Penalties
- Dynamic Programming

Sequence Alignment

- Sequence Alignment
- the identification of residue-residue correspondences.
- It is the basic tool of bioinformatics.
- Example:
- pear and tear
- Similar words, different meanings

Biological Sequences

- Similar biological sequences tend to be related
- Information:
- Functional
- Structural
- Evolutionary
- Common mistake:
- sequence similarity is not homology!
- Homologous sequences:
- derived from a common ancestor

Relation of sequences

- Homologs:
similar sequences in 2 different organisms derived from a common ancestor sequence.
- Orthologs:

Similar sequences in 2 different organisms that have arisen due to a speciation event. Functionality Retained.

- Paralogs:

Similar sequences within a single organism that have arisen due to a gene duplication event.

- Xenologs:
similar sequences that have arisen out of horizontal transfer events (symbiosis, viruses, etc)

Relation of sequences

Pairwise Alignment

- The alignment of two sequences (DNA or protein) is a relatively straightforward computational problem.
- There are lots of possible alignments.
- Two sequences can always be aligned.
- Sequence alignments have to be scored.
- Often there is more than one solution with the same score.

Use Protein Sequences for Similarity Searches

- DNA sequences tend to be less informative than protein sequences
- DNA bases vs. 20 amino acids - less chance similarity
- Similarity of AAs can be scored
- \# of mutations, chemical similarity, PAM matrix
- Protein databanks are much smaller than DNA databanks
- less random matches.
- Similarity is determined by pairwise alignment of different sequences

Sequence Alignment

The concept

- An alignment is a mutual arrangement of two sequences.
- Pairwise sequence alignment
- It exhibits where the two sequences are similar, and where they differ.
- An optimal alignment is one that exhibits the most correspondences, and the least differences.
- Sequences that are similar probably have the same function

Sequence Alignment

Things to consider:

- to find the best alignment one needs to examine all possible alignments
- to reflect the quality of the possible alignments one needs to score them
- there can be different alignments with the same highest score
- variations in the scoring scheme may change the ranking of alignments

Sequence Alignment

Evolution:

true alignment

Hamming or edit distance

- Simplest method in determining sequence similarity is to determine the edit distance between two sequences
- If we take the example of pear and tear, how similar are these two words?
- An alignment of these two is as follows:

P EAR

| | |
TEAR

Sequence Alignment

A protein sequence alignment
MSTGAVLIY--TSILIKECHAMPAGNE--------GGILLFHRTHELIKESHAMANDEGGSNNS

A DNA sequence alignment attcgttggcaaatcgcccctatccggccttaa att---tggcggatcg-cctctacgggcc---*** $\quad * * * * * * * * * * * * * * *$

Hamming Distance

- Minimum number of letters by which two words differ
- Calculated by summing number of mismatches
- Hamming Distance between PEAR and TEAR is 1

Possible Residue Alignments

- An alignment can produce one of the following:
- a match between two characters
- a mismatch between two characters
- also called a substitution or mutation
- a gap in the first sequence
- which can be thought of as the deletion of a character in the first sequence
- a gap in the second sequence
- which can be thought of as the insertion of a character in the first sequence

Abstract

Alignments - Consider the following two nucleic acid sequences: - ACGGACT and ATCGGATCT. - The followings are two valid alignments: | |
| :---: |
| | |

A T C G G A T C T | | | | | | A-CGG-ACT

- Which alignment is the better alignment?

Alignment Methods

- Visual
- Brute Force
- Dynamic Programming
- Word-Based (k tuple)

Alignment Scoring Scheme

- One way to judge this is to assign
- a + score for each match,
- a - score for each mismatch,
- a - score for each insertion/deletion (indels).
- Possible scoring scheme:
match: +2 mismatch: -1 indel: -2
- Alignment 1:
- $5 * 2-1(1)-4(2)=10-1-8=1$
- Alignment 2:
- $6 * 2-1(1)-2(2)=12-1-4=7$
- Using the above scoring scheme, the 2 nd alignment is a better alignment,
- since it produces a higher alignment score.

Visual Alignments (Dot Plots)

- One of basic techniques for determining the alignment between two sequences is by using a visual alignment known as dot plots.
- Matrix
- Rows:
- Characters in one sequence
- Columns:
- Characters in second sequence
- Filling
- Loop through each row;
- if character in row-column match, fill in the cell
- Continue until all cells have been examined

The Dot Matrix

- established in 1970 by A.J. Gibbs and G.A.McIntyre
- method for comparing two amino acid or nucleotide sequences

Example Dot Plot

An entire software module of a telecommunications switch;

 about two million lines of \mathbf{C}

Darker areas indicate regions with a lot of matches
Lighter ar high degree of similarity ightas indicate regions with few matches
Dark areas along the main diagonal indicate submodules.
Dark areas off the main diagonal indicate a degree of similarity between submodules.
The largest dark squares are formed by redundancies in initializations of signaltables and finite-state machines.

Information within Dot Plots

- Dot plots are useful as a first-level filter for determining an alignment between two sequences.
- It reveals the presence of insertions or deletions
- Comparing a single sequence to itself can reveal the presence of a repeat of a subsequence
- Inverted repeats $=$ reverse complement - Used to determine folding of RNA molecules
- Self comparison can reveal several features:
- similarity between chromosomes
- tandem genes
- repeated domains in a protein sequence
- regions of low sequence complexity (same characters are often repeated)

Insertions/Deletions

- Regions containing insertions/deletions can be readily determined.
- One potential application is to determine the number of coding regions (exons) contained within a processed mRNA.

Duplication

A tandem duplication:

Self-dotplot of a tandem duplication:

Insertions/Deletions

Two similar, but not identical, sequences

Repeats/Inverted Repeats

Repeats/Inverted Repeats

An inversion:

Self dot plot with repeats:

Comparing Genome Assemblies

- Dot plots can also be used in order to compare two different assemblies of the same sequence.
- Below are three dotplots of various chromosomes.

- The 1 st shows two separate assemblies of human chromosome 5 compared against each other.
- The 2nd shows one assembly of chromosome 5 compared against itself, indicating the presence of repetitive regions.

Joining sequences:

The Dot Matrix

- The 3rd shows chromosome Y compared against itself, indicating the presence
of inverted repeats.

Noise in Dot Plots

The very stringent, self-dotplot:

- Stringency is the quality or state of being stringent.
stringent: marked by rigor, strictness, or severity especially with regard to rule or standard Stringency is a situation in which a law, test, etc. is extremely severe or limiting and must be obeyed

Noise in Dot Plots

- Nucleic Acids (DNA, RNA)
- 1 out of 4 bases matches at random
- To filter out random matches,
- sliding windows are used
- Percentage of bases matching in the window is set as threshold
- A dot is printed only if a minimal number of matches occur
- Rule of thumb:
- larger windows for DNAs (only 4 bases, more random matches)
- typical window size is 15 and stringency of 10

Reduction of Dot Plot Noise

Self alignment of ACCTGAGCTCACCTGAGTTA

Available Dot Plot Programs

\author{

- Vector NTI software package (under AlignX)

}

Available Dot Plot Programs

Available Dot Plot Programs

Dotter (http://www.cgr.ki.se/cgr/groups/sonnhammer/Dotter.html)

Available Dot Plot Programs

EMBOSS DotMatcher, DotPath,DotUp

(
 dotpath (22/01/03)

Dot Plot References

Gibbs, A. J. \& McIntyre, G. A. (1970).
The diagram method for comparing sequences. its use with amino acid and nucleotide sequences.
Eur. J. Biochem. 16, 1-11.

Staden, R. (1982).
An interactive graphics program for comparing and aligning nucleic-acid and amino-acid sequences.
Nucl. Acid. Res. 10 (9), 2951-2961.

The Dot Plot (Dot Matrix)

- When to use the Dot Plot method?
- unless the sequences are known to be very much alike
- limits of the Dot Matrix
- doesn't readily resolve similarity that is interrupted by insertion or deletions
- Difficult to find the best possible alignment (optimal alignment)
- most computer programs don't show an actual alignment

Next step

- We must define quantitative measures of sequence similarity and difference!
- Hamming distance:
- \# of positions with mismatching characters
$\begin{array}{ll}\text { AGTC } & \text { Hamming distance }=2 \\ \text { CGTA }\end{array}$
- Levenshtein (or edit) distance:
- \# of operations required to change one string into the other (deletion, insertion, substitution)

AG-TCC
Levenshtein distance $=3$
CGCTCA

Determining Optimal Alignment

- Two sequences: X and Y
$-|X|=m ;|Y|=n$
- Allowing gaps, $|\mathrm{X}|=|\mathrm{Y}|=\mathrm{m}+\mathrm{n}$
- Brute Force
- Dynamic Programming

Brute Force

- Determine all possible subsequences for X and Y
-2^{m+n} subsequences for $\mathrm{X}, 2^{\mathrm{m}+\mathrm{n}}$ for Y !
- Alignment comparisons
$-2^{\mathrm{m}+\mathrm{n}} * 2^{\mathrm{m}+\mathrm{n}}=2^{(2(\mathrm{~m}+\mathrm{n}))}=4^{\mathrm{m}+\mathrm{n}}$ comparisons
- Quickly becomes impractical

Dynamic Programming

- Optimal score:
- built upon optimal alignment computed to that point
- Aligns two sequences beginning at ends, attempting to align all possible pairs of characters

Dynamic Programming

- Used in Computer Science
- Solve optimization problems by dividing the problem into independent subproblems
- Sequence alignment has optimal substructure property
- Subproblem: alignment of prefixes of two sequences
- Each subproblem is computed once and stored in a matrix

Dynamic Programming

- Scoring scheme for matches, mismatches, gaps
- Highest set of scores defines optimal alignment between sequences
- Match score: DNA - exact match; Amino Acids - mutation probabilities
- Guaranteed to provide optimal alignment given:
- Two sequences
- Scoring scheme

View of the DP Matrix

- $\mathrm{M}+1$ rows, $\mathrm{N}+1$ columns

- Attempts to align all residues of two sequences
- INITIALIZATION: First row and first column set
- $\mathrm{S}_{\mathrm{i}, 0}=\mathrm{w} * \mathrm{i}$
- $\mathrm{S}_{0, \mathrm{j}}=\mathrm{w} * \mathrm{j}$

Matrix Fill (Global Alignment)

$$
\begin{aligned}
\mathbf{S}_{\mathrm{i}, \mathrm{j}}= & \text { MAXIMUM }[\\
& \mathbf{S}_{\mathrm{i}-1, \mathrm{j}-1}+\mathbf{s}\left(\mathbf{a}_{\mathrm{i},}, \mathbf{b}_{\mathbf{j}}\right)(\text { match/mismatch in the diagonal) }) \\
& \mathbf{S}_{\mathrm{i}, \mathbf{j}-\mathbf{1}}+\mathbf{w}(\text { gap in sequence \#1 }), \\
& \mathrm{S}_{\mathrm{i}-1, \mathrm{j}}+\mathbf{w}(\text { gap in sequence \#2) }) \\
&]
\end{aligned}
$$

Matrix Fill (Global Alignment)

```
- }\begin{array}{l}{\mp@subsup{S}{1,2}{}=\operatorname{MAX}[\mp@subsup{S}{0,1}{}-3,\mp@subsup{S}{1,1}{}-4,\mp@subsup{S}{0,2}{}-4]=\operatorname{MAX[-4-3,5-4, -8-4] = MAX[-}}\\{7,1,-12]=1} \(7,1,-12]=1\)
```


$$
\cdot \mathrm{S}_{1,1}=\operatorname{MAX}\left[\mathrm{S}_{0,0}+5, \mathrm{~S}_{1,0}-4, \mathrm{~S}_{0,1}-4\right]=\operatorname{MAX}[5,-8,-8]
$$

Matrix Fill (Global Alignment)

Filled Matrix (Global Alignment)

Trace Back (Global Alignment)

- maximum global alignment score $=11$ (value in the lower right hand cell).
- Traceback begins in position $\mathrm{S}_{\mathrm{M}, \mathrm{N}}$; i.e. the position where both sequences are globally aligned.
- At each cell, we look to see where we move next according to the pointers.

Global Trace Back

Checking Alignment Score

$$
\begin{aligned}
& \text { GAATTCAGTTA }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllllllll}
5 & 3 & 5 & 4 & 5 & 5 & 4 & 5 & 4 & 4 & 5
\end{array} \\
& 5-3+5-4+5+5-4+5-4-4+5=11 \checkmark
\end{aligned}
$$

Local Alignment

- Smith-Waterman: obtain highest scoring local match between two sequences
- Requires 2 modifications:
- Negative scores for mismatches
- When a value in the score matrix becomes negative, reset it to zero (begin of new alignment)

Matrix Fill (Local Alignment)

```
S
    Si-1,\mathbf{j-1}
    S
    S
    0 ]
```


Matrix Fill (Local Alignment)

$\mathrm{S}_{1,2}=\operatorname{MAX}\left[\mathrm{S}_{0,1}-3, \mathrm{~S}_{1,1}-4, \mathrm{~S}_{0,2}-4,0\right]=\operatorname{MAX}[0-3,5-4,0-4,0]=\operatorname{MAX}[-$ $3,1,-4,0]=1$

Local Alignment Initialization

- Values in row 0 and column 0 set to 0 .

	-	G	A	A	T	T	C	A	G	T	T	A
-	0	0	0	0	0	0	0	0	0	0	0	0
G	0											
G	0											
A	0											
T	0											
C	0											
G	0											
A	0											

$\mathrm{S}_{1,1}=\operatorname{MAX}\left[\mathrm{S}_{0,0}+5, \mathrm{~S}_{1,0}-4, \mathrm{~S}_{0,1}-4,0\right]=\operatorname{MAX}[5,-4,-4,0]=5$

Matrix Fill (Local Alignment)
$\mathrm{S}_{1,3}=\operatorname{MAX}\left[\mathrm{S}_{0,2}-3, \mathrm{~S}_{1,2}-4, \mathrm{~S}_{0,3}-4,0\right]=\operatorname{MAX}[0-3,1-4,0-4,0]=$
$\operatorname{MAX}[-3,-3,-4,0]=0$

Trace Back (Local Alignment)

- Traceback begins in the position with the highest value.
- At each cell, we look to see where we move next according to the pointers
- When a cell is reached where there is not a pointer to a previous cell, we have reached the beginning of the alignment

Trace Back (Local Alignment)

- maximum local alignment score for the two sequences is 14
- found by locating the highest values in the score matrix
- 14 is found in two separate cells, indicating multiple alignments producing the maximal alignment score

Trace Back (Local Alignment)

Trace Back (Local Alignment)

Maximum Local Alignment

GAATTC-A
GAATTC-A
| | | | |
$G G A T-C G A$
$1|1| 1$

G

$G G A-T C G A$
$+-++-+-+$
$+-+-++-+$
$\begin{array}{llllllllllllllll}5 & 3 & 5 & 5 & 4 & 5 & 4 & 5\end{array} \begin{array}{lllllll}5 & 3 & 5 & 4 & 5 & 5 & 4 \\ 5\end{array}$

Overlap Alignment

Consider the following problem:

* Find the most significant overlap between two sequences?
* Possible overlap relations:
a. \qquad
b. $=$

Difference from local alignment:
Here we require alignment between the endpoints of the two sequences.

Overlap Alignment - example

PAWHEAE HEAGAWGHEE

Scoring scheme
Match: +4
Mismatch: -1
Gap penalty: -5

		\mathbf{H}	\mathbf{E}	\mathbf{A}	\mathbf{G}	\mathbf{A}	\mathbf{W}	\mathbf{G}	\mathbf{H}	\mathbf{E}	\mathbf{E}
	$\mathbf{0}$										
\mathbf{P}	$\mathbf{0}$										
\mathbf{A}	0										
\mathbf{W}	$\mathbf{0}$										
\mathbf{H}	0										
\mathbf{E}	$\mathbf{0}$										
\mathbf{A}	$\mathbf{0}$										
\mathbf{E}	$\mathbf{0}$										

Overlap Alignment

Initialization: $\quad \mathbf{S}_{\mathrm{i}, \mathbf{0}}=\mathbf{0}, \quad \mathrm{S}_{\mathbf{0}, \mathrm{j}}=\mathbf{0}$
Recurrence: as in global alignment
$\mathbf{S}_{\mathrm{i}, \mathrm{j}}=$ MAXIMUM [

$$
\mathbf{S}_{\mathbf{i}-1, \mathrm{j}-1}+\mathbf{s}\left(\mathbf{a}_{\mathbf{i},} \mathbf{b}_{\mathbf{j}}\right)(\text { match/mismatch in the diagonal) },
$$

$$
\mathbf{S}_{\mathbf{i}, \mathrm{j}-1}+\mathbf{w}(\text { gap in sequence \#1) },
$$

$$
\left.\mathbf{S}_{\mathbf{i}-1, \mathrm{j}}+\mathbf{w}(\text { gap in sequence \#2) })\right]
$$

Score: maximum value at the bottom line and rightmost line

Overlap Alignment

PAWHEAE HEAGAWGHEE			H	E	A	G	A	W	G	H	E	E
		0	0	0	0	0	0	0	0	0	0	0
	P	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
Scoring scheme : Match: +4 Mismatch: -1 Gap penalty: -5	A	0	-1									
	W	0	-1									
	H	0	4									
	E	0	-1									
	A	0	-1									
	E	0	-1									

Overlap Alignment

PAW HEAE
HEAGAWGHEE

Scoring scheme:
Match: +4
Mismatch: -1
Gap penalty: -5

		\mathbf{H}	\mathbf{E}	\mathbf{A}	\mathbf{G}	\mathbf{A}	\mathbf{W}	\mathbf{G}	\mathbf{H}	\mathbf{E}	\mathbf{E}
	0	0	0	0	0	0	0	0	0	0	0
\mathbf{P}	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
\mathbf{A}	0	-1	-2	3	-2	3	-2	-2	-2	-2	-2
\mathbf{W}	0	-1	-2	-2	2	-2	7	2	-3	-3	-1
\mathbf{H}	0	4	-1	-3	-3	1	2	6	6	1	-2
\mathbf{E}	0	-1	8	3	-2	-3	0	1	5	10	5
\mathbf{A}	0	-1	3	12	7	2	-2	-1	0	5	9
\mathbf{E}	0	-1	3	7	11	6	1	-3	-2	4	9

Sequence Alignment Variants

- Global alignment (The Needelman-Wunsch Algorithm)

```
- Initialization: \(\mathbf{S}_{\mathbf{i}, \mathbf{0}}=i^{*} \mathrm{w}, \mathbf{S}_{\mathbf{0 , j}}=j^{*}{ }^{\mathrm{w}}\)
- Score: \(\mathbf{S}_{\mathrm{i}, \mathrm{j}}=\) MAX \(\left[\mathbf{S}_{\mathrm{i}-1, \mathrm{j}-1}+\mathrm{s}\left(\mathbf{a}_{\mathrm{i}, \mathrm{b}} \mathbf{b}_{\mathrm{j}}\right), \mathbf{S}_{\mathrm{i}, \mathrm{j}-1}+\mathbf{w}, \mathbf{S}_{\mathrm{i}-1, \mathrm{j}}+\mathbf{w}\right]\)
```

- Local alignment (The Smith-Waterman Algorithm)
- Initialization: $\mathbf{S}_{\mathbf{i}, \mathbf{0}}=0, \mathbf{S}_{\mathbf{0} \mathbf{j} \mathbf{j}}=0$
- Score: $\mathbf{S}_{\mathrm{i}, \mathrm{j}}=$ MAX $\left[\mathrm{S}_{\mathrm{i}-1, \mathrm{j}-1}+\mathrm{s}\left(\mathbf{a}_{\mathrm{i},}, \mathbf{b}_{\mathrm{j}}\right), \mathbf{S}_{\mathrm{i}, \mathrm{j}-1}+\mathbf{w}, \mathbf{S}_{\mathrm{i}-1, \mathrm{j}}+\mathbf{w}, \mathbf{0}\right]$
- Overlap alignment
- Initialization: $\mathbf{S}_{\mathbf{i}, \mathbf{0}}=0, \mathbf{S}_{\mathbf{0}, \mathbf{j}}=0$
- Score: $\mathbf{S}_{\mathrm{i}, \mathrm{j}}=$ MAX $\left[\mathrm{S}_{\mathrm{i}-1, \mathrm{j}-1}+\mathrm{s}\left(\mathrm{a}_{\mathrm{i},} \mathbf{b}_{\mathrm{j}}\right), \mathrm{S}_{\mathrm{i}, \mathrm{j}-1}+\mathbf{w}, \mathbf{S}_{\mathrm{i}-1, \mathrm{j}}+\mathbf{w}\right]$

Parameters of Sequence Alignment

Scoring Systems:

- Each symbol pairing is assigned a numerical value, based on a symbol comparison table.

Gap Penalties:

- Opening: The cost to introduce a gap
- Extension: The cost to elongate a gap

Overlap Alignment

The best overlap is:

```
P A WHE A E
```

```
- - - HE A G A WG H E E
```

```
- - - HE A G A WG H E E
```

Pay attention!
A different scoring scheme could yield a different result, such as:

```
Scoring scheme
Match: +4
Mismatch: -1
Gap penalty: -2
- - - P A W - HE A E
HE A G A WGGEE -
```


Scoring Matrices

- match/mismatch score
- Not bad for similar sequences
- Does not show distantly related sequences
- Likelihood matrix
- Scores residues dependent upon likelihood substitution is found in nature
- More applicable for amino acid sequences

DNA Scoring Systems -very simple

Sequence 1
Sequence 2

	A	G	C	T
A	1	0	0	0
G	0	1	0	0
C	0	0	1	0
T	0	0	0	1

Match: 1
Mismatch: 0
Score = 5

Protein Scoring Systems

Protein Scoring Systems

Protein Scoring Systems

- Scoring matrices reflect:
- \# of mutations to convert one to another
- chemical similarity
- observed mutation frequencies
- Log odds matrices:
- the values are logarithms of probability ratios of the probability of an aligned pair to the probability of a random alignment.
- Widely used scoring matrices:
- PAM
- BLOSUM

PAM matrices

The numbers of replacements were used to compute a so-called PAM-1 matrix.

- The PAM-1 matrix reflects an average change of 1% of all amino acid positions.
- PAM matrices for larger evolutionary distances can be extrapolated from the PAM-1 matrix by multiplication.
- PAM250 = 250 mutations per 100 residues.
- Greater numbers mean bigger evolutionary distance

PAM matrices (Percent Accepted Mutations)

Derived from global alignments of protein families. Family members share at least 85% identity (Dayhoff et al., 1978).

- Construction of phylogenetic tree and ancestral sequences of each protein family
- Computation of number of replacements for each pair of amino acids

PAM 250

A value of 0 indicates the frequency of alignment is random $\log ($ freq(observed)/freq(expected))

Amino Acid Frequency

freq $($ expected $)=f\left(A A_{i}\right)^{\star} f\left(A A_{j}\right)$

Use Different PAM's for Different Evolutionary Distances

(Adapted from D Brutlag, Stanford

BLOSUM (Blocks Substitution Matrix)

- Sequences within blocks are clustered according to their level of identity.
- Clusters are counted as a single sequence
- Different BLOSUM matrices differ in the percentage of sequence identity used in clustering
- The number in the matrix name (e.g. 62 in BLOSUM62) refers to the percentage of sequence identity used to build the matrix.
- Greater numbers mean smaller evolutionary distance

TIPS on choosing a scoring matrix

- Generally, BLOSUM matrices perform better than PAM matrices for local similarity searches (Henikoff \& Henikoff, 1993).
- When comparing closely related proteins one should use lower PAM or higher BLOSUM matrices,
- For distantly related proteins higher PAM or lower BLOSUM matrices.
- For database searching the commonly used matrix is BLOSUM62.

Nucleic Acid Scoring Scheme

- Transition mutation (more common)
- purine \longleftrightarrow purin
- Transversion mutation
purine \longleftrightarrow pyrimidine

	\mathbf{A}	\mathbf{G}	\mathbf{T}	\mathbf{C}
\mathbf{A}	20	10	5	5
\mathbf{G}	10	20	5	5
\mathbf{T}	5	5	20	10
\mathbf{C}	5	5	10	20

Amino acid exchange matrices

Amino acids are not equal:

1. Some are easily substituted because they have similar:

- physico-chemical properties
- structure

2. Some mutations between amino acids occur more often due to similar codons

The two above observations give us ways to define substitution matrices

Scoring Matrices

Scoring Matrices

The relationship between BLOSUM and PAM substitution matrices

- BLOSUM matrices with higher numbers and PAM matrices with low numbers are designed for comparisons of closely related sequences.
BLOSUM matrices with low numbers and PAM matrices with high numbers are designed for comparisons of distantly related proteins.

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Scoring2.html

Properties of Amino Acids

Scoring Matrices

Widely used matrices

- PAM (Percent Accepted Mutation) / MDM (Mutation Data Matrix) / Dayhoff Derved from global alignments of closely related sequences. The number with the matrix (PAM40, PAM100) refers to the evolutionary distance; greater number are greater distances
PAM-1 corresponds for distant (global) alignments, Blosum50, Gonnet, or (still) PAM25
- BLOSUM (Blocks Substitution Matrix) All matrices are divectly calculated' no extrapolations are used $1 /$ matrices are directly calculated; no extrapolations are used The number affer the matrix (BLOSUM62) refers to the minimum percent identity of the blocks used The BLOSUM series of matrices generally perform better than PAM matrices for local similarity searches. For local alignment, Blosum 62 is often superior
- Structure-based matrices
- Specialized Matrices
- Studied by Margaret Dayhoff
- Amino acid substitutions
- Alignment of common protein sequences
- 1572 amino acid substitutions
- 71 groups of protein, 85% similar
- "Accepted" mutations - do not negatively affect a protein's fitness
- Similar sequences organized into phylogenetic trees
- Number of amino acid changes counted
- Relative mutabilities evaluated
- 20×20 amino acid substitution matrix calculated

Percent Accepted Mutation (PAM or Dayhoff) Matrices

- PAM 1: 1 accepted mutation event per 100 amino acids; PAM 250: 250 mutation events per 100 ..
- PAM 1 matrix can be multiplied by itself N times to give transition matrices for sequences that have undergone N mutations
- PAM 250: 20\% similar; PAM 120: 40%; PAM 80: 50\%; PAM 60: 60\%

Log Odds Matrices

- PAM matrices converted to log-odds matrix
- Calculate odds ratio for each substitution
- Taking scores in previous matrix
- Divide by frequency of amino acid
- Convert ratio to $\log 10$ and multiply by 10

Take average of log odds ratio for converting A to B and converting B
to A
Result: Symmetric matrix
EXAMPLE: Mount pp. 80-81

PAM1 matrix
normalized probabilities multiplied by 10000

PAM250 Log odds matrix

	c	S T P A G	N D E O	H R K	M I L V	$\mathrm{F} \times \mathrm{Y}$	
C.	12						c
S.	+5,	In in					
$\begin{aligned} & y \\ & 0 \\ & 0 \\ & \frac{1}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \hline \\ & \text {-5 } \\ & -5 \end{aligned}$						
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{R} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & -3 \\ & -4 \\ & -5 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{array}{rrrrr} -1 & -1 & 0 & -1 & -2 \\ 0 & -1 & 0 & -2 & -3 \\ 0 & 0 & -1 & -1 & -2 \end{array}\right.$	$\begin{array}{cccc} 2 & 1 & 1 & 3 \\ 0 & -1 & -1 & 1 \\ 1 & 0 & 0 & 1 \end{array}$	$\begin{array}{lll} 6 & & \\ 2 & 6 & \\ 0 & 3 & 5 \\ \hline \end{array}$			H R R K
$\begin{aligned} & \mathrm{M} \\ & \mathrm{E} \\ & \mathrm{y} \\ & \hline \end{aligned}$	$\begin{array}{r} 2 \\ -2 \\ \hline \end{array}$			$\begin{array}{r} 2 \\ 2-2 \\ 2 \\ -2 \\ 2 \end{array}$			\%
\%	14	$\begin{aligned} & -5.50 .5 \\ & -2 \\ & -2 \end{aligned}$	$\stackrel{4}{4} \times \frac{9}{4} .$	30.4×4			
	C	S T P A G	N D E [Q	$\begin{array}{llll}\text { H } & \text { R } & \text { K }\end{array}$	M I L V	F Y W	

- Larger set of sequences considered
- Sequences organized into signature blocks
- Consensus sequence formed
- 60\% identical: BLOSUM 60
- 80\% identical: BLOSUM 80

DNA Mutations

In addition to using a match/mismatch scoring scheme for DNA sequences, nucleotide mutation matrices can be constructed as well. These matrices are based upon two different models of nucleotide evolution: the first, the Jukes-Cantor model, assumes different models of nucleotide evolution: the first, the Jukes-Cantor model, assume model, assumes that there are two separate mutation rates: one for transitions (where the structure of purine/pyrimidine stays the same), and one for transversions. Generally, the rate of transitions is thought to be higher than the rate of transversions
 $C \leftrightarrow G$,

Nucleic Acid Scoring Matrices

- Two mutation models:
- Jukes-Cantor Model of evolution: $\alpha=$ common rate of base substitution
- Kimura Model of Evolution: $\alpha=$ rate of transitions; $\beta=$ rate of transversions
- Transitions
- Transversions

Nucleotide substitution matrices with the equivalent distance of 1 PAM
A. Model of uniform mutation rates among nucleotides.

	\mathbf{A}	\mathbf{G}	\mathbf{T}	\mathbf{C}
\mathbf{A}	2			
\mathbf{G}	-6	2		
\mathbf{T}	-6	-6	2	
\mathbf{C}	-6	-6	-6	2

B. Model of 3-fold higher transitions than transversions.

	\mathbf{A}	\mathbf{G}	\mathbf{T}	\mathbf{C}
\mathbf{A}	2			
\mathbf{G}	-5	2		
\mathbf{T}	-7	-7	2	
\mathbf{C}	-7	-7	-5	2

Linear vs. Affine Gaps

- Gaps have been modeled as linear
- More likely contiguous block of residues inserted or deleted
- 1 gap of length k rather than k gaps of length 1
- Scoring scheme should penalize new gaps more

Nucleotide substitution matrices with the equivalent distance of 1 PAM
A. Model of uniform mutation rates among nucleotides.

\mathbf{A}	\mathbf{G}	T	C
A 0.99			
G 0.00333	0.99		
T 0.00333	0.00333	0.99	
C 0.00333	0.00333	0.00333	0.99

B. Model of 3-fold higher transitions than transversions.

\mathbf{A}	G	T	C
$\mathbf{A} 0.99$			
$\mathbf{G} 0.006$	0.99		
T 0.002	0.002	0.99	
$\mathbf{C} 0.002$	0.002	0.006	0.99

Linear vs. Affine Gaps

- The scoring matrices used to this point assume a linear gap penalty where each gap is given the same penalty score.
- However, over evolutionary time, it is more likely that a contiguous block of residues has become inserted/deleted in a certain region (for example, it is more likely to have 1 gap of length k than k gaps of length 1).
- Therefore, a better scoring scheme to use is an initial higher penalty for opening a gap, and a smaller penalty for extending the gap.

Affine Gap Penalty

$$
\text { - } w_{x}=g+r(x-1)
$$

- w_{x} : total gap penalty; g: gap open penalty; r: gap extend penalty; x : gap length
-
- gap penalty chosen relative to score matrix
- Gaps not excluded
- Gaps not over included
- Typical Values: $\mathrm{g}=-12 ; \mathrm{r}=-4$

$$
\begin{aligned}
M_{i, j}=\max \{ & D_{i-1, j-1}+\operatorname{subst}\left(A_{i}, B_{j}\right), \\
& M_{i-1, j-1}+\operatorname{substt}\left(A_{i}, B_{j}\right), \\
& \left.I_{i-1, j-1}+\operatorname{subst}\left(A_{i}, B_{j}\right)\right\}
\end{aligned}
$$

$D_{i, j}=\max \left\{D_{i, j-1}\right.$ - extend, $M_{i, j-1}$ - open $\}$
$I_{i, j}=\max \left\{M_{i-1, j}-\right.$ open, $I_{i-1, j}-$ extend $\}$
where M is the match matrix, D is delete matrix, and I is insert matrix

Drawbacks to DP Approaches

- Dynamic programming approaches are guaranteed to give the optimal alignment between two sequences given a scoring scheme.
- However, the two main drawbacks to DP approaches is that they are compute and memory intensive, in the cases discussed to this point taking at least $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space, between $\mathrm{O}\left(\mathrm{n}^{2}\right)$ and $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time.
- Linear space algorithms have been used in order to deal with one drawback to dynamic programming. The basic idea is to concentrate only on those areas of the matrix more likely to contain the maximum alignment. The most well-known of these linear space algorithms is the Myers-Miller algorithm. Compute intensive

Alternative DP approaches

- Linear space algorithms Myers-Miller
- Bounded Dynamic Programming
- Ewan Birney's Dynamite Package
- Automatic generation of DP code

Significance of Alignment

- Determine probability of alignment occurring at random
- Sequence 1: length m
- Sequence 2: length n
- Random sequences:
- When two sequences of length m and n are not obviously similar but show an alignment, it becomes necessary to assess the significance of the alignment.
- The alignment of scores of random sequences has been shown to follow a Gumbel extreme value distribution.

Assessing Significance of Alignment

- When two sequences of length m and n are not obviously similar but show an alignment, it becomes necessary to assess the significance of the alignment. The alignment of scores of random sequences has been shown to follow a Gumbel extreme value distribution.

Gumbel Extreme Value Distribution

- http://roso.epfl.ch/mbi/papers/discretechoice/nodel1.html
- http://mathworld.wolfram.com/GumbelDistribution.html
- http://en.wikipedia.org/wiki/Generalized extreme value distribution

Probability of Alignment Score

- Using a Gumbel extreme value distribution, the expected number of alignments with a score at least S (E -value) is:

$$
\mathrm{E}=\mathrm{Kmn} \mathrm{e}^{-\lambda \mathrm{S}}
$$

$-\mathrm{m}, \mathrm{n}$: Lengths of sequences

- K, λ : statistical parameters dependent upon scoring system and background residue frequencies

Converting to Bit Scores

A raw score can be normalized to a bit score using the formula:

$$
S^{\prime}=\frac{\lambda S-\ln K}{\ln 2}
$$

- The E-value corresponding to a given bit score can then be calculated as:

$$
\mathrm{E}=\mathrm{mn} 2^{-\mathrm{S}^{\prime}}
$$

P-Value

- P values can be calculated as the probability of obtaining a given score at random. P-values can be estimated as:
$P=1-e^{-E}$
which is approximately $\mathrm{e}^{-\mathrm{E}}$
- Recall that the log-odds scoring schemes examined to this point normally use a $\mathrm{S}=10 * \log _{10} \mathrm{x}$ scoring system.
- We can normalize the raw scores obtained using these non-gapped scoring systems to obtain the amount of bits of information contained in a score (or the amount of nats of information contained within a score).
- Converting to nats is similar. However, we just substitute e for 2 in the above equations. Converting scores to either bits or nats gives a standardized unit by which the scores can be compared.

A quick determination of significance

- If a scoring matrix has been scaled to bit scores, then it can quickly be determined whether or not an alignment is significant.
- For a typical amino acid scoring matrix, $\mathrm{K}=0.1$ and lambda depends on the values of the scoring matrix.
- If a PAM or BLOSUM matrix is used, then lambda is precomputed.
- For instance, if the log odds matrix is in units of bits, then lambda $=\log _{\mathrm{e}} 2$, and the significance cutoff can be calculates as $\log _{2}(\mathrm{mn})$.

Significance of Ungapped Alignments

- PAM matrices are $10 * \log _{10} \mathrm{X}$
- Converting to $\log _{2} \mathrm{x}$ gives bits of information
- Converting to $\log _{\mathrm{e}} \mathrm{x}$ gives nats of information

Quick Calculation:

- If bit scoring system is used, significance cutoff is:

$$
\log _{2}(m n)
$$

Example

- Using PAM250, the following alignment is found:
- F W L E V E G N S M T A P T G
- $F W \mathrm{~L}$ L $V \mathrm{Q}$ G D S M TAPAG

Example

- Suppose we have two sequences, each approximately 250 amino acids long that are aligned using a Smith-Waterman approach.
- Significance cutoff is:

$$
-\log _{2}(250 * 250)=16 \mathrm{bits}
$$

Example

- Using PAM250, the score is calculated:
-F W L E V E G N S M T A P T G
- $F W L D V Q G D S M T A P A G$
- $\mathrm{S}=9+17+6+3+4+2+5+2+2+6+3+2+6+1+5=73$

PAM250 matrix

Significance Example

- S is in $10 * \log _{10} \mathrm{x}$, so this should be converted to a bit score:
- $\mathrm{S}=10 \log _{10} \mathrm{x}$
- $S / 10=\log _{10} x$
- $\mathrm{S} / 10=\log _{10} \mathrm{x} *\left(\log _{2} 10 / \log _{2} 10\right)$
- $\mathrm{S} / 10 * \log _{2} 10=\log _{10} \mathrm{x} / \log _{2} 10$
- $\mathrm{S} / 10 * \log _{2} 10=\log _{2} \mathrm{x}$
- $1 / 3 \mathrm{~S} \sim \log _{2} \mathrm{x}$
- $S^{\prime} \sim 1 / 3 S$

Significance Example

- $S^{\prime}=1 / 3 S=1 / 3 * 73=24.333$ bits
- The significance cutoff is:
$\log 2(\mathrm{mn})=\log 2(250 * 250)=16$ bits
- Since the alignment score is above the significance cutoff, this is a significant local alignment.

Significance of Gapped Alignments

- Gapped alignments make use of the same statistics as ungapped alignments in determining the statistical significance.
- However, in gapped alignments, the values for λ and K cannot be easily estimated.
- Empirical estimations and gap scores have been determined by looking at the alignments of randomized sequences.

Estimation of \mathbf{E} and \mathbf{P}

- When a PAM250 scoring matrix is being used, K is estimated to be 0.09 , while lambda is estimated to be 0.229 .
- For PAM250, K $=0.09 ; \lambda=0.229$
- We can convert the score to a bit score as follows
- $S^{\prime}=\lambda S-\ln K m n$
- $S^{\prime}=0.229 * 73-\ln 0.09 * 250 * 250$
- $S^{\prime}=16.72-8.63=8.09$ bits
- $P\left(S^{\prime}>=x\right)=1-\mathrm{e}^{\left(-\mathrm{e}^{-x}\right)}$
- $\mathrm{P}\left(\mathrm{S}^{\prime}>=8.09\right)=1-\mathrm{e}^{\left(-\mathrm{e}^{-8.09}\right)}=3.1 * 10^{-4}$
- Therefore, we see that the probability of observing an alignment with a bit score greater than 8.09 is about 3 in 1000

Bayesian Statistics

- Bayesian statistics are built upon conditional probabilities,
- which are used to derive the joint probability of two events or conditions.
- $P(B \mid A)$ is the probability of B given condition A is true.
- $\mathrm{P}(\mathrm{B})$ is the probability of condition B occurring, regardless of conditions A.
- P(A, B): Joint probability of A and B occurring simultaneously

Joint Probabilities

- Note that in this case the marginal probabilities A1 and A2 are missing. Thus, there is not enough information at this point to calculate the marginal probability.
- However, if more information about the joint occurrence of A 1 and B 1 are given, then the joint probabilities may be derived using Bayes Rule:

$$
\begin{aligned}
& -\mathrm{P}(\mathrm{~A} 1, \mathrm{~B} 1)=\mathrm{P}(\mathrm{~B} 1) \mathrm{P}(\mathrm{~A} 1 \mid \mathrm{B} 1) \\
& -\mathrm{P}(\mathrm{~A} 1, \mathrm{~B} 1)=\mathrm{P}(\mathrm{~A} 1) \mathrm{P}(\mathrm{~B} 1 \mid \mathrm{A} 1)
\end{aligned}
$$

Bayesian Example

- Suppose that we are given $\mathrm{P}(\mathrm{A} 1 \mid \mathrm{B} 1)=0.8$.
- Then, since there are only two different possible states for A,
- $\mathrm{P}(\mathrm{A} 2 \mid \mathrm{B} 1)=1-0.8=0.2$.
- If we are also given $\mathrm{P}(\mathrm{A} 2 \mid \mathrm{B} 2)=0.7$,
- then $\mathrm{P}(\mathrm{A} 1 \mid \mathrm{B} 2)=0.3$.
- Using Bayes Rule, the joint probability of having states A1 and B1 occurring at the same time is
- $\mathrm{P}(\mathrm{B} 1) \mathrm{P}(\mathrm{A} 1 \mid \mathrm{B} 1)=0.3 * 0.8=0.24$ and
- $\mathrm{P}(\mathrm{A} 2, \mathrm{~B} 2)=\mathrm{P}(\mathrm{B} 2) \mathrm{P}(\mathrm{A} 2 \mid \mathrm{B} 2)=0.7 * 0.7=0.49$.
- The other joint probabilities can be calculated from these

Applications of Bayesian Statistics

- Evolutionary distance between two sequences
- Sequence Alignment
- Significance of Alignments
- Gibbs Sampling
as well. \qquad

Posterior Probabilities

- Calculation of joint probabilities results in posterior probabilities
- Not known initially
- Calculated using
- Prior probabilities
- Initial information
- needle
- Global

Needleman/Wunsch alignment

- water
- Local Smith/Waterman alignment
- Blast 2 Sequences
- NCBI
- word based sequence alignment
- LALIGN
- FASTA package
- Mult. Local alignments

Various Sequence Alignments
Wise2 -- Genomic to protein
Sim4 -- Aligns expressed DNA to genomic sequence
spidey -- aligns mRNAs to genomic sequence
est2genome -- aligns ESTs to genomic sequence

Pairwise Sequence Alignment Programs

