Introduction to Bioinformatics Introduction to Bioinformatics

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

Introduction to Perl
http://wwwa3.yildiz.edu.tr/~naydin

Learning objectives Setting The Technological Scene
« After this lecture you should be able to + One of the objectives of this course is..
. — to enable students to acquire an understanding of, and
understand : ability in, a programming language (Perl, Python) as the
— sequence, iteration and selection; main enabler in the development of computer programs in
— basic building blocks of programming; the area of Bioinformatics.

— three C’s: constants, comments and conditions; « Modern computers are organised around two main

— use of variable containers; components:
— use of some Perl operators and its pattern-matching
technology; — Hardware
— Perl input/output _ Software
Introduction to the Computing Introduction to the Computing
« Computer: electronic genius? « In theory, computer can compute anything

—NO! Electronic idiot!
— Does exactly what we tell it to, nothing more.

» All computers, given enough time and memory, « In practice, solving problems involves
are capable of computing exactly the same things. L .
computing under constraints.

—time

* that’s possible to compute
—given enough memory and time

Supercomputer

Workstation « weather forecast, next frame of animation, ...
PDA
—cost
— — « cell phone, automotive engine controller, ...
—_ —power

« cell phone, handheld video game, ...

Copyright 2000 N. AYDIN. All rights
reserved.

mailto:naydin@yildiz.edu.tr

Layers of Technology

Applications

Tools

Operating system

Network‘ | Printer | ‘Keyboard| ‘ Screen ‘ | Mouse

Transformations Between Layers

CJ

-

=R Problems
Algorithms
Language

Devices

Deeper and Deeper...

Instr Set
Architecture

Microarch
Circuits
Devices

Processor Design:
choose structures to implement ISA

Logic/Circuit Design:
gates and low-level circuits to
implement components

Process Engineering & Fabrication:
develop and manufacture
lowest-level components

Copyright 2000 N. AYDIN. All rights
reserved.

Layers of Technology

* Operating system...

— Interacts directly with the hardware

— Responsible for ensuring efficient use of hardware resources
 Tools...

— Softwares that take adavantage of what the operating system
has to offer.

— Programming languages, databases, editors, interface builders...
 Applications...
— Most useful category of software

— Web browsers, email clients, web servers, word processors,
etc...

How do we solve a problem using a computer?

+ A systematic sequence of transformations between
layers of abstraction.

Software Design:
choose algorithms and data structures

Algorithm
Program

Instr Set
Architecture

Programming:
use language to express design

Compiling/Interpreting:
convert language to
machine instructions

Descriptions of Each Level...

* Problem Statement
— stated using "natural language"
— may be ambiguous, imprecise
 Algorithm
— step-by-step procedure, guaranteed to finish
— definiteness, effective computability, finiteness
* Program
— express the algorithm using a computer language
— high-level language, low-level language
« Instruction Set Architecture (ISA)
— specifies the set of instructions the computer can perform
— data types, addressing mode

...Descriptions of Each Level

Microarchitecture
detailed organization of a processor implementation

—different implementations of a single ISA

Logic Circuits

—combine basic operations to realize
microarchitecture

—many different ways to implement a single function
(e.g., addition)

+ Devices

properties of materials, manufacturability

The Computer Level Hierarchy

« Each virtual machine layer is
an abstraction of the level
below it.

» The machines at each level
execute their own particular
instructions, calling upon
machines at lower levels to
perform tasks as required.

« Computer circuits ultimately
carry out the work.

«Software?
Program or collection of programs.
*Enables the hardware to process data.

Programming

» Methodologies for creating computer programs
that perform a desired function.
— Problem Solving
» How do we figure out what to tell the computer to do?
« Convert problem statement into algorithm, using stepwise
refinement.
« Convert algorithm into machine instructions.
— Debugging
* How do we figure out why it didn’t work?
» Examining registers and memory, setting breakpoints, etc.

Time spent on the first can reduce time spent on the second! ‘

Copyright 2000 N. AYDIN. All rights
reserved.

Many Choices at Each Level

Solve a system of equations

Red-black SOR Gaussian Jacobi Multigrid
elimination iteration
FORTRAN C C++ Java
Tradeoffs:
PowerPC Intel x86 Atmel AVR cost
performance
Centrino Pentium 4 Xeon power
(etc.)

Ripple-carry adder Carry-lookahead adder

CMOS Bipolar GaAs

The successive over-relaxation (SOR) : a method for solving a linear system of equations.

IAssemny Languagel

Executable

Stepwise Refinement

Also known as systematic decomposition.
Start with problem statement:
Decompose task into a few simpler subtasks.

Decompose each subtask into smaller subtasks, and
these into even smaller subtasks, etc....

until you get to the machine instruction level.

Problem Statement

» Because problem statements are written in English,
they are sometimes ambiguous and/or incomplete.
— Where is “file” located?
— How big is it?
— How do I know when I’ve reached the end?
— How should final count be printed? A decimal number?
— If the character is a letter, should | count both upper-case and

lower-case occurrences?

» How do you resolve these issues?
— Ask the person who wants the problem solved, or
— Make a decision and document it.

Sequential

» Do Subtask 1 to completion,
then do Subtask 2 to completion, etc.

Get character
input from
keyboard

Count and print the Examine file and
occurrences of a ﬁ count the number
character in a file of characters that

l match

Print number
to the screen

Iterative

» Do Subtask over and over,
as long as the test condition is true.

Check each element of
the file and count the

more chars
to check?

True

characters that match.

Check next char and
count if matches.

Copyright 2000 N. AYDIN. All rights
reserved.

Three Basic Constructs

» There are three basic ways to decompose a task:

|

/?\

|
Subtask 1

Sequential Conditional Iterative

False

Test
condiior

Conditional

« |If condition is true, do Subtask 1;
else, do Subtask 2.

True False

}

Test character.
If match, increment ﬁ Count = Count + 1
counter.

!

Why Write Programs?

Automate computer work that you do by hand

— save time & reduce errors

» Run the same analysis on lots of similar data files
+ Analyze data

» Make decisions

* Create new analysis methods

Why Perl?

Fairly easy to learn the basics

« Many powerful functions for working with
text: search & extract, modify, combine

Can control other programs
« Free and available for all operating systems
Most popular language in bioinformatics

» Many pre-built “modules” are available that
do useful things

History

Originally written by Larry Wall at NASA’s Jet
Propulsion Labs

to process mail on Unix systems
— extended by a lot of people and many biologists!
Started as ‘glue’ language,

for the use of Larry and officemates.
It combines the best features of several languages.
Version 1: December 18, 1987
Current stable release is Perl 5.18.2

Perl motto: TMTOWTDI-There’s More Than One
Way To Do It

Getting and Installing Perl

http://www.perl.org/
http://www.perl.com/CPAN/
http://www.activestate.com/

Perl tutorials:
http://www.internetbiologists.org/IB-perl/index.html
http://learn.perl.org/library/beginning_perl/
Bioinformatics related web pages:

http://www.geocities.com/bioinformaticsweb/index.html
http://glasnost.itcarlow.ie/~biobook/index.html

Copyright 2000 N. AYDIN. All rights
reserved.

As a software tool: Perl

What Is Perl?

PERL is a "Practical Extraction and Report
Language “

(or Pathologically Eclectic Rubbish Lister)

— freely available for Unix, MVS, VMS, MS/DOS,
Macintosh, OS/2, Amiga, and other operating systems.

Perl has powerful text manipulation functions.

— It eclectically combines features and purposes of many
command languages.

— Perl has enjoyed popularity for programming World Wide
Web electronic forms and generally as glue and gateway
between systems, databases, and users.

Strengths of Perl

Very easy to learn

Very portable

High level language

Powerful text processing

It’s free

What makes Perl a good programming language for
Biological data?

— Fast in file manipulation

— DBI modules provide database bridge for other applications
— CGI module provides easy web interface

What is Perl Used For

CGI (common gateway interface) Programming
(dynamically generating web pages).
(Example websites: www.amazon.com, www.slashdot.org
www.deja.com)
Extracting data from one source and translating it to
another format.
Manipulating databases, simple search and replace
operation.
Data management in Human Genome Project
Internet programming, automating administration
tasks, .ooceernns etc.

http://www.amazon.com/
http://www.slashdot.org/
http://www.deja.com/

Which Platform to Use

http://www.perl.com/CPAN/ports/index.html

Perl Ports (Binary Distributions)

CPAN/ports (Comprehensive Perl Archive Network)

Perl runs on over 100 platforms!

Acorn | AIX | Amiga | Apple | Atari | AtheOS | BeOS | BSD | BSD/OS |
Coherent | Compag | Concurrent | Cygwin | Darwin | DG/UX | Digital |
Digital UNIX | DEC OSF/1 | DYNIX/ptx | Embedix | EMC | EPOC |
FreeBSD | Fujitsu | GNU Darwin | Guardian | HP | HP-UX | IBM | IRIX |
Japanese | JPerl | Linux | LynxOS | Mac OS | Mac OS X | Macintosh
MachTen | MinGW | Minix | MiNT | MorphQOS | MPE/iX | MS-DOS | MVS
| NetBSD | NetWare | NEWS-OS | NextStep | NonStop | NonStop-UX |
Novell | ODT | Open UNIX | OpenBSD | OpenVMS | OS/2 | 0S/390 |
0S/400 | OSF/1 | OSR | Plan 9 | Pocket PC | PowerMAX | Psion | QNX |
Reliant UNIX | RISCOS | SCO | Sequent | SGI | Sharp | Siemens | SINIX |
Solaris | SONY | Sun | Syllable | Stratus | Tandem | Tivo | Tru64 | Ultrix |
UNIX | Unixware | U/WIN | VMS | VOS | Win32 | WinCE | Windows 3.1 |
Windows 95/98/Me/NT/2000/XP/VISTA/W7 W8 |z/OS |

IDEs for Perl

Padre Perl Application Development and Refactoring Environment
(Windows, Linux, Mac OS X)

Arachno Perl from Scriptolutions (Windows and Linux)

Eclipse multiplatform IDE has Perl plugins

Komodo from ActiveState (Windows and Linux)

Open Perl IDE (Windows)

Perl Builder from Solutionsoft (Windows and Linux)

PerlDevKit from ActiveState (IDE Windows, Linux and Solaris)
PerlEdit from IndigoStar (Windows and Linux)

Perl Oasis from Johan Lindstrém (Windows)

PerlWiz from Arctan Computer Ventures (Windows)

SciTE from the SCintilla project (Windows and X/gtk+)
visiPerl+ from Help Consulting (Windows)

or editors (Perl programs are just plain text so any editor will do).

CodeWright | Elvis | GNU Emacs | Epsilon | gVim | MicroEmacs | MultiEdit | nvi | PFE
SlickEdit | UltraEdit | Vile | vim | XEMacs

or shell environments (UNIX tool environments, tcsh and zsh are just the shell).
Cygwin bash | MKS ksh | U/WIN sh | tesh | (csh/tesh book) zsh (zsh in general)

How to Get Help

To search the Perl FAQ for any regular
expression or keyword

>perldoc —q keyword

for example >perldoc —q reverse

Copyright 2000 N. AYDIN. All rights
reserved.

Win95 / Win98 / WinME / WinNT / Win2000/W2K /
WinXP (Win32)

Starting from Perl 5.005 the Win32 support has been integrated to the Perl
standard source code distribution. But it you insist on a binary:

ActivePerl (Perl for Win32, Perl for ISAPI, PerlScript, Perl Package
Manager)

Agache/Perl (binaries for both Perl-5.6/Apache-1.0/mod_perl-1 and Perl-
5.8/Apache-2/mod_perl-2)

Dev,eloperSide.Netécom iled under VS.NET and includes the latest
versions of ApacheZ, PHP, MySQL, OpenSSL, mod_perl, Apache::ASP,
and a few other components)

IndigoPerl (Perl for Win32, integrated Apache webserver, GUI Package
Manager)

niPerl (MSI installer, Win32::GUI, Win32::GUI::XMLBuilder,
Documentation Viewer, WGX, PAR ready, built-in SciTE editor)

« PXPerl (libwin32 included, compiled with Intel C++ Compiler for
maximum performance, Explorer integration (file association etc), self-
configures on install with the local Visual C++ binaries)

SiePerl for Win32 by Siemens, contains several modules
Prebuilt Perls by Rich Megginson, a special installer is used.
Strawberry Perl a perl environment for MS Windows.

How to Get Help

« To get information on a particular function
>perldoc —f function

for example >perldoc —f print

How to Get Help

» Websites:
www.perl.com,
www.perlclinic.com,

www.perlfag.com,
www.perl.org, www.tpj.com,

www.activestate.com,
www.perlarchive.com
» News groups, books

http://www.perl.com/CPAN/index.html
http://www.activestate.com/ActivePerl/
http://www.apache.org/dyn/closer.cgi/perl/win32-bin/
http://www.devside.net/
http://www.indigostar.com/indigoperl.htm
http://www.numeninest.com/Perl/
http://pixigreg.com/pxperl
http://www.perl.com/CPAN/authors/id/G/GR/GRAHAMC/
http://people.netscape.com/richm/nsPerl/
http://strawberryperl.com/
http://padre.perlide.org/
http://padre.perlide.org/
http://www.eclipse.org/
http://e-p-i-c.sourceforge.net/
http://www.activestate.com/Products/Komodo/
http://open-perl-ide.sourceforge.net/
http://www.solutionsoft.com/perl.htm
http://www.activestate.com/Products/Perl_Dev_Kit/
http://www.indigostar.com/perledit.html
http://www.bahnhof.se/~johanl/perl/Oasis/
http://www.perlwiz.biz/
http://www.scintilla.org/SciTE.html
http://www.helpconsulting.net/visiperl/index.html
http://www.borland.com/codewright/
ftp://ftp.cs.pdx.edu/pub/elvis/
http://www.gnu.org/software/emacs/windows/ntemacs.html
http://www.lugaru.com/
http://www.vim.org/download.php#pc
http://uemacs.tripod.com/
http://www.multiedit.com/
http://www.bostic.com/vi/
http://www.simtel.net/product.php?url_fb_product_page=11983
http://www.slickedit.com/
http://www.ultraedit.com/
http://dickey.his.com/vile/vile.html
http://www.vim.org/
http://www.xemacs.org/Download/index.html
http://www.cygwin.com/
http://www.mks.com/
http://www.research.att.com/sw/tools/uwin/
ftp://ftp.astron.com/pub/tcsh/
http://www.kitebird.com/csh-tcsh-book/
ftp://ftp.blarg.net/users/amol/zsh/
http://www.zsh.org/
http://www.perl.com/
http://www.perlclinic.com/
http://www.perlfaq.com/
http://www.perl.org/
http://www.tpj.com/
http://www.activestate.com/
http://www.perlarchive.com/

Again: What Is Perl?

« Interpreted Language ?

— (such as Basic, which needs another program called
interpreted to process the code every time you want to run
the program)

» Compiled languge ?

— (such as C, which uses a compiler to proces the code before
the code is ever run)

* Perl is in between like java:

— interpreter reads and compiles the program at ones,

— not into the specific machine code,

— but into a special virtual machine code.

« Itisalso called scripting language

First Perl Program

Here is a simple script to illustrate how a Perl
program looks: (Print a message to the terminal
Code:

#1/niPerl/bin —w
print "merhaba \n";
Save this file as merhaba.pl

Runitbytyping T
C:enpe5i3typer] nerhaba.pl

> perl merhaba.pl |§

C:\cnpe5131>

...Debugging...

« Perl tries its best to tell you where the error is.
— Read the error message carefully.
» Sometimes it gives multiple line errors.
+ Go to the first line number and try to see the error.
» Try to look at an earlier line too,

— sometimes the error doesn’t trigger until a next
statement.

« After fixing the first error, run the script again,
— the next errors may have gone away.

Copyright 2000 N. AYDIN. All rights
reserved.

.

How to Write Perl Code

Form a working folder (directory)

Open Notepad (or any text editor) and type in the perl
code following the convention

Save the file with extension pl, or plx
In file manager you double click on the file.

— The program will run (probably a window will appear and
disappear)

Go to MSDOS prompt.
Change to working directory and type perl xxxx.pl
Or you use one of the IDEs

Debugging Perl

Debugging
— Finding the errors and fixing them.

« Itis a specialized skill and it takes practice
to become good at it.

Among the beginner programmers, it is
common banging your head against the
keyboard for what seems like hours, only to
discover the problem was actually in a
completely different part of your script than
where you were looking.

40

...Debugging...

Use the -c switch

to check for possible errors.
By entering the command perl -c scriptname you
make Perl to try to compile your script without
actually running it

The -c switch compiles the script without invoking the
warnings feature

print "merhaba \n";
>perl -c merhaba.pl

=0 Komut istemi

C:\cnpe5131>perl —c merhaba.pl
merhaba.pl syntax OK

C:\cnpe5131>

22

...Debugging...

print "merhaba \n;

>perl -c hmerhabal.pl

[C: cmpe5131>per]l —c hmerhaba.pl
Can’t find string terminator '™ anyuhere hefore EOF at hmerhaba.pl line 2.

B scnpesian>

Syntax and semantics

« A Perl program may be syntactically correct, but
semantically wrong.
+ Semantics has to do with meaning of language.

This means that the program satisfies the rules and
regulations of language but does not do what you
expected it to do.

Komut istemi

print; "merhaba \n ";
BC-\cmpe5131d>perl —c¢ hmerhabaZ.pl
jhmerhaba3.pl syntax OK

> perl -c hmerhaba3.pl e empestIt-

...Debugging...

* Use the -cw switches (combination of -c and -w)
— the -cw compiles it with warnings turned on.

In either case, you can get feedback on any problems your script
might have, without having to actually run it which,
may save you time in long and big scripts.

>perl -c -w hmerhaba3.pl
>perl -cw hmerhaba3.pl

C:\cnpe5131>per] —¢ -u hmerhaba3.pl

seless use of a constant in void context at hmerhaba3d.pl line 2.
hnerhaba3.pl syntax OK

C:\cnpe5131>perl —cu hmerhaha3.pl
Uscless use of a constant in void context at hmerhaba3.pl line 2.
fhnerhaha3.pl syntax

C:\enpe51315,

Copyright 2000 N. AYDIN. All rights
reserved.

...Debugging...

» Syntax Errors
pint "merhaba \n ";

>perl -c hmerhaba2.pl

o Komut istemi

\enpe§131dperl —¢ hmerhaba2.pl
ing found where operator expected at hnerhaba2.pl line 2. near “pint "mer]labal

<Do you need to predeclare pint?>
suntax error at hmerhaba2.pl line 2. near “pint “merhaba \n''"
hnerhaba2.pl had compilation errors.

c:\cnpe5131>

44

...Debugging...

» Use the —w switch

to tell Perl to warn you about things it thinks might
be problems in your script.

>perl -w hmerhaba3.pl

31>perl —w hmerhaha3.pl
< use of a constant in woid context at hmerhaba3.pl line 2.
uninitialized value in print at hmerhaba3.pl line 2

cnpe5131>_

26

...Debugging...

 Try to isolate the problem.

— By commenting out chunks of code, then rerunning
the script, you can often narrow down where the
problem is occurring.

— Even better is to avoid the need for this by building
and debugging the script in small increments.

— Create a simple framework first, get it working, then
add increasingly complex features on, testing each
component before moving to the next.

In_this vvaP/ you wil] uncover bugs as you go, and.it
will usually’be obvious where the bug resides; it is in
the small section of code you just added.

While it may seem faster to_code up the whole thing

first, then do all the debugging at the end, it rarely
works out that way.

)

...Debugging...

 Use the strict pragma

— Perl is a great language for writing quick, one-off
scripts, in part because of its default behavior of
having new variables simply spring into
existence on first mention.

— This can lead to problems as your script grows,
however.

— A typo in the name of a variable will mean that
your script is suddenly using a new, different
variable from the one you intended, which can be
a real head-scratcher to debug.

In computer programming, a directive or pragma (from "pragmatic”) is a
language construct that specifies how a compiler (or other translator) should
process its input. Directives are not part of the grammar of a programming
language, and may vary from compiler to compiler.

...Debugging

* Resist the temptation to attribute the problem
to some previously undiscovered bug in Perl.

— Every novice Perl programmer eventually comes
up against a bug that defies all efforts to identify
and eradicate it.

— As the programmer's frustration level mounts, an
idea begins to creep into his or her head:

* it must not be a problem in the script, but is
something broken in Perl itself.

« Itisalmost certainly a bug in your script, not in Perl.

...1st program

* 2nd line print "merhaba \n";
« print function tells perl to display the given text.

 Text inside the quotes is not interpreted as code
and is called string.

 \n is used to start a new line
#1/niPerl/bin -w
print "merhaba \n";

Copyright 2000 N. AYDIN. All rights
reserved.

...Debugging...

+ Use the strict pragma
— By putting the following line near the top of the script:
use strict;

« you are telling Perl that you are willing to be held to a higher
standard.

In particular, you're saying you are willing to declare all
your variables before using them.

— Besides protecting you from typos in your variable names
(because the script will abort with an error message during
the initial compilation phase if it encounters an undeclared
variable),
this also lets you properly "scope® your variables, thereby
limiting their visibility, rather than letting them be “global"
variables that could conceivably interact with other
variables of the same name elsewhere in the script.

All of this translates into big savings in debugging time.

Return to our 1st program

« #l/niPerl/bin —w
+ Every line starting with # is comment and ignored by
Perl.
» However, # and ! together at the start of the 1st line tell
UNIX how the file should be run.
In this case the file should be passed to Perl interpreter,
which lives in niPerl/bin
» Within Perl, and almost all other programming
languages, each line in a program is referred to as a
“‘statement’’.
— Perl statements end with, and are separated from any other

statements by, a semicolon, that is, the *;*” character.

Program 1

print "Welcome to the Wonderful World of Bioinformatics!\n";

>perl -cw welcomel.pl

>perl welcomel.pl

C: cnpe51313perl —cw welcomel.pl
e lcome1.pl syntax

C:cnpe51313perl welcomel.pl
e lcome to the Wonderful Horld of Bioinformatics?

G cnpe5131>

Another version of welcome

print "Welcome ";

print "to *;
print "the *;
print "Wonderful *; C:\cnpe5131>perl —cw welcone2.pl
print "World "; e lcome2.pl syntax OK
Fad g IC = 51313perl wel 2.pl
print “of "; e lcome to the Honderful Wowld of Bioinformatics?
print "Bioinformatics!"; G2 cnpe5131>
print "\n";

>perl -cw welcomel.pl
>perl welcomel.pl

Running forever ...

>perl iterl.pl

Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!

Introducing variable containers

Two constant definitions come after the comment lines:
use constant TRUE => 1,
use constant FALSE => 0;
Perl treats a value of 1 as true and a value of 0 as false.
A constant is a container within a program whose value
cannot be changed under any circumstance.
— Although not required, it is a convention to give constants all
UPPERCASE names.
Perl is case-sensitive.

— This means that when naming variables in Perl, case is
significant.
* So, “TRUE" is a different symbol to “‘true’’.

Copyright 2000 N. AYDIN. All rights

reserved.

Iteration (Repetition)

+ Using the Perl while construct

The ‘iterl' program - a (Perl) program,
which does not stop until someone presses Ctrl-C.
use constant TRUE => 1;
use constant FALSE => 0;
while (TRUE)
{

print "Welcome to the Wonderful World of
Bioinformatics'\n";

sleep 1;

}

Iteration

 Rather than use the word iteration or repetition to refer

to this mechanism, many programmers favour the use
of the word loop.
— In this context, loop is both a noun and a verb.
« Typical programmer utterances might be “‘the loop prints the message
five times™” or *‘this program loops forever’.
Programs that loop forever, just like the forever program in
this section, are referred to as an infinite loop.

« The infinite loop is generally regarded as a very bad thing, and
programmers are encouraged not to introduce such loops into
programs.

Introducing variable containers

The opposite of a constant is a variable container, or
variable for short.

A variable’s value can change over the lifetime of the program.
When you need to change the value of an item, use a
variable container.

Perl has excellent support for all types of variable
containers.

The simplest type of variable container is the scalar.
Scalars can hold, a number, a word, a sentence or a disk-file
Within Perl programs, scalars are given a name prefixed

with a dollar sign ($).

— Here are some example scalar names:
« $name, $_address, $programming_101, $z, $abc, $count

10

Variable containers and loops

» To demonstrate the use of variable containers within loops,

a version of forever that displays ten messages and then
stops can be created.

The “iter2' program - a (Perl) program,

which stops after ten iterations.

use constant HOWMANY => 10;

S$count = 0;

while ($count < HOWMANY)

{
print "Welcome to the Wonderful World of Bioinformatics!\n";
$count++;

Variable containers and loops

* In Perl, it is not necessary to set the value of a
variable container before it’s used.

« Perl has a number of rules that are applied to the first
usage of a variable container

— Perl sets a scalar to zero if it is first used within a numeric
context.

— This feature can be very convenient.

— However, it is always a good idea to give variable
containers an explicit starting value, as it indicates
precisely what the intentions for the variable are.

« Any programmer reading the tentimes program should be in no
doubt that the $count scalar is to be used within a numeric context.

Using the Perl if construct

+ Here is another variation on the forever program that prints
the message fivetimes.

The 'fivetimes' program - a (Perl) program,
which stops after five iterations.
use constant TRUE => 1;
use constant FALSE => 0;
use constant HOWMANY => 5;
$count = 0;
while (TRUE)
{
$count++;
print "Welcome to the Wonderful World of Bioinformatics!\n";
if ($count == HOWMANY)

last;

Copyright 2000 N. AYDIN. All rights
reserved.

Running ten times ...

>perl iter2.pl

Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!

Selection

« One of the basic building blocks of programming is
selection.

* The use of a selection mechanism allows a program to
choose one of a number of possible courses of action.

» Here’s the general form of the selection statement in Perl:
if (some condition is true)

{

do something

}

else

{

do something else

}

There Really Is MTOWTDI
* Where MTOWTDI stands for ‘“more than
one way to do it”’.
« This philosophy is one of the great strengths
of Perl, but care is needed.
+ Next examples illustrate the good and the
bad of this philosophy,

« Starting with a couple of not so good
examples followed by a couple of much
improved ones.

11

The oddeven program

The 'oddeven’ program - a (Perl) program,

which iterates four times, printing ‘odd' when $count
s an odd number, and ‘even’ when $count is an even
number.

use constant HOWMANY => 4;

$count = 0;

while ($count < HOWMANY)

{
S$count++;
if ($count==1)
print "odd\n";
elsif ($count==2)
{
print "even\n";
elsif ($count ==3)
{
print "odd\n";

}
else # at this point $count is four.

print "even\n";

The terrible program

Like a lot of modern programming languages, Perl is
classified as free format.

This means that you can write a program using
whatever formatting you prefer, as perl can just as
easily process a well-formatted program, such as
oddeven, as it can a poorly formatted program, such as
terrible.

Do yourself and everyone else a favour, and be sure to
format your programs to be as readable as possible.
Use plenty of whitespace, blank lines and indentation
to make your programs easier to read.

Using the modulus operator

That percentage sign (%) is another Perl operator, the
modulus, % operator.

Given two numbers, ‘A % B’ returns the remainder

after A has been divided by B, assuming both are
positive numbers.

Copyright 2000 N. AYDIN. All rights

reserved.

The terrible program

Here is another program that does exactly the same
thing as oddeven.
#/ i rl -

y formatted 'oddeven'.

t==1)

n\n"; } e

elsif ($count == 2)

3) { print "odd\n"; }

at th

point $count is

{ print "even\n"; } }

Notice that the program statements that make up the
terrible program are exactly the same as those that
make up the oddeven program.

— The difference between the two programs has to do with
how they are laid out, or formatted.

The oddeven2 program

Here is another version of oddeven.

1t produces exactly the same output as both oddeven and terrible:

#! /usr/bin/perl -w

The ddeven2' program - another version of 'oddeven'.
use constant HOWMANY => 4;

Scount = 0;
while ($count < HOWMANY)
{
Scount++;
if (Scount % 2 == 0)
{

print "even\n";

print "odd\n";

The oddeven3 program

» The following code is even shorter than the
oddeven2.

use constant HO'

Scount 0;

while (Scount < HOWMANY)

{
$count
print n\n" if ($count % 2 0);
print "odd\n" if ($count % 2 != 0);

}

12

Processing Data Files

The input operator in Perl is

<>
— When Perl encounters this operator within a program, it
looks for and returns a line of input from standard input,

which is the name given to the mechanism that is currently
providing input data to the program.

— Unless Perl is told otherwise, the default input mechanism
is the keyboard.
A program takes a line of data from the keyboard
whenever the input operator is used.
— Consider the following program statement:
Sline = <>;
— Aline is read from the keyboard and put into the $line scalar

Processing Data Files

It turns out that, in addition to using numerics to represent
true and false, strings also have a truth value.
— Astring with no characters is false, otherwise it is true.
In addition to standard input, Perl has
standard output,
the default place to display normal messages,
standard error,
the default place to display error messages

— Unless told otherwise, Perl uses the screen as the default for both
standard output and standard error.

To make things convenient, standard input, standard
output and standard error go by the shorthand names of
STDIN, STDOUT and STDERR respectively.

Processing Data Files

As the getlines program uses

When used in association with a named disk-
file, it uses the contents of the disk-file as
input, and there can be more than one named
disk file.

Programmers refer to the list of things on the
command-line that follow a program name as
its command-line arguments or parameters.
The last invocation of getlines has two
command-line arguments, the word “‘terrible’’
and the word ‘‘welcome3”’.

Processing Data Files

» The following is a small program called getlines that
exploits the program statement in the previous slide:
#! /usr/bin/perl -w

The 'getlines' program which processes lines.

while ($line = <>)
{
print $line;

}

» The getlines program has a condition part that uses
<> to look for and return a line from standard input.

« The line, when available, is assigned to the $line scalar,
which is then checked for trueness.

Processing Data Files

» Consider the following commmand line statement:
> perl getlines terrible

Introducing Patterns

* Perl has another programming language built
into it.
— This language within a language makes extensive
use of Perl’s regular expression, pattern-matching
technology.

* The Perl on-line documentation defines a regular
expression to be simply a string that describes a pattern.

The pattern identifies what it is hoped to match.

» The actual how of finding the pattern is taken care of by
the Perl program.

Copyright 2000 N. AYDIN. All rights
reserved.

Introducing Patterns

» A programming language that allows the programmer

to specify what is required is often referred to as a

declarative language.

— The programmer declares what’s required, and the
technology works out the details.

Aprogramming language that allows the programmer to

specify exactly how a result is to be arrived at is often

referred to as a procedural language.

— The programmer defines the procedure to be followed, and
the technology blindly follows the instructions.

Most programming languages can be classified as one

or the other, either declarative or procedural.

Remarkably, Perl can be one or the other, or both.

Introducing Patterns

‘patterns” program is very similar to the ‘getlines’
Blroglzam except the print command within the loop’s
ock.
print $line if $line =~ /even/;
Here’s the English language equivalent:
— display the contents of the scalar called $line if and only if
the scalar called $line contains the pattern ‘‘even’’.
In above stetement, =~ is called the binding operator.
The binding operator compares something (usually a
scalar variable container) against a pattern.
— For now, a pattern is defined as any sequence of characters

surrounded by the forward-leaning slash character />’
In the example above, the pattern is the word “‘even’’.

If the contents of $line contains the pattern “‘even’” anywhere in the
line, it is said to match.

Running patterns ...

» Toillustrate what’s going on, try the following command-lines:

> perl patterns terrible

=

> perl patterns welcome2

Copyright 2000 N. AYDIN. All rights
reserved.

Introducing Patterns

» For introducing regular expressions, consider the
following program, called patterns:

#! /usr/bin/perl -w

The 'patterns' program - introducing
regular expressions.

while ($line = <>)
{
print $line if $line =~ /even/;

Introducing Patterns

» When programmers refer to a character that
surrounds something of interest, such as the
forward-leaning slash surrounding the patterns
in this section, they call that character a
delimiter.

+ The character delimits the something of
interest.

e The ¢*/”’ character is the default delimiter for
regular expression patterns in Perl.

http://en.wikipedia.org/wiki/Regular_expression

http://www.regular-expressions.info/tutorial.html

http://www.english.uga.edu/humcomp/perl/regex
2a.html

http://www.perl.com/doc/manual/html/pod/perlre

.html

14

http://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/tutorial.html
http://www.english.uga.edu/humcomp/perl/regex2a.html
http://www.perl.com/doc/manual/html/pod/perlre.html

Input/Output

« Data entering a program is referred to as its input,
while data produced by a program is its output.

— Rather than refer to (and write) ““input/output’’, most
programmers simply say ‘10’ which is written as
1/0.

« /O facilities are often referred to as streams.

— It is possible to have many streams associated with a
program, with some of them classed as input streams
and others classed as output streams.

— As a minimum, every Perl program has three standard
streams available to it.
+ STDIN, STDOUT, and STDERR

I1/O-STDIN

print "Enter a number: ";

$a = <STDIN>; #<>is okay too

print "Enter another number: ";

$b =<STDIN>; #<> is okay too

chomp $a; # chomp : removes \n from string

chomp $b; # chomp : removes \n from string

$c = %a + $b;

print "The sum of the numbers that you entered is $c";

« If $a is omitted, it is assumed to be $_

1/0- STDOUT

» The standard output stream (STDOUT) is the default
place to which data is sent by a program.

» Typically, STDOUT is the screen, but it can also be a
disk-file.

» To write data to STDOUT, use the output operator:

print STDOUT $data;
or
print $data;
 Perl is smart enough to know that print sends data to
STDOUT by default.

Copyright 2000 N. AYDIN. All rights
reserved.

I/O-STDIN

* The standard input stream (STDIN) is the default
place from which data enters a program.

» Typically, STDIN is the keyboard, but it can also be a
disk-file.

* To read data from STDIN, use the input operator:

my $data = <STDIN>;
or
my $data = <>;
+ Perl is smart enough to know that an “‘empty’” input
operator actually refers to STDIN by default.

1/O-STDIN

print "Enter the username: *;
$username = <STDIN>;
chomp $username;
if ($username =~ /ibstudent/) {
print "Welcome IB student\n\n";}
else {print "Bad username, sorry!\n\n";}

< Syntax of if, else statement:
if (a condition is met)
{do something;}
else {do something else;}

1/0- STDOUT

« STDOUT can be altered outside your program,
with the "redirection" operator.

« So if you were running your Perl program and
you wanted to keep the output for review
instead of letting it flash by on the screen, you
could redirect STDOUT with the ">" symbol
and have the output sent to a file like this:

>perl perltest.pl > output.txt;

15

1/0-STDOUT

» Writing the output to a particular file from
within a Perl program:

— Specify the file you want to use by opening a
filehandle to it.

— Use the new filehandle in print statement, instead
of the default STDOUT filehandle.

— When finished, close the filehandle.

open OUTPUT, ">output.txt™;
print OUTPUT "hello world\n";
close OUTPUT,;

FILEHANDLE

+ Afilehandle is a special type of variable that is
associated with an output destination.

* It is used to tell your program where you want output
to go.
— open a file for reading
open FILEHANDLE," "chromosome2"
alternative form:
open FILEHANDLE,"< chromosome2"

— open a file for writing
open FILEHANDLE,">myprediction"

open a file for appending
open FILEHANDLE,">>mypredictions"

FILEHANDLE

» Reading from file “DNA” and copying each line to “DNAcopy":

open IN, “DNA" or die "Can't open input file: $!\n";
open OUT, ">DNAcopy" or die "Can't open output file: $!\n";
while ($line = <IN>)

print OUT $line;

+ Syntax of die function:
or die “output message”
|| die “output message”

« Variable $! describes the error such as “file not found”

Copyright 2000 N. AYDIN. All rights
reserved.

1/0-STDOUT

» An example:

— Following script creates a new web page, saved in

the file: c:/web/root/index.html.

open HTML, ">c:/perlex/index.html";

print HTML "Content-Type: text/html\n\n";
print HTML "<html><head></head><body>";
print HTML "<h2>Written by Perl!</h2>";
print HTML "</body></htmI>";

close HTML;

FILEHANDLE

» Reading from file “DNA” and copying each line to

“DNAcopy":

open IN, “DNA*;
open OUT, ">DNAcopy";
while ($line = <IN>)

print OUT $line;

Syntax of while statement:

while (something is happening)
{do something;}

FILEHANDLE

It is a good habit to close the things that you open.
Close the filehandle once you are done with it.
This will also happen automatically when your program ends.

Some complex functions don’t even work till after you close
the files.

Also as long as you keep files open you occupy the system’s
memory.

close IN or warn "Errors while closing filehandle: $!";
Syntax of warn function:

or warn “output message”
|| warn “output message”

16

Perl Variables

« Perl programs use variables to store data in
memory.

Perl is a typeless language that doesn't force
the programmer to distinguish between the
types of data stored in a variable.

Perl provides 3 built-in variable types:

— Scalar
— Array
— Hash

Array variables...

Avrrays are handy when you want to store more than
one data in a single variable, but still want to be able
to refer to them independently.

» Array in Perl is distinguished from scalar variables
by its @ sign that proceeds its name.

» You can initialize an array variable by giving a list of
values, each separated with comma inside the
parenthesis:

@desimal = ("bir", "iki", "uc", ... "dokuz");
@array =(1,2);
@values = ($x, 3y, 3, 5);

...Array variables

» Programming languages such as C/C++ require
that all the elements of an array be of the same
type, such as all integers, all characters, all
strings.

« This is not the case with Perl.
— You can mix all kinds of data types in an array:

$array[0] = "apple"; # <-- string
Sarray[1] = 12; # <-- integer
Sarray[2] = 3.47 # <-- float

101

Copyright 2000 N. AYDIN. All rights
reserved.

Scalar variables

* In Perl the most basic variable type is a scalar variable.

» Itholds a single value.

» Value can be an?/ kind of data, including, but not limited to,
o

string, integer, float, object and reference to other variables or
sets of variables.

« Scalar variables are preceded with dollar sign ($), and consist
of only alpha-numeric characters.

» Following are all valid Perl variable assignments.

$lang. = "Perl"; # <-- string. - Notice quotes
$version = 5.6; # <--float. - Notice lack of quotes
$year =2001; # <-- integer. /

$x = 10;

$value = $x + 1;

$number_of_items = 15;

$word = "hello";

S$text = "This is a sentence but is still a scalar";

...Array variables...

» You can also create an arbitrary array, and later re-assign it
elements using a bracket ([]) operator.

Important: when you refer to individual elements of an array, you use $
sign just like in scalar variables:

$ desimal [0] = "bir";
$ desimal [1] = "iki";
$ desimal [2] = "ii¢";
#

$ desimal [8]= "dokuz";

Digits inside the [] are usually called array's index, or just
index.

In Perl array indices startat 0, not 1.
+ That's why 10th element of an array has an index of 9

100

Appending elements to an array

» When you want to add an extra element to the end of

the array, you will need to know the last index of the
array.

« Special symbol, $# can be prepended to the name of

the arrayto get the last index number.

» For example:

$last_index = $#desimal;
$desimal[$last_index + 171 ="on";

e or

$desimal[$#desimal + 1] = "on";

e or

push (@desimal, "on"

102

17

Hash variables...

» Perl supports hash variables, which are also known as
associative arrays.
— Arrays, because they store multiple values, just like ordinary arrays.

Associative, because they associate the values of the element not with
an index, but through names, also called keys.

» You generate keys yourself, and you can refer to those values
with those keys.

« Distinguishing signature of a hash is a % sign, which is
prepended to Its name:

%person = (); # <-- creating an empty hash

%person = ("l_name" =>"AYDIN",
"f_name" => "Nizamettin",
“email" =>'naydin@yildiz.edu.tr');

103

Hash-related functions

 Just like in arrays, Perl provides several built-in functions for
working with hashes.

keys() - returns all the keys (names) of the hash as an array:
@names = keys(%person);

values() - returns all the values of the hash as an array:
@values = values(%person);

delete() - deletes a key/value pair from the hash.
delete $person{email};

exists() - returns a true value if a specific key of the hash
really éxists:

if (exists($person{f_name
(# do(so%wethiégéccornjlir%gﬁy... }

105

...String & Array
+ Converting a string into an array:

— Use '‘qw' operator to create an array:
@hum_ubig=qw(MQIFVKTLTGKT);
Notice that the characters have to be separated by spaces

— Use 'split' function:
$ubiquitin = 'MQIFVKTLTGKT';
@array = split(//, $ubiquitin);
It splits string $ubiquitin at a separator substring defined
within slashes (// defines an empty string)

107

Copyright 2000 N. AYDIN. All rights
reserved.

...Hash variables

» You can access the values of columns of the
table individually using a {} operator.

« Just like in arrays, we use not % sign, but $ to
refer to individual variables:

$name = $person{"f_name"};
$email =$person{"l_name"};

104

String & Array...

» How to compute string length?.
$length = length $variable
length function returns the length of a string
(number of characters)
» How to find position of character in a string?
$length = rindex($variable r, ‘N") + 1;
rindex function returns the position of the
first ‘N’ from the right
Instead of 'rindex’, 'index' can also be used
$q=%a.'?; # "tag" the end of the string with '?'
$x = index ($q, '?); # get the position of '?'

106

Example

« This is the amino acid sequence of human ubiquitin:
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKE
GIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLH
LVLRLRGG

» Human UBC gene encodes a precursor composed of

nine direct repeats of this sequence, plus an additional
valine residue (V) at the C terminus.

 Using Perl, create the sequence of the precursor,

calculate its length, approximate molecular weight,
and the corresponding number of nucleotides in
mRNA, and finally print out the results.

108

18

precursor

Main Entry: pre-cur-sor

Pronunciation: \pri-'kor-sor, 'pré- \

Function: noun

Etymology: Middle English precursoure, from

Latin praecursor,from praecurrere to run before, from prae-
pre- + currere to run — more at CURRENT

Date: 15th century

1 a: one that precedes and indicates the approach of

another b :PREDECESSOR

2 : asubstance, cell, or cellular component from which another
substance, cell, or cellular component is formed

synonyms see FORERUNNER

— pre-cur-so'ry \-'kors-rg, -'kor-so-\ adjective

109

Example script 2

$ubi =
'MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQ
QRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG';
$pre_ubi = ($ubi x 9) . 'V,

$length = length ($pre_ubi);

$mw = $length * 0.11;

$RNA_length = $length * 3;

print "The sequence of the human ubiquitin precursor
is:\n$pre_ubi\n";

print “Its Tength is $length amino acids.\n";

print "Its approximate molecular weight is $mw daltons.\n";
print "It is encoded by an mRNA of approximately
$RNA_length nucleotides.\n";

111

...Perl Operators...

To use these, you will place them in your statements
like a mathematical expression.

So, if you want to store the sum of two variables in a
third variable, you would write something like this:

$adrevenue=20;

$sales=10;
S$total_revenue = $adrevenue + $sales;

13

Copyright 2000 N. AYDIN. All rights
reserved.

Example script 1

@ubi= gWMQIFVKTLTGKTITLEVEPSDTI
ENVKAKIQDKEGIPPDQQRLIFAGKQLE
DGRTLSDYNIQKESTLHLVLRLRGG);

@pre_ubi = (@ubi) x 9;

push (@pre_ubi, 'V");

S$length = @pre_ubi;

$mw = $length * 0.11;

$RNA_length = $length * 3;

print "The sequence of the human ubiquitin precursor
Is\n@pre_ubi\n";

print "Its length is $length amino acids.\n";

print "Its approximate molecular weight is $mw daltons.\n";
print "It is encoded by an mRNA of approximately
$RNA_length nucleotides.\n";

110

Perl Operators...

« Arithmetic Operators
— They perform some sort of mathematical functions

Operator Function
+ Addition

- Subtraction, Negative Numbers,
Unary Negation

* Multiplication
/ Division

% Modulus

e Exponent

12

...Perl Operators...

« Assignment Operators

Operator Function

= Normal Assignment

+= Add and Assign

-= Subtract and Assign

*= Multiply and Assign

/= Divide and Assign

%= Modulus and Assign

falac] Exponent and Assign
* Increment/Decrement

Operator Function

++ Increment (Add 1)

- Decrement (Subtract 1)

14

19

http://www.merriam-webster.com/dictionary/current
http://www.merriam-webster.com/dictionary/predecessor
http://www.merriam-webster.com/dictionary/forerunner

...Perl Operators...

« String Operators

Operator Function
Concatenate Strings
= Concatenate and Assign
$a = "Hello™;
$b ="World";
$c=3%a. $b; # $c is now "Helloworld"

$d=%a."".$b; #$disnow "Hello World"

15

...Perl Operators...

« String Comparison

— These are similar to the numerical comparisons,
but they work with strings.

Operator Function

eq Equal to

ne Not Equal to

gt Greater than

It Less than

ge Greater than or Equal to
le Less than or Equal to

...Perl Operators

« Logical Operators

— These are often used when you need to check more
than one condition.

Operator Function
&& AND

I OR

! NOT

+ So, if you want to see if a number is less than or equal to 10,
and al3o greater than zero:
$number=5; if ($number <= 10) && ($number > 0))
{

...code....

19

Copyright 2000 N. AYDIN. All rights
reserved.

...Perl Operators...

* Numeric Comparison

— These operators are used to compare two numbers,
but not to compare strings.

— These operators are typically used in some type of
conditional statement that executes a block of code
or initiates a loop.

Operator Function

== Equal to

1= Not Equal to

> Greater than

< Less than

>= Greater than or Equal to
<= Less than or Equal to

116

...Perl Operators...
« String Comparison

— The greater-than and less-than operators compare
strings using alphabetical order.

— Something that starts with "a" is greater than
something that starts with “c".

— Also, small letters are greater than capital letters.
— Thus, "hello" is greater than "Hello".
— So, that is how it will compare it.

18

Perl Functions...

« Function is a collection of code (statements),
which can be easily configured by passing lists
of arguments.

« Functions in Perl are called subroutines, and
have a general syntax of:

sub (list of arguments) {
list of statements to execute
return some value }

120

20

...Perl Functions

+ Let's create a simple function to compute the area of
the triangle.

« This function will receive 2 arguments; triangles
width and its height and returns final computed value:
sub ucgen ($genislik, $yukseklik) {
$alan = $genislik * $yukseklik / 2;
return $alan; }

» We can now call the above function with various
arguments, and each time it will return a computed
value for a triangle:

$alanl = ucgen(3, 4);
$alan2 = ucgen(45, 38);

...Matching and Substitution in Perl

* You need to be able to open HTML templates and
swap in information pertaining to your visitor.

. g/la_ttching and then substituting is just the way to

oit.

« Also in many other administrative tasks, such as
searching through log files or web pages for
Partlcular words or sequences, pattern matching is

he way to go.

« Pattern matching, in Perl at least, is the process of
looking through sections of text for particular
words, letters-within-words, character sequences,
numbers, strings of numbers, html tags.

» These more complicated search expressions fall
into the category of "regular expressions".

... The Binding Operator...

» The "=~" construct, called the binding operator, is what binds
the string being searched with the pattern that specifies the
search.

The hinding operator links these two together and causes the search to
take place.

» Next, the "m/success/* construct is the matching operator, m//,
in action.

— The "m" stands for matching to make it easy to remember. The slash
characters here are the "delimiters”.
« They surround the specified pattern.

» In m/success/, the matching operator is looking for a match of

the letter sequence: success.

» Generally, the value of the matching statement returns 1 if
there was a match, and 0 if there wasn't.

Copyright 2000 N. AYDIN. All rights
reserved.

121

123

125

Matching and Substitution in Perl...

The ease and power of Perl's pattern matching
is one its true strengths and a big reason why
Perl is as popular as it is.

Almost every script you write in Perl will have
some kind of pattern matching operation
because so often you want to seek something
out, and then take an action when you find it.
Matching and substitution are very important
because this is how you do editing "on the
fly".

This is how you create content customized to
your Web visitor.

122

The Binding Operator...

When you do a pattern match, you need three things:
the text you are searching through
the pattern you are looking for
away of linking the pattern with the searched text
As a simple example, let's say you want to see whether a string
variable has the value of "success".
Here's how you could write the problem in Perl:
$word = "success";
if ($word =~ m/success/) {
print "Found success\n";

}else {

print "Did not find success\n";}

124

... The Binding Operator

+ Negative Matching

In some cases you are more interested in whether a pattern
does not match a string rather than that it does. In this case
you could write

if (! $string =~ m/search text/) ...

but as usual, Perl makes it easier for you and offers you
more than one way to do it.

« In this case, there's the "negative" binding operator,

I~, so you could write this:
if ($string !~ m/search text/) ...

126

21

Matching...

Parentheses () group pattern elements.

An asterisk * means that the preceding character, element, or
group of elements may occur zero times, one time, or many
times.

» A plus + means that the preceding element or group of elements
must occur at least once.

« A question mark ? matches zero or one times.
+ So:
[fr.*nd/ matches "frnd", “friend", "front and back"

/ffr.+(;1d/ matches "frond", "friend", "front and back" but not
“frnd

/10*1/ matches "11", "101", "1001", "100000001".
/b(an)*a/ matches "ba", "bana", "banana", "banananana"
[flo?at/ matches "flat" and "float" but not "flooat"

127

...Matching...

[*...] matches characters that are not ...":
[*0-9] matches any non-digit character.

« Curly braces allow more precise specification of repeated fields. For
example
[0-9]{6} matches any sequence of 6 digits, and

[0-9]{6,10} matches any sequence of 6 to 10 digits.
« Patterns float, unless anchored. The caret * (outside [A) anchors a pattern to
the beginning, and dollar-sign $ anchors a pattern at the end, so:
lat/ matches "at", "attention"”, "flat", & "flatter"
Mt/ matches "at" & "attention" but not "flat"
at$/ matches "at" & "flat", but not "attention"
1nat$/ matches "at" and nothing else.
hat$li matches “at", "At", “aT", and "AT".
IN S/ matches a "blank line", one that contains nothing or

any combination of blanks and tabs.

129

...Matching

» A simple \s specifies "white space", the same as the
character class [\t\n\r\f] (blank, tab, newline, carriage
return,form-feed). A character may be specified in
hexadecimal as a \x followed by two hexadecimal
digits; \x1b is the ESC character.

A vertical bar | specifies "or".

if ($answer =~ /*y|Myes|yeah/i) { print
"Affirmative!"; }

prints "Affirmative!" for $answer equal to "y" or
"yes" or "yeah" (or "Y", "YeS", or "yessireebob, that's
right").

131

Copyright 2000 N. AYDIN. All rights
reserved.

...Matching...

« Square brackets [] match a class of single characters.

[0123456789] matches any single digit

[0-9] matches any single digit

[0-9]+ matches any sequence of one or
more digits

[a-z]+ matches any lowercase word

[A-Z]+ matches any uppercase word

[ab n]* matches the null string ", "b", any

number of blanks, "nab a banana"

128

...Matching...

« The Backslash. Other characters simpl?/ match themselves, but
the characters +?.*"$() H]{}|\ and usually / must be escaped with a
backslash \ to be taken literally. Thus:

/10.2/ matches "10Q2", "1052", and "10.2"
/10\.2/ matches "10.2" but not *10Q2" or "1052"
N*+/ matches one or more asterisks

/ANDIR/ matches "A:\DIR"
Nusr\bin/ matches "/usr/bin“

If a backslash precedes an alphanumeric character, this sequence
takes a special meaning, txplcally a short form of a [] character
c:ass. For example, \d is the same as the [0-9] digits character
class.

[[-+]\d*\.\d*/ is the same as

[[-+]1?[0-91%\.2\d*/

Either of the above matches decimal numbers: "-150", "'-
4.13","3.1415", "+0000.00", etc.

130

Regular Expressions...

All pattern matching in Perl is based on the concept of
regular expressions.

+ Regular expressions are an important part of computer
science, and entire books are devoted to the topic.
Regular expressions form a standard way of
expressing almost any text pattern unambiguously.

» A mechanism to select specific strings from a set of
character strings.

A set of characters, metacharacters, and operators that
define a string or group of strings in a search pattern.

132

22

...Regular Expressions

A string containing wildcard characters and
operations that d