
Copyright 2000 N. AYDIN. All rights 

reserved. 1

1

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Introduction to Bioinformatics

2

Introduction to Perl

Introduction to Bioinformatics

Learning objectives

• After this lecture you should be able to

understand :

– sequence, iteration and selection;

– basic building blocks of programming;

– three C’s: constants, comments and conditions;

– use of variable containers; 

– use of some Perl operators and its pattern-matching

technology;

– Perl input/output

– …

3 4

Setting The Technological Scene

• One of the objectives of this course is..

– to enable students to acquire an understanding of, and 
ability in, a programming language (Perl, Python) as the 
main enabler in the development of computer programs in 
the area of Bioinformatics.

• Modern computers are organised around two main 
components:

– Hardware

– Software

5

Introduction to the Computing

• Computer: electronic genius?

– NO!  Electronic idiot!

– Does exactly what we tell it to, nothing more.

• All computers, given enough time and memory,

are capable of computing exactly the same things.

= =

PDA
Workstation

Supercomputer

6

Introduction to the Computing

• In theory, computer can compute anything 

• that’s possible to compute

– given enough memory and time

• In practice, solving problems involves 

computing under constraints.

– time
• weather forecast, next frame of animation, ...

– cost
• cell phone, automotive engine controller, ...

– power
• cell phone, handheld video game, ...

mailto:naydin@yildiz.edu.tr


Copyright 2000 N. AYDIN. All rights 

reserved. 2

7

Layers of Technology

8

Layers of Technology

• Operating system...

– Interacts directly with the hardware

– Responsible for ensuring efficient use of hardware resources

• Tools...

– Softwares that take adavantage of what the operating system 
has to offer. 

– Programming languages, databases, editors, interface builders...

• Applications...

– Most useful category of software

– Web browsers, email clients, web servers, word processors, 
etc...

9

Transformations Between Layers

Problems

Language

Instruction Set Architecture 

Microarchitecture

Circuits

Devices

Algorithms

10

How do we solve a problem using a computer?

• A systematic sequence of transformations between 

layers of abstraction.

Problem

Algorithm

Program

Software Design:

choose algorithms and data structures

Programming:

use language to express design

Instr Set

Architecture

Compiling/Interpreting:

convert language to 

machine instructions

11

Deeper and Deeper…

Instr Set

Architecture

Microarch

Circuits

Processor Design:

choose structures to implement ISA

Logic/Circuit Design:

gates  and low-level circuits to

implement components

Devices

Process Engineering & Fabrication:

develop and manufacture

lowest-level components

12

Descriptions of Each Level…

• Problem Statement

– stated using "natural language"

– may be ambiguous, imprecise

• Algorithm

– step-by-step procedure, guaranteed to finish

– definiteness, effective computability, finiteness

• Program

– express the algorithm using a computer language

– high-level language, low-level language

• Instruction Set Architecture (ISA)

– specifies the set of instructions the computer can perform

– data types, addressing mode



Copyright 2000 N. AYDIN. All rights 

reserved. 3

13

…Descriptions of Each Level

• Microarchitecture

– detailed organization of a processor implementation

– different implementations of a single ISA

• Logic Circuits

– combine basic operations to realize 

microarchitecture

– many different ways to implement a single function 

(e.g., addition)

• Devices

– properties of materials, manufacturability

14

Many Choices at Each Level

Solve a system of equations

Gaussian 

elimination

Jacobi

iteration
Red-black SOR Multigrid

FORTRAN C C++ Java

Intel x86PowerPC Atmel AVR

Centrino Pentium 4 Xeon

Ripple-carry adder Carry-lookahead adder

CMOS Bipolar GaAs

Tradeoffs:

cost

performance

power

(etc.)

The successive over-relaxation (SOR) : a method for solving a linear system of equations.

The Computer Level Hierarchy

15

•Software?

•Program or collection of programs.

•Enables the hardware to process data.

• Each virtual machine layer is 

an abstraction of the level 

below it.

• The machines at each level 

execute their own particular 

instructions, calling upon 

machines at lower levels to 

perform tasks as required.

• Computer circuits ultimately 

carry out the work.

16

Instruction Set Architecture

C Fortran Ada

Compiler

Assembly Language

Assembler

etc. Basic Java

Compiler

Interpreter

Byte Code

Executable

HW

Implementation 1

HW

Implementation N

HW

Implementation 2

17

Programming

• Methodologies for creating computer programs
that perform a desired function.

– Problem Solving

• How do we figure out what to tell the computer to do?

• Convert problem statement into algorithm, using stepwise 

refinement.

• Convert algorithm into machine instructions.

– Debugging

• How do we figure out why it didn’t work?

• Examining registers and memory, setting breakpoints, etc.

Time spent on the first can reduce time spent on the second!

18

Stepwise Refinement

• Also known as systematic decomposition.

• Start with problem statement:

• Decompose task into a few simpler subtasks.

• Decompose each subtask into smaller subtasks, and 
these into even smaller subtasks, etc....

until you get to the machine instruction level.



Copyright 2000 N. AYDIN. All rights 

reserved. 4

19

Problem Statement

• Because problem statements are written in English,

they are sometimes ambiguous and/or incomplete.

– Where is “file” located?  

– How big is it?

– How do I know when I’ve reached the end?

– How should final count be printed?  A decimal number?

– If the character is a letter, should I count both upper-case and 

lower-case occurrences?

• How do you resolve these issues?

– Ask the person who wants the problem solved, or

– Make a decision and document it.

20

Three Basic Constructs

• There are three basic ways to decompose a task:

Task

Subtask 1

Subtask 2

Sequential Conditional Iterative

Subtask

Test

condition

True

False

Subtask 1 Subtask 2

Test

condition

True False

21

Sequential

• Do Subtask 1 to completion,

then do Subtask 2 to completion, etc.

Get character

input from

keyboard

Examine file and

count the number

of characters that

match

Print number

to the screen

Count and print the

occurrences of a

character in a file

22

Conditional

• If condition is true, do Subtask 1;

else, do Subtask 2.

Test character.

If match, increment

counter.
Count = Count + 1

file char

= input?

True False

23

Iterative

• Do Subtask over and over, 

as long as the test condition is true.

Check each element of

the file and count the

characters that match.

Check next char and

count if matches.

more chars

to check?

True

False

Why Write Programs?

• Automate computer work that you do by hand 

– save time & reduce errors

• Run the same analysis on lots of similar data files 

• Analyze data

• Make decisions  

• Create new analysis methods



Copyright 2000 N. AYDIN. All rights 

reserved. 5

• Fairly easy to learn the basics

• Many powerful functions for working with 
text: search & extract, modify, combine 

• Can control other programs 

• Free and available for all operating systems

• Most popular language in bioinformatics

• Many pre-built “modules” are available that 
do useful things

Why Perl?

26

As a software tool: Perl

• What Is Perl?

• PERL is a "Practical Extraction and Report
Language“ 

• (or Pathologically Eclectic Rubbish Lister) 

– freely available for Unix, MVS, VMS, MS/DOS, 
Macintosh, OS/2, Amiga, and other operating systems. 

• Perl has powerful text manipulation functions. 

– It eclectically combines features and purposes of many 
command languages. 

– Perl has enjoyed popularity for programming World Wide 
Web electronic forms and generally as glue and gateway 
between systems, databases, and users.

27

History

• Originally written by Larry Wall at NASA’s Jet 
Propulsion Labs 

– to process mail on Unix systems 

– extended by a lot of people and many biologists!

• Started as ‘glue’ language, 

– for the use of Larry and officemates. 

• It combines the best features of several languages.

• Version 1: December 18, 1987

• Current stable release is Perl 5.18.2

• Perl motto: TMTOWTDI-There’s More Than One 
Way To Do It

28

Strengths of Perl

• Very easy to learn

• Very portable

• High level language

• Powerful text processing

• It’s free

• What makes Perl a good programming language for 

Biological data?

– Fast in file manipulation

– DBI modules provide database bridge for other applications

– CGI module provides easy web interface

29

Getting and Installing Perl

• http://www.perl.org/

• http://www.perl.com/CPAN/

• http://www.activestate.com/

• Perl tutorials: 

http://www.internetbiologists.org/IB-perl/index.html

http://learn.perl.org/library/beginning_perl/

• Bioinformatics related web pages:

http://www.geocities.com/bioinformaticsweb/index.html

http://glasnost.itcarlow.ie/~biobook/index.html

30

What is Perl Used For

• CGI (common gateway interface) Programming 
(dynamically generating web pages). 

– (Example websites: www.amazon.com, www.slashdot.org, 
www.deja.com)

• Extracting data from one source and translating it to 
another format.

• Manipulating databases, simple search and replace 
operation.

• Data management in Human Genome Project

• Internet programming, automating administration 
tasks, ...............etc.

http://www.amazon.com/
http://www.slashdot.org/
http://www.deja.com/


Copyright 2000 N. AYDIN. All rights 

reserved. 6

31

Which Platform to Use

• http://www.perl.com/CPAN/ports/index.html

• Perl Ports (Binary Distributions)

• CPAN/ports (Comprehensive Perl Archive Network )

• Perl runs on over 100 platforms!

• Acorn | AIX | Amiga | Apple | Atari | AtheOS | BeOS | BSD | BSD/OS | 
Coherent | Compaq | Concurrent | Cygwin | Darwin | DG/UX | Digital | 
Digital UNIX | DEC OSF/1 | DYNIX/ptx | Embedix | EMC | EPOC | 
FreeBSD | Fujitsu | GNU Darwin | Guardian | HP | HP-UX | IBM | IRIX | 
Japanese | JPerl | Linux | LynxOS | Mac OS | Mac OS X | Macintosh | 
MachTen | MinGW | Minix | MiNT | MorphOS | MPE/iX | MS-DOS | MVS
| NetBSD | NetWare | NEWS-OS | NextStep | NonStop | NonStop-UX | 
Novell | ODT | Open UNIX | OpenBSD | OpenVMS | OS/2 | OS/390 | 
OS/400 | OSF/1 | OSR | Plan 9 | Pocket PC | PowerMAX | Psion | QNX | 
Reliant UNIX | RISCOS | SCO | Sequent | SGI | Sharp | Siemens | SINIX | 
Solaris | SONY | Sun | Syllable | Stratus | Tandem | Tivo | Tru64 | Ultrix | 
UNIX | Unixware | U/WIN | VMS | VOS | Win32 | WinCE | Windows 3.1 | 
Windows 95/98/Me/NT/2000/XP/VISTA/W7 W8 | z/OS | …….

32

Win95 / Win98 / WinME / WinNT / Win2000/W2K / 

WinXP (Win32) 

• Starting from Perl 5.005 the Win32 support has been integrated to the Perl 
standard source code distribution. But if you insist on a binary: 

• ActivePerl (Perl for Win32, Perl for ISAPI, PerlScript, Perl Package 
Manager) 

• Apache/Perl (binaries for both Perl-5.6/Apache-1.0/mod_perl-1 and Perl-
5.8/Apache-2/mod_perl-2) 

• DeveloperSide.Net (compiled under VS.NET and includes the latest 
versions of Apache2, PHP, MySQL, OpenSSL, mod_perl, Apache::ASP, 
and a few other components) 

• IndigoPerl (Perl for Win32, integrated Apache webserver, GUI Package 
Manager) 

• niPerl (MSI installer, Win32::GUI, Win32::GUI::XMLBuilder, 
Documentation Viewer, WGX, PAR ready, built-in SciTE editor) 

• PXPerl (libwin32 included, compiled with Intel C++ Compiler for 
maximum performance, Explorer integration (file association etc), self-
configures on install with the local Visual C++ binaries) 

• SiePerl for Win32 by Siemens, contains several modules 
• Prebuilt Perls by Rich Megginson, a special installer is used. 
• Strawberry Perl a perl environment for MS Windows.

33

IDEs for Perl 
• Padre Perl Application Development and Refactoring Environment 

(Windows, Linux, Mac OS X)

• Arachno Perl from Scriptolutions (Windows and Linux) 

• Eclipse multiplatform IDE has Perl plugins

• Komodo from ActiveState (Windows and Linux) 

• Open Perl IDE (Windows) 

• Perl Builder from Solutionsoft (Windows and Linux) 

• PerlDevKit from ActiveState (IDE Windows, Linux and Solaris) 

• PerlEdit from IndigoStar (Windows and Linux) 

• Perl Oasis from Johan Lindström (Windows) 

• PerlWiz from Arctan Computer Ventures (Windows) 

• SciTE from the SCIntilla project (Windows and X/gtk+) 

• visiPerl+ from Help Consulting (Windows) 

or editors (Perl programs are just plain text so any editor will do). 
– CodeWright | Elvis | GNU Emacs | Epsilon | gVim | MicroEmacs | MultiEdit | nvi | PFE | 

SlickEdit | UltraEdit | Vile | vim | XEMacs

or shell environments (UNIX tool environments, tcsh and zsh are just the shell). 
– Cygwin bash | MKS ksh | U/WIN sh | tcsh | (csh/tcsh book) zsh (zsh in general)

34

How to Get Help

• To get information on a particular function

>perldoc –f function

for example >perldoc –f print

35

How to Get Help

• To search the Perl FAQ for any regular 

expression or keyword

>perldoc –q keyword

for example >perldoc –q reverse

36

How to Get Help

• Websites:

www.perl.com, 

www.perlclinic.com, 

www.perlfaq.com, 

www.perl.org, www.tpj.com, 

www.activestate.com, 

www.perlarchive.com

• News groups, books

http://www.perl.com/CPAN/index.html
http://www.activestate.com/ActivePerl/
http://www.apache.org/dyn/closer.cgi/perl/win32-bin/
http://www.devside.net/
http://www.indigostar.com/indigoperl.htm
http://www.numeninest.com/Perl/
http://pixigreg.com/pxperl
http://www.perl.com/CPAN/authors/id/G/GR/GRAHAMC/
http://people.netscape.com/richm/nsPerl/
http://strawberryperl.com/
http://padre.perlide.org/
http://padre.perlide.org/
http://www.eclipse.org/
http://e-p-i-c.sourceforge.net/
http://www.activestate.com/Products/Komodo/
http://open-perl-ide.sourceforge.net/
http://www.solutionsoft.com/perl.htm
http://www.activestate.com/Products/Perl_Dev_Kit/
http://www.indigostar.com/perledit.html
http://www.bahnhof.se/~johanl/perl/Oasis/
http://www.perlwiz.biz/
http://www.scintilla.org/SciTE.html
http://www.helpconsulting.net/visiperl/index.html
http://www.borland.com/codewright/
ftp://ftp.cs.pdx.edu/pub/elvis/
http://www.gnu.org/software/emacs/windows/ntemacs.html
http://www.lugaru.com/
http://www.vim.org/download.php#pc
http://uemacs.tripod.com/
http://www.multiedit.com/
http://www.bostic.com/vi/
http://www.simtel.net/product.php?url_fb_product_page=11983
http://www.slickedit.com/
http://www.ultraedit.com/
http://dickey.his.com/vile/vile.html
http://www.vim.org/
http://www.xemacs.org/Download/index.html
http://www.cygwin.com/
http://www.mks.com/
http://www.research.att.com/sw/tools/uwin/
ftp://ftp.astron.com/pub/tcsh/
http://www.kitebird.com/csh-tcsh-book/
ftp://ftp.blarg.net/users/amol/zsh/
http://www.zsh.org/
http://www.perl.com/
http://www.perlclinic.com/
http://www.perlfaq.com/
http://www.perl.org/
http://www.tpj.com/
http://www.activestate.com/
http://www.perlarchive.com/


Copyright 2000 N. AYDIN. All rights 

reserved. 7

37

Again: What Is Perl?

• Interpreted Language ? 

– (such as Basic, which needs another program called 
interpreted to process the code every time you want to run 
the program)

• Compiled languge ? 

– (such as C, which uses a compiler to proces the code before 
the code is ever run)

• Perl is in between like java: 

– interpreter reads and compiles the program at ones, 

– not into the specific machine code,

– but into a special virtual machine code.

• It is also called scripting language

38

How to Write Perl Code

• Form a working folder (directory) 

• Open Notepad (or any text editor) and type in the perl 
code following the convention

• Save the file with extension pl, or plx 

• In file manager you double click on the file. 

– The program will run (probably a window will appear and 
disappear)

• Go to MSDOS prompt. 

• Change to working directory and type   perl xxxx.pl

• Or you use one of the IDEs

39

First Perl Program

• Here is a simple script to illustrate how a Perl 

program looks: (Print a message to the terminal

Code:

#!/niPerl/bin –w

print "merhaba \n";

• Save this file as merhaba.pl

• Run it by typing

> perl merhaba.pl

40

Debugging Perl

• Debugging

– Finding the errors and fixing them.

• It is a specialized skill and it takes practice

to become good at it.

• Among the beginner programmers, it is 

common banging your head against the 

keyboard for what seems like hours, only to

discover the problem was actually in a 

completely different part of your script than 

where you were looking.

41

...Debugging...

• Perl tries its best to tell you where the error is. 

– Read the error message carefully.

• Sometimes it gives multiple line errors.

• Go to the first line number and try to see the error.

• Try to look at an earlier line too, 

– sometimes the error doesn’t trigger until a next 

statement.

• After fixing the first error, run the script again, 

– the next errors may have gone away.

42

...Debugging...

• Use the -c switch

– to check for possible errors. 

• By entering the command perl -c scriptname you

make Perl to try to compile your script without

actually running it

– The -c switch compiles the script without invoking the 

warnings feature

print "merhaba \n";

>perl -c merhaba.pl



Copyright 2000 N. AYDIN. All rights 

reserved. 8

43

...Debugging...

print "merhaba \n;

>perl -c hmerhaba1.pl

44

...Debugging...

• Syntax Errors

pint "merhaba \n ";

>perl -c hmerhaba2.pl

45

Syntax and semantics

• A Perl program may be syntactically correct, but 

semantically wrong. 

• Semantics has to do with meaning of language. 

– This means that the program satisfies the rules and

regulations of language but does not do what you

expected it to do.

print; "merhaba \n ";

> perl -c hmerhaba3.pl

46

...Debugging...

• Use the –w switch

– to tell Perl to warn you about things it thinks might 

be problems in your script. 

>perl -w hmerhaba3.pl

47

...Debugging...

• Use the -cw switches (combination of -c and -w)
– the -cw compiles it with warnings turned on. 

In either case, you can get feedback on any problems your script
might have, without having to actually run it which,
may save you time in long and big scripts.

>perl -c -w hmerhaba3.pl 

>perl -cw hmerhaba3.pl 

48

...Debugging...

• Try to isolate the problem.
– By commenting out chunks of code, then rerunning 

the script, you can often narrow down where the 
problem is occurring.

– Even better is to avoid the need for this by building 
and debugging the script in small increments. 

– Create a simple framework first, get it working, then 
add increasingly complex features on, testing each 
component before moving to the next. 

– In this way you will uncover bugs as you go, and it 
will usually be obvious where the bug resides; it is in 
the small section of code you just added. 

– While it may seem faster to code up the whole thing 
first, then do all the debugging at the end, it rarely 
works out that way.



Copyright 2000 N. AYDIN. All rights 

reserved. 9

49

...Debugging...
• Use the strict pragma

– Perl is a great language for writing quick, one-off 
scripts, in part because of its default behavior of 
having new variables simply spring into 
existence on first mention. 

– This can lead to problems as your script grows, 
however. 

– A typo in the name of a variable will mean that 
your script is suddenly using a new, different 
variable from the one you intended, which can be 
a real head-scratcher to debug. 

In computer programming, a directive or pragma (from "pragmatic") is a 

language construct that specifies how a compiler (or other translator) should 

process its input. Directives are not part of the grammar of a programming 

language, and may vary from compiler to compiler.

50

...Debugging...

• Use the strict pragma
– By putting the following line near the top of the script: 

use strict;
• you are telling Perl that you are willing to be held to a higher

standard. 

– In particular, you're saying you are willing to declare all 
your variables before using them. 

– Besides protecting you from typos in your variable names 
(because the script will abort with an error message during 
the initial compilation phase if it encounters an undeclared 
variable), 

– this also lets you properly "scope“ your variables, thereby 
limiting their visibility, rather than letting them be "global" 
variables that could conceivably interact with other 
variables of the same name elsewhere in the script. 

– All of this translates into big savings in debugging time.

51

...Debugging

• Resist the temptation to attribute the problem 
to some previously undiscovered bug in Perl.

– Every novice Perl programmer eventually comes 
up against a bug that defies all efforts to identify 
and eradicate it. 

– As the programmer's frustration level mounts, an 
idea begins to creep into his or her head: 

• it must not be a problem in the script, but is
something broken in Perl itself. 

• It is almost certainly a bug in your script, not in Perl.

52

Return to our 1st program

• #!/niPerl/bin –w

• Every line starting with # is comment and ignored by
Perl. 

• However, # and ! together at the start of the 1st line tell
UNIX how the file should be run. 

– In this case the file should be passed to Perl interpreter, 
which lives in niPerl/bin

• Within Perl, and almost all other programming 
languages, each line in a program is referred to as a 
‘‘statement’’. 

– Perl statements end with, and are separated from any other 
statements by, a semicolon, that is, the ‘‘;’’ character.

53

...1st program

• 2nd line print "merhaba \n";

• print function tells perl to display the given text. 

• Text inside the quotes is not interpreted as code 

and is called string. 

• \n is used to start a new line 

#!/niPerl/bin -w

print "merhaba \n"; 

54

Program 1

print "Welcome to the Wonderful World of Bioinformatics!\n";

>perl -cw welcome1.pl

>perl welcome1.pl



Copyright 2000 N. AYDIN. All rights 

reserved. 10

55

Another version of welcome

print "Welcome ";

print "to ";

print "the ";

print "Wonderful ";

print "World ";

print "of ";

print "Bioinformatics!";

print "\n";

>perl -cw welcome1.pl

>perl welcome1.pl

56

Iteration (Repetition)

• Using the Perl while construct

# The ‘iter1' program - a (Perl) program,

# which does not stop until someone presses Ctrl-C.

use constant TRUE => 1;

use constant FALSE => 0;

while ( TRUE )

{

print "Welcome to the Wonderful World of 
Bioinformatics!\n";

sleep 1;

}

57

Running forever ...

>perl  iter1.pl

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

.

.

58

Iteration

• Rather than use the word iteration or repetition to refer 

to this mechanism, many programmers favour the use 

of the word loop. 

– In this context, loop is both a noun and a verb. 

• Typical programmer utterances might be ‘‘the loop prints the message 

five times’’ or ‘‘this program loops forever’’. 

– Programs that loop forever, just like the forever program in 

this section, are referred to as an infinite loop. 

• The infinite loop is generally regarded as a very bad thing, and 

programmers are encouraged not to introduce such loops into 
programs.

59

Introducing variable containers

• Two constant definitions come after the comment lines:

use constant TRUE => 1;

use constant FALSE => 0;

– Perl treats a value of 1 as true and a value of 0 as false.

• A constant is a container within a program whose value 

cannot be changed under any circumstance.

– Although not required, it is a convention to give constants all 

UPPERCASE names.

• Perl is case-sensitive. 

– This means that when naming variables in Perl, case is 

significant. 

• So, ‘‘TRUE’’ is a different symbol to ‘‘true’’.

60

Introducing variable containers

• The opposite of a constant is a variable container, or 
variable for short. 

– A variable’s value can change over the lifetime of the program.

• When you need to change the value of an item, use a 
variable container.

• Perl has excellent support for all types of variable 
containers. 

• The simplest type of variable container is the scalar. 

– Scalars can hold, a number, a word, a sentence or a disk-file. 

• Within Perl programs, scalars are given a name prefixed 
with a dollar sign ($).

– Here are some example scalar names:

• $name, $_address, $programming_101, $z, $abc, $count



Copyright 2000 N. AYDIN. All rights 

reserved. 11

61

Variable containers and loops

• To demonstrate the use of variable containers within loops, 
a version of forever that displays ten messages and then 
stops can be created.

# The ‘iter2' program - a (Perl) program,

# which stops after ten iterations.

use constant HOWMANY => 10;

$count = 0;

while ( $count < HOWMANY )

{

print "Welcome to the Wonderful World of Bioinformatics!\n";

$count++;

}

62

Running ten times ...

>perl  iter2.pl

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

Welcome to the Wonderful World of Bioinformatics!

63

Variable containers and loops

• In Perl, it is not necessary to set the value of a 

variable container before it’s used. 

• Perl has a number of rules that are applied to the first 

usage of a variable container 

– Perl sets a scalar to zero if it is first used within a numeric 

context. 

– This feature can be very convenient. 

– However, it is always a good idea to give variable 

containers an explicit starting value, as it indicates 

precisely what the intentions for the variable are. 

• Any programmer reading the tentimes program should be in no 

doubt that the $count scalar is to be used within a numeric context.

64

Selection

• One of the basic building blocks of programming is 
selection. 

• The use of a selection mechanism allows a program to 
choose one of a number of possible courses of action.

• Here’s the general form of the selection statement in Perl:
if ( some condition is true )

{

do something

}

else

{

do something else

}

65

Using the Perl if construct
• Here is another variation on the forever program that prints 

the message fivetimes.

# The 'fivetimes' program - a (Perl) program,

# which stops after five iterations.

use constant TRUE => 1;

use constant FALSE => 0;

use constant HOWMANY => 5;

$count = 0;

while ( TRUE )
{

$count++;

print "Welcome to the Wonderful World of Bioinformatics!\n";

if ( $count == HOWMANY )

{

last;
}

}

66

There Really Is MTOWTDI

• Where MTOWTDI stands for ‘‘more than 

one way to do it’’. 

• This philosophy is one of the great strengths 

of Perl, but care is needed. 

• Next examples illustrate the good and the 

bad of this philosophy, 

• Starting with a couple of not so good 

examples followed by a couple of much 

improved ones. 



Copyright 2000 N. AYDIN. All rights 

reserved. 12

67

The oddeven program
# The 'oddeven' program - a (Perl) program,

# which iterates four times, printing 'odd' when $count
# is an odd number, and 'even' when $count is an even 

# number. 
use constant HOWMANY => 4;

$count = 0;
while ( $count < HOWMANY )

{
$count++;

if ( $count == 1 )
{

print "odd\n";
}

elsif ( $count == 2 )
{

print "even\n";
}

elsif ( $count == 3 )
{

print "odd\n";
}

else # at this point $count is four.
{

print "even\n";
}

}
68

The terrible program

• Here is another program that does exactly the same 
thing as oddeven.
#! /usr/bin/perl -w

# The 'terrible' program - a poorly formatted 'oddeven'.

use constant HOWMANY => 4; $count = 0;

while ( $count < HOWMANY ) { $count++;

if ( $count == 1 ) { print "odd\n"; } elsif ( $count == 2 )

{ print "even\n"; } elsif ( $count == 3 ) { print "odd\n"; }

else # at this point $count is four.

{ print "even\n"; } }

• Notice that the program statements that make up the 

terrible program are exactly the same as those that 

make up the oddeven program.

– The difference between the two programs has to do with 
how they are laid out, or formatted.

69

The terrible program

• Like a lot of modern programming languages, Perl is 

classified as free format. 

• This means that you can write a program using 

whatever formatting you prefer, as perl can just as 

easily process a well-formatted program, such as 

oddeven, as it can a poorly formatted program, such as 

terrible. 

• Do yourself and everyone else a favour, and be sure to 

format your programs to be as readable as possible.

• Use plenty of whitespace, blank lines and indentation

to make your programs easier to read.

70

The oddeven2 program
• Here is another version of oddeven. 

• It produces exactly the same output as both oddeven and terrible:

#! /usr/bin/perl -w

# The 'oddeven2' program - another version of 'oddeven'.

use constant HOWMANY => 4;

$count = 0;

while ( $count < HOWMANY )

{

$count++;

if ( $count % 2 == 0 )

{

print "even\n";

}

else # $count % 2 is not zero.

{

print "odd\n";

}

}

71

Using the modulus operator

• That percentage sign (%) is another Perl operator, the 

modulus, % operator. 

• Given two numbers, ‘‘A % B’’ returns the remainder

after A has been divided by B, assuming both are 

positive numbers.

print 5 % 2, "\n"; # prints a '1' on a line.

print 4 % 2, "\n"; # prints a '0' on a line.

print 7 % 4, "\n"; # prints a '3' on a line.

72

The oddeven3 program

• The following code is even shorter than the 

oddeven2.

#! /usr/bin/perl -w

# The 'oddeven3' program - yet another version of 'oddeven'.

use constant HOWMANY => 4;

$count = 0;

while ( $count < HOWMANY )

{

$count++;

print "even\n" if ( $count % 2 == 0 );

print "odd\n" if ( $count % 2 != 0 );

}



Copyright 2000 N. AYDIN. All rights 

reserved. 13

73

Processing Data Files

• The input operator in Perl is
<>

– When Perl encounters this operator within a program, it 
looks for and returns a line of input from standard input,

• which is the name given to the mechanism that is currently 

providing input data to the program. 

– Unless Perl is told otherwise, the default input mechanism 
is the keyboard.

• A program takes a line of data from the keyboard 

whenever the input operator is used.

– Consider the following program statement:

$line = <>;

– A line is read from the keyboard and put into the $line scalar

74

Processing Data Files

• The following is a small program called getlines that 
exploits the program statement in the previous slide:
#! /usr/bin/perl -w

# The 'getlines' program which processes lines.

while ( $line = <> )

{

print $line;

}

• The getlines program has a condition part that uses 

<> to look for and return a line from standard input. 

• The line, when available, is assigned to the $line scalar, 
which is then checked for trueness.

75

Processing Data Files

• It turns out that, in addition to using numerics to represent 

true and false, strings also have a truth value. 

– A string with no characters is false, otherwise it is true.

• In addition to standard input, Perl has 

– standard output,

• the default place to display normal messages, 

– standard error, 

• the default place to display error messages. 

– Unless told otherwise, Perl uses the screen as the default for both 
standard output and standard error. 

• To make things convenient, standard input, standard 

output and standard error go by the shorthand names of 

STDIN, STDOUT and STDERR respectively.

76

Processing Data Files

• Consider the following commmand line statement:

> perl getlines terrible

> perl getlines terrible welcome3

77

Processing Data Files

• As the getlines program uses 

• When used in association with a named disk-
file, it uses the contents of the disk-file as 
input, and there can be more than one named 
disk file.

• Programmers refer to the list of things on the 
command-line that follow a program name as 
its command-line arguments or parameters. 

• The last invocation of getlines has two 
command-line arguments, the word ‘‘terrible’’
and the word ‘‘welcome3’’.

78

Introducing Patterns

• Perl has another programming language built

into it. 

– This language within a language makes extensive 

use of Perl’s regular expression, pattern-matching

technology.

• The Perl on-line documentation defines a regular 
expression to be simply a string that describes a pattern. 

– The pattern identifies what it is hoped to match.

• The actual how of finding the pattern is taken care of by 
the Perl program.



Copyright 2000 N. AYDIN. All rights 

reserved. 14

79

Introducing Patterns

• A programming language that allows the programmer
to specify what is required is often referred to as a 
declarative language. 

– The programmer declares what’s required, and the 
technology works out the details.

• Aprogramming language that allows the programmer to 
specify exactly how a result is to be arrived at is often 
referred to as a procedural language.

– The programmer defines the procedure to be followed, and 
the technology blindly follows the instructions. 

• Most programming languages can be classified as one 
or the other, either declarative or procedural. 

• Remarkably, Perl can be one or the other, or both.

80

Introducing Patterns

• For introducing regular expressions, consider the 
following program, called patterns:

#! /usr/bin/perl -w

# The 'patterns' program - introducing 

regular expressions.

while ( $line = <> )

{

print $line if $line =~ /even/;

}

81

Introducing Patterns

• ‘patterns’ program is very similar to the ‘getlines’
program except the print command within the loop’s 
block. 

print $line if $line =~ /even/;

• Here’s the English language equivalent: 
– display the contents of the scalar called $line if and only if 

the scalar called $line contains the pattern ‘‘even’’.

• In above stetement, =~ is called the binding operator.
• The binding operator compares something (usually a 

scalar variable container) against a pattern.
– For now, a pattern is defined as any sequence of characters 

surrounded by the forward-leaning slash character ‘‘/’’.
• In the example above, the pattern is the word ‘‘even’’.

• If the contents of $line contains the pattern ‘‘even’’ anywhere in the 
line, it is said to match.

82

Introducing Patterns

• When programmers refer to a character that 
surrounds something of interest, such as the 
forward-leaning slash surrounding the patterns 
in this section, they call that character a 
delimiter. 

• The character delimits the something of 
interest. 

• The ‘‘/’’ character is the default delimiter for 
regular expression patterns in Perl.

83

Running patterns ...

• To illustrate what’s going on, try the following command-lines:

> perl patterns terrible

> perl patterns oddeven

> perl patterns welcome2

84

http://en.wikipedia.org/wiki/Regular_expression

http://www.regular-expressions.info/tutorial.html

http://www.english.uga.edu/humcomp/perl/regex
2a.html

http://www.perl.com/doc/manual/html/pod/perlre
.html

http://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/tutorial.html
http://www.english.uga.edu/humcomp/perl/regex2a.html
http://www.perl.com/doc/manual/html/pod/perlre.html


Copyright 2000 N. AYDIN. All rights 

reserved. 15

85

Input/Output

• Data entering a program is referred to as its input, 
while data produced by a program is its output. 

– Rather than refer to (and write) ‘‘input/output’’, most
programmers simply say ‘‘IO’’, which is written as 
I/O.

• I/O facilities are often referred to as streams. 

– It is possible to have many streams associated with a 
program, with some of them classed as input streams
and others classed as output streams. 

– As a minimum, every Perl program has three standard 
streams available to it.

• STDIN, STDOUT, and STDERR

86

I/O-STDIN

• The standard input stream (STDIN) is the default 
place from which data enters a program. 

• Typically, STDIN is the keyboard, but it can also be a 
disk-file. 

• To read data from STDIN, use the input operator:

my $data = <STDIN>; 

or

my $data = <>;

• Perl is smart enough to know that an ‘‘empty’’ input 

operator actually refers to STDIN by default.

87

I/O-STDIN

print "Enter a number: ";

$a = <STDIN>;     #<> is okay too

print "Enter another number: ";

$b = <STDIN>;     #<> is okay too

chomp $a; # chomp : removes \n from string

chomp $b; # chomp : removes \n from string

$c = $a + $b;

print "The sum of the numbers that you entered is $c";

• If $a is omitted, it is assumed to be $_

88

I/O-STDIN

print "Enter the username: ";

$username = <STDIN>;

chomp $username;

if ($username =~ /ibstudent/) {

print "Welcome IB student!\n\n";}

else {print "Bad username, sorry!\n\n";}

• Syntax of if, else statement:

if (a condition is met)
{do something;}

else {do something else;}

89

I/O- STDOUT

• The standard output stream (STDOUT) is the default 
place to which data is sent by a program. 

• Typically, STDOUT is the screen, but it can also be a 
disk-file. 

• To write data to STDOUT, use the output operator:

print STDOUT $data;

or

print $data;

• Perl is smart enough to know that print sends data to

STDOUT by default.

90

I/O- STDOUT

• STDOUT can be altered outside your program, 
with the "redirection" operator. 

• So if you were running your Perl program and 
you wanted to keep the output for review 
instead of letting it flash by on the screen, you 
could redirect STDOUT with the ">" symbol 
and have the output sent to a file like this:

>perl perltest.pl > output.txt;



Copyright 2000 N. AYDIN. All rights 

reserved. 16

91

I/O-STDOUT

• Writing the output to a particular file from 
within a Perl program:

– Specify the file you want to use by opening a 
filehandle to it. 

– Use the new filehandle in print statement, instead 
of the default STDOUT filehandle. 

– When finished, close the filehandle. 

open OUTPUT, ">output.txt";

print OUTPUT "hello world\n";

close OUTPUT; 

92

I/O-STDOUT

• An example:

– Following script creates a new web page, saved in 
the file: c:/web/root/index.html.

open HTML, ">c:/perlex/index.html";

print HTML "Content-Type: text/html\n\n";

print HTML "<html><head></head><body>";

print HTML "<h2>Written by Perl!</h2>";

print HTML "</body></html>";

close HTML; 

93

FILEHANDLE

• A filehandle is a special type of variable that is 
associated with an output destination. 

• It is used to tell your program where you want output 
to go.
– open a file for reading

open FILEHANDLE,"chromosome2"
alternative form:
open FILEHANDLE,"< chromosome2"

– open a file for writing
open FILEHANDLE,">myprediction"

– open a file for appending
open FILEHANDLE,">>mypredictions"

94

FILEHANDLE

• Reading from file “DNA” and copying each line to 
“DNAcopy":

open IN, “DNA“;
open OUT, ">DNAcopy";
while ($line = <IN>) 

{
print OUT $line;

}

• Syntax of while statement:

while (something is happening)
{do something;}

95

FILEHANDLE

• Reading from file “DNA” and copying each line to “DNAcopy":

open IN, “DNA"    or die "Can't open input file: $!\n";
open OUT, ">DNAcopy" or die "Can't open output file: $!\n";
while ($line = <IN>) 

{
print OUT $line;

}

• Syntax of die function:

or die “output message”
||  die “output message”

• Variable $! describes the error such as  “file not found”

96

FILEHANDLE

• It is a good habit to close the things that you open. 

• Close the filehandle once you are done with it. 

• This will also happen automatically when your program ends. 

• Some complex functions don’t even work till after you close 
the files. 

• Also as long as you keep files open you occupy the system’s 
memory.

close IN or warn "Errors while closing filehandle: $!";

• Syntax of warn function:
or warn “output message”
||  warn “output message”



Copyright 2000 N. AYDIN. All rights 

reserved. 17

97

Perl Variables

• Perl programs use variables to store data in 

memory. 

• Perl is a typeless language that doesn't force 

the programmer to distinguish between the 

types of data stored in a variable.

• Perl provides 3 built-in variable types:

– Scalar 

– Array 

– Hash 

98

Scalar variables

• In Perl the most basic variable type is a scalar variable. 
• It holds a single value. 
• Value can be any kind of data, including, but not limited to, 

string, integer, float, object and reference to other variables or 
sets of variables. 

• Scalar variables are preceded with dollar sign ($), and consist 
of only alpha-numeric characters. 

• Following are all valid Perl variable assignments.
$lang = "Perl"; # <-- string. - Notice quotes 
$version = 5.6; # <-- float. - Notice lack of quotes 
$year = 2001; # <-- integer. / 
$x = 10;
$value = $x + 1;
$number_of_items = 15;
$word = "hello";
$text = "This is a sentence but is still a scalar";

99

Array variables...

• Arrays are handy when you want to store more than 
one data in a single variable, but still want to be able 
to refer to them independently. 

• Array in Perl is distinguished from scalar variables 
by its @ sign that proceeds its name. 

• You can initialize an array variable by giving a list of 
values, each separated with comma inside the 
parenthesis:

@desimal = ("bir", "iki", "uc", ... "dokuz"); 

@array = ( 1, 2 );

@values = ( $x, $y, 3, 5);

100

…Array variables...

• You can also create an arbitrary array, and later re-assign it 
elements using a bracket ([ ]) operator. 
– Important: when you refer to individual elements of an array, you use $

sign just like in scalar variables:

$ desimal [0] = "bir"; 
$ desimal [1] = "iki"; 
$ desimal [2] = "üç"; 
# ... 
$ desimal [8]= "dokuz"; 

• Digits inside the [ ] are usually called array's index, or just 
index. 
– In Perl array indices start at 0, not 1. 

• That's why 10th element of an array has an index of 9 

101

…Array variables

• Programming languages such as C/C++ require 
that all the elements of an array be of the same 
type, such as all integers, all characters, all 
strings. 

• This is not the case with Perl. 

– You can mix all kinds of data types in an array:

$array[0] = "apple"; # <-- string 
$array[1] = 12; # <-- integer 
$array[2] = 3.47 # <-- float 

102

Appending elements to an array

• When you want to add an extra element to the end of 
the array, you will need to know the last index of the 
array. 

• Special symbol, $# can be prepended to the name of 
the array to get the last index number. 

• For example:

$last_index = $#desimal; 
$desimal[ $last_index + 1 ] = "on"; 

• or
$desimal[ $#desimal + 1 ] = "on"; 

• or
push (@desimal, "on"); 



Copyright 2000 N. AYDIN. All rights 

reserved. 18

103

Hash variables...

• Perl supports hash variables, which are also known as 
associative arrays. 
– Arrays, because they store multiple values, just like ordinary arrays. 

– Associative, because they associate the values of the element not with 
an index, but through names, also called keys.

• You generate keys yourself, and you can refer to those values 
with those keys. 

• Distinguishing signature of a hash is a % sign, which is 
prepended to its name: 

%person = (); # <-- creating an empty hash 

%person = ( "l_name" => "AYDIN", 
"f_name" => "Nizamettin", 

"email" => 'naydin@yildiz.edu.tr' ); 

104

…Hash variables

• You can access the values of columns of the 

table individually using a {} operator. 

• Just like in arrays, we use not % sign, but $ to 

refer to individual variables:

$name = $person{"f_name"}; 

$email =$person{"l_name"}; 

105

Hash-related functions
• Just like in arrays, Perl provides several built-in functions for 

working with hashes.

keys() - returns all the keys (names) of the hash as an array: 
@names = keys(%person); 

values() - returns all the values of the hash as an array: 
@values = values(%person); 

delete() - deletes a key/value pair from the hash. 
delete $person{email}; 

exists() - returns a true value if a specific key of the hash 
really exists: 

if ( exists( $person{f_name} ) { 
# do something accordingly... } 

106

String & Array...

• How to compute string length?.

$length = length $variable;
length function returns the length of a string
(number of characters)

• How to find position of character in a string?
$length = rindex($variable r, ‘N') + 1;

rindex function returns the position of the
first ‘N’ from the right

• Instead of 'rindex', 'index' can also be used
$q = $a . '?'; # "tag" the end of the string with '?'
$x = index ($q, '?'); # get the position of '?'

107

…String & Array

• Converting a string into an array:

– Use 'qw' operator to create an array:
@hum_ubiq = qw(M Q I F V K T L T G K T);

Notice that the characters have to be separated by spaces

– Use 'split' function:
$ubiquitin = 'MQIFVKTLTGKT';
@array = split(//, $ubiquitin);

It splits string $ubiquitin at a separator substring defined
within slashes (// defines an empty string)

108

Example

• This is the amino acid sequence of human ubiquitin:
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKE
GIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLH
LVLRLRGG

• Human UBC gene encodes a precursor composed of
nine direct repeats of this sequence, plus an additional
valine residue (V) at the C terminus.

• Using Perl, create the sequence of the precursor, 
calculate its length, approximate molecular weight, 
and the corresponding number of nucleotides in 
mRNA, and finally print out the results.



Copyright 2000 N. AYDIN. All rights 

reserved. 19

109

precursor

• Main Entry: pre·cur·sor

• Pronunciation: \pri-ˈkər-sər, ˈprē-ˌ\

• Function: noun

• Etymology: Middle English precursoure, from 
Latin praecursor,from praecurrere to run before, from prae-
pre- + currere to run — more at CURRENT

• Date: 15th century

• 1 a : one that precedes and indicates the approach of 
another b :PREDECESSOR

2 : a substance, cell, or cellular component from which another 
substance, cell, or cellular component is formed

• synonyms see FORERUNNER

• — pre·cur·so·ry \-ˈkərs-rē, -ˈkər-sə-\ adjective

110

Example script 1

@ubi =  qw(M Q I F V K T L T G K T I T L E V E P S D T I 
E N V K A K I Q D K E G I P P D Q Q R L I F A G K Q L E 
D G R T L S D Y N I Q K E S T L H L V L R L R G G);
@pre_ubi = (@ubi) x 9;
push (@pre_ubi, 'V');
$length = @pre_ubi;
$mw = $length * 0.11;
$RNA_length = $length * 3;
print "The sequence of the human ubiquitin precursor 
is:\n@pre_ubi\n";
print "Its length is $length amino acids.\n";
print "Its approximate molecular weight is $mw daltons.\n";
print "It is encoded by an mRNA of approximately 
$RNA_length nucleotides.\n";

111

Example script 2

$ubi =  
'MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQ
QRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG';
$pre_ubi = ($ubi x 9) . 'V';
$length = length ($pre_ubi);
$mw = $length * 0.11;
$RNA_length = $length * 3;
print "The sequence of the human ubiquitin precursor
is:\n$pre_ubi\n";
print "Its length is $length amino acids.\n";
print "Its approximate molecular weight is $mw daltons.\n";
print "It is encoded by an mRNA of approximately 
$RNA_length nucleotides.\n";

112

Perl Operators…

• Arithmetic Operators
– They perform some sort of mathematical functions

Operator Function

+ Addition

- Subtraction, Negative Numbers, 
Unary Negation

* Multiplication

/ Division

% Modulus

** Exponent

113

…Perl Operators…

• To use these, you will place them in your statements 
like a mathematical expression. 

• So, if you want to store the sum of two variables in a 
third variable, you would write something like this: 

$adrevenue=20; 

$sales=10; 

$total_revenue = $adrevenue + $sales; 

114

…Perl Operators…

• Assignment Operators 
Operator Function

= Normal Assignment

+= Add and Assign

-= Subtract and Assign

*= Multiply and Assign

/= Divide and Assign

%= Modulus and Assign

**= Exponent and Assign

• Increment/Decrement 
Operator Function

++ Increment (Add 1)

-- Decrement (Subtract 1)

http://www.merriam-webster.com/dictionary/current
http://www.merriam-webster.com/dictionary/predecessor
http://www.merriam-webster.com/dictionary/forerunner


Copyright 2000 N. AYDIN. All rights 

reserved. 20

115

…Perl Operators…

• String Operators

Operator Function

. Concatenate Strings

.= Concatenate and Assign

$a = "Hello"; 

$b = "World";

$c = $a . $b; # $c is now "HelloWorld" 

$d = $a . " " . $b; # $d is now "Hello World" 

116

…Perl Operators…

• Numeric Comparison 
– These operators are used to compare two numbers, 

but not to compare strings. 

– These operators are typically used in some type of 
conditional statement that executes a block of code 
or initiates a loop. 

Operator Function

== Equal to

!= Not Equal to

> Greater than

< Less than

>= Greater than or Equal to

<= Less than or Equal to

117

…Perl Operators…

• String Comparison 
– These are similar to the numerical comparisons, 

but they work with strings. 

Operator Function

eq Equal to

ne Not Equal to

gt Greater than

lt Less than

ge Greater than or Equal to

le Less than or Equal to

118

…Perl Operators…

• String Comparison 

– The greater-than and less-than operators compare 
strings using alphabetical order. 

– Something that starts with "a" is greater than 
something that starts with "c". 

– Also, small letters are greater than capital letters. 

– Thus, "hello" is greater than "Hello". 

– So, that is how it will compare it. 

119

…Perl Operators

• Logical Operators 
– These are often used when you need to check more 

than one condition. 
Operator Function
&& AND
|| OR
! NOT

• So, if you want to see if a number is less than or equal to 10, 
and also greater than zero: 

$number=5; if (($number <= 10) && ($number > 0)) 
{ 

...code.... 
} 

120

Perl Functions...

• Function is a collection of code (statements), 

which can be easily configured by passing lists 

of arguments. 

• Functions in Perl are called subroutines, and 

have a general syntax of:

sub (list of arguments) { 

list of statements to execute 

return some value } 



Copyright 2000 N. AYDIN. All rights 

reserved. 21

121

…Perl Functions

• Let's create a simple function to compute the area of 
the triangle. 

• This function will receive 2 arguments; triangles 
width and its height and returns final computed value: 

sub ucgen ($genislik, $yukseklik) { 
$alan = $genislik * $yukseklik / 2; 
return $alan; } 

• We can now call the above function with various 
arguments, and each time it will return a computed 
value for a triangle:

$alan1 = ucgen(3, 4); 
$alan2 = ucgen(45, 38); 

122

Matching and Substitution in Perl…

• The ease and power of Perl's pattern matching 
is one its true strengths and a big reason why 
Perl is as popular as it is. 

• Almost every script you write in Perl will have 
some kind of pattern matching operation 
because so often you want to seek something 
out, and then take an action when you find it.

• Matching and substitution are very important 
because this is how you do editing "on the 
fly". 

• This is how you create content customized to 
your Web visitor. 

123

…Matching and Substitution in Perl 
• You need to be able to open HTML templates and 

swap in information pertaining to your visitor. 
• Matching and then substituting is just the way to 

do it.
• Also in many other administrative tasks, such as 

searching through log files or web pages for 
particular words or sequences, pattern matching is 
the way to go.

• Pattern matching, in Perl at least, is the process of 
looking through sections of text for particular 
words, letters-within-words, character sequences, 
numbers, strings of numbers, html tags.

• These more complicated search expressions fall 
into the category of "regular expressions".

124

The Binding Operator...

• When you do a pattern match, you need three things:

• the text you are searching through 

• the pattern you are looking for 

• a way of linking the pattern with the searched text 

• As a simple example, let's say you want to see whether a string 
variable has the value of "success". 

• Here's how you could write the problem in Perl:

$word = "success";

if ( $word =~ m/success/ ) {

print "Found success\n";

} else {

print "Did not find success\n";}  

125

…The Binding Operator...

• The "=~" construct, called the binding operator, is what binds 
the string being searched with the pattern that specifies the 
search. 
– The binding operator links these two together and causes the search to 

take place. 

• Next, the "m/success/" construct is the matching operator, m//, 
in action. 
– The "m" stands for matching to make it easy to remember. The slash 

characters here are the "delimiters".
• They surround the specified pattern. 

• In m/success/, the matching operator is looking for a match of 
the letter sequence: success. 

• Generally, the value of the matching statement returns 1 if 
there was a match, and 0 if there wasn't. 

126

…The Binding Operator

• Negative Matching

– In some cases you are more interested in whether a pattern 

does not match a string rather than that it does. In this case 

you could write

if ( ! $string =~ m/search text/ ) ...

– but as usual, Perl makes it easier for you and offers you 

more than one way to do it. 

• In this case, there's the "negative" binding operator, 

!~, so you could write this:

if ( $string !~ m/search text/ ) ...



Copyright 2000 N. AYDIN. All rights 

reserved. 22

127

Matching…

• Parentheses () group pattern elements. 

• An asterisk * means that the preceding character, element, or 
group of elements may occur zero times, one time, or many 
times. 

• A plus + means that the preceding element or group of elements 
must occur at least once. 

• A question mark ? matches zero or one times. 

• So: 

/fr.*nd/ matches "frnd", "friend", "front and back" 

/fr.+nd/ matches "frond", "friend", "front and back" but not
"frnd". 

/10*1/ matches "11", "101", "1001", "100000001". 

/b(an)*a/ matches "ba", "bana", "banana", "banananana" 

/flo?at/ matches "flat" and "float" but not "flooat" 

128

…Matching...

• Square brackets [ ] match a class of single characters. 

[0123456789] matches any single digit 

[0-9] matches any single digit 

[0-9]+ matches any sequence of one or 

more digits 

[a-z]+ matches any lowercase word 

[A-Z]+ matches any uppercase word 

[ab n]* matches the null string "", "b", any 

number of blanks, "nab a banana" 

129

…Matching...

[^...] matches characters that are not "...": 

[^0-9] matches any non-digit character. 

• Curly braces allow more precise specification of repeated fields. For 
example

[0-9]{6} matches any sequence of 6 digits, and 

[0-9]{6,10} matches any sequence of 6 to 10 digits. 

• Patterns float, unless anchored. The caret ^ (outside [ ]) anchors a pattern to 
the beginning, and dollar-sign $ anchors a pattern at the end, so: 

/at/ matches "at", "attention", "flat", & "flatter" 

/^at/ matches "at" & "attention" but not "flat" 

/at$/ matches "at" & "flat", but not "attention" 

/^at$/ matches "at" and nothing else. 

/^at$/i matches "at", "At", "aT", and "AT". 

/^[ \t]*$/ matches a "blank line", one that contains nothing or 
any combination of blanks and tabs. 

130

…Matching...

• The Backslash. Other characters simply match themselves, but 
the characters +?.*^$()[]{}|\ and usually / must be escaped with a 
backslash \ to be taken literally. Thus: 

/10.2/ matches "10Q2", "1052", and "10.2" 
/10\.2/ matches "10.2" but not "10Q2" or "1052" 
/\*+/ matches one or more asterisks 
/A:\\DIR/ matches "A:\DIR" 
/\/usr\/bin/ matches "/usr/bin“

• If a backslash precedes an alphanumeric character, this sequence 
takes a special meaning, typically a short form of a [ ] character 
class. For example, \d is the same as the [0-9] digits character 
class. 

/[-+]?\d*\.?\d*/ is the same as
/[-+]?[0-9]*\.?\d*/
Either of the above matches decimal numbers: "-150", "-
4.13", "3.1415", "+0000.00", etc. 

131

…Matching

• A simple \s specifies "white space", the same as the 
character class [ \t\n\r\f] (blank, tab, newline, carriage 
return,form-feed). A character may be specified in 
hexadecimal as a \x followed by two hexadecimal 
digits; \x1b is the ESC character. 

• A vertical bar | specifies "or". 

if ($answer =~ /^y|^yes|^yeah/i ) { print 
"Affirmative!"; }

prints "Affirmative!" for $answer equal to "y" or 
"yes" or "yeah" (or "Y", "YeS", or "yessireebob, that's 
right"). 

132

Regular Expressions…

• All pattern matching in Perl is based on the concept of 

regular expressions. 

• Regular expressions are an important part of computer 

science, and entire books are devoted to the topic. 

• Regular expressions form a standard way of 

expressing almost any text pattern unambiguously.

• A mechanism to select specific strings from a set of 
character strings. 

• A set of characters, metacharacters, and operators that 
define a string or group of strings in a search pattern. 



Copyright 2000 N. AYDIN. All rights 

reserved. 23

133

…Regular Expressions

• A string containing wildcard characters and 
operations that define a set of one or more possible 
strings.

• A regular expression (abbreviated as regexp, regex, or 
regxp, with plural forms regexps, regexes, or regexen) 
is a string that describes or matches a set of strings, 
according to certain syntax rules. 

• Regular expressions are used by many text editors and 
utilities to search and manipulate bodies of text based 
on certain patterns. 

• Many programming languages support regular 
expressions for string manipulation 

Strictness…

• Perl breaks a number of the ‘‘golden rules’’ of 

the traditional programming language

– allows variables to be used before they are declared

– Subroutines can be invoked before they are defined

• All variables are global by default

– the use of my variables turns a global variable into

a lexical.

– By default, the use of my variables is optional

• However, it is possible to have perl insist on the use of 

my variables, making their use mandatory.

134

…Strictness…

• This insistence is referred to as strictness, and 

is switched on by adding the following line to 

the top of a program:

use strict;

• This is a directive that

– tells perl to insist on all variables being declared 

before they are used, 

– all subroutines be declared (or defined) before they 

are invoked.

135

…Strictness…

• As programs get bigger, they become harder to 

maintain. 

– The use of use strict helps keep things organised 

and reduces the risk of errors being introduced into 

programs. 

• Anything that helps reduce errors is a good thing, even if 

it is sometimes inflexible.

• Thinking about the scope of variables, and

using my and our to control the visibility of 

variables, becomes important as a program 

grows in size.
136

…Strictness

• When strictness is enabled, perl checks the 

declaration of each of a program’s variables 

before execution occurs. 

• Consider the following program:

#! /usr/bin/perl -w

# bestrict - demonstrating the effect of strictness.

use strict;

$message = "This is the message.\n";

print $message;

• In the code, $message scalar is not declared as 

a lexical (my) or global (our) variable. 
137

Results from bestrict…

• When an attempt is made to execute the 

bestrict program, perl complains that the 

strictness rules have been broken:
>perl -w strict.pl

Global symbol "$message" requires explicit package name at bestrict line 7.

Global symbol "$message" requires explicit package name at bestrict line 9.

Execution of bestrict aborted due to compilation errors.

>

• These ‘‘compilation errors’’ are fixed by 

declaring the $message scalar as a my variable

my $message = "This is the message.\n";

138



Copyright 2000 N. AYDIN. All rights 

reserved. 24

…Results from bestrict

# bestrict - demonstrating the effect of strictness.

use strict;

my $message = "This is the message.\n";

print $message;

>perl -w mystrict.pl

This is the message.

>Exit code: 0

139 140

use subs

• Perl provides the use subs directive that ...

– can be used in combination with use strict

• to declare a list of subroutines at the top of the program

For example:

use strict;

use sub qw( drawline biod2mysql);

• The use subs directive declares a list of 

subroutine names that are later defined

somewhere in the program’s disk-file.

Perl One-Liners…

• Perl usually starts with the following line:

>#! /usr/bin/perl –w

w: warning

– instructs perl to warn the programmer when it notices any 

dubious programming practices

• -e switch checks whether a module installed 

correctly or not:

>perl -e 'use ExampleModule'

e: execute

– instructs perl to execute the program statements included within 

the single quotes

141

…Perl One-Liners

• Other examples :

>perl -e 'print "Hello from a Perl one-liner.\n";‘
– a single line of Perl code is provided to perl to execute 

immediately from the command-line

>perl -e 'printf "%0.2f\n", 30000 * .12;'
– turns perl into a simple command-line calculator

• The printf subroutine is a variant of the more common 
print, and prints to a specified format.

• The ability to use the –e switch on the 
command-line in this way creates what is 
known in the perl world as...

a one-liner.

142

Perl One-Liners: Equivalents…

• Another useful switch is –n, which, when used 
with –e, treats the one-liner as if it is enclosed 
with a loop.

• Consider this one-liner:

>perl -ne 'print if /ctgaatagcc/;' embl.data

which is equivalent to the following program 
statement:

while ( <> )

{

print if /ctgaatagcc/;

}

143

…Perl One-Liners: Equivalents

• When the one-liner is executed, the following 

output is generated:

attgtaatat ctgaatagcc actgattttg taggcacctt tcagtccatc tagtgactaa

• Same function can also be implemented using 

grep:

>grep 'ctgaatagcc' embl.data 

• When the -n switch is combined with -p, the 

loop has a print statement added to the end.
144



Copyright 2000 N. AYDIN. All rights 

reserved. 25

Perl One-Liners: More Options…

• Here is a one-liner that prints only those lines from 
the embl.data disk-file that do not end in four digits: 

>perl -npe 'last if /\d{4}$/;' embl.data

• The above one-liner is equivalent to this program:

while ( <> )

{

last if /\d{4}$/;

}

continue {

print $_;

}

• This one-liner is a little harder to do with grep. 
> grep -v ’[0123456789][0123456789][0123456789][0123456789]$’ embl.data

145

…Perl One-Liners: More Options…

• When executed, the following output is produced:

146

…Perl One-Liners: More Options

• The above one-liner is equivalent to this program:

while ( <> )

{

last if /\d{4}$/;

}

continue {

print $_;

}

• This one-liner is a little harder to do with grep. 
> grep -v ’[0123456789][0123456789][0123456789][0123456789]$’ embl.data

147

Running Other Programs From Perl…

• There are two main ways to do this:

– By invoking the program in such a way that after 
execution, the calling program can determine whether 
the called program successfully executed.

• Perl’s in-built system subroutine behaves in this way

– By invoking the program in such as way that after 
execution, any resultsfrom the called program are 
returned to the calling program.

• Perl’s backticks and qx// operator behaves in this way

• Following example program demonstrates each of 
these mechanisms by invoking the DOS utility 
program, dir, that lists disk-files in the current 
directory

148

…Running Other Programs From Perl…

#! /usr/bin/perl –w

# pinvoke - demonstrating the invocation of other programs

# from Perl.

use strict;

my $result = system("dir *.*" );

print "The result of the system call was as follows:\n$result\n";

$result = `dir *.*`; # warning: $result = 'dir *.*'; will not work

print "The result of the backticks call was as follows:\n$result\n";

$result = qx/dir *.*/;

print "The result of the qx// call was as follows:\n$result\n";

149

…Running Other Programs From Perl

• The invocation of system results in the dir program executing. 
Any output from dir is displayed on screen (STDOUT) as 
normal.
– As dir executed successfully, a value of zero is returned to 

pinvoke and assigned to the $result scalar. 
• The $result scalar is then printed to STDOUT as part of an appropriately 

worded message. 

– If the dır program fails, the $result scalar is set to −1.

• Perl’s backticks (` and `) also execute external programs from 
within Perl. 
– The results from the program are captured and returned to the 

program.
• In the pinvoke program, the results are assigned to the $result scalar, and 

then printed to STDOUT as part of an appropriately worded message.

• The qx// operator is another way to invoke the backticks
behaviour: 
– it works exactly the same way as backticks

150



Copyright 2000 N. AYDIN. All rights 

reserved. 26

151

Results from pinvoke Recovering from Errors…

• It is not always appropriate to die whenever an 

error occurs. 

– Sometimes it makes more sense to spot, and then 

recover from, an error. 

• This is referred to as exception handling. 

• Consider the following code:

my $first_filename = "itdoesnotexist.txt";

open FIRSTFILE, "$first_filename"

or die "Could not open $first_filename. Aborting.\n";

152

…Recovering from Errors…

• Executing the code
>perl -w errorrec.pl

Name "main::FIRSTFILE" used only once: possible typo at 
errorrec.pl line 4.

Could not open itdoesnotexist.txt. Aborting.

>Exit code: 2

• This assumes that the itdoesnotexist.txt disk-
file does not exist. 

– The program terminates as a result of the 
invocation of die. 

• It is possible to protect this code by enclosing 
it within an eval block.

153

…Recovering from Errors…

• The in-built eval subroutine takes a block of code 
and executes (or evaluates it). 

• When perl invokes eval, anything that happens 
within the eval block that would usually result in a 
program terminating is caught by perl and does 
not terminate the program. 

• Here’s exeption handling by an eval block:
eval {

my $first_filename = "itdoesnotexist.txt";

open FIRSTFILE, "$first_filename"

or die "Could not open $first_filename. 
Aborting.\n";

};

154

…Recovering from Errors

• If die is invoked within an eval block, the block 
immediately terminates and perl sets the internal $@
variable to the message generated by die. 

• After the eval block, it is a simple matter to check the 
status of $@ and act appropriately. 

• Adding the following if statement after the above eval
block:
if ( $@ )

{

print "Calling eval produced this message: $@";

}

prints the following message to STDOUT when the 
itdoesnotexist.txt disk-file does not exist:

Calling eval produced this message: Could not open itdoesnotexist.txt. Aborting.

155

Sorting…

• Perl provides powerful in-built support for 

sorting. 

– sort and reverse, 

• can be used to sort lists of strings or numbers into 

ascending order, descending order or any other 

customized order.

• Following examples demonstrate usage of sort

and reverse.

– In the following program a list of four short DNA 

sequences is assigned to an array called 

@sequences, which is then printed to STDOUT

156



Copyright 2000 N. AYDIN. All rights 

reserved. 27

157

…Sorting…

#! /usr/bin/perl -w

# sortexamples - how Perl's in-built sort subroutine works.

use strict;

my @sequences = qw( gctacataat attgttttta aattatattc cgatgcttgg );

print "Before sorting:\n\t-> @sequences\n";

my @sorted = sort @sequences;

my @reversed = sort { $b cmp $a } @sequences;

my @also_reversed = reverse sort @sequences; 

print "Sorted order (default):\n\t-> @sorted\n";

print "Reversed order (using sort { \$b cmp \$a }):\n\t-> @reversed\n";

print "Reversed order (using reverse sort):\n\t-> @also_reversed\n";

158

…Sorting…

• Results from sort examples

>perl -w sort1.pl

Before sorting:

-> gctacataat attgttttta aattatattc cgatgcttgg

Sorted order (default):

-> aattatattc attgttttta cgatgcttgg gctacataat

Reversed order (using sort { $b cmp $a }):

-> gctacataat cgatgcttgg attgttttta aattatattc

Reversed order (using reverse sort):

-> gctacataat cgatgcttgg attgttttta aattatattc

>Exit code: 0

…Sorting

• my @sorted = sort @sequences;

– created by invoking the in-built sort subroutine

– sorts the array alphabetically in ascending order (from ‘‘a’’ 
through to ‘‘z’’).

• my @reversed = sort { $b cmp $a } @sequences;

– also created by invoking the in-built sort subroutine

– sorts the array alphabetically in descending order (from 
‘‘z’’ through to ‘‘a’’).

• my @also_reversed = reverse sort @sequences; 

– created by first sorting the array, then reversing the sorted 
list by invoking the in-built reverse subroutine. 

• Note that the reverse subroutine reverses the order of elements in a 
list; it does not sort in reverse order.

159

Another Sorting Example

• It is also possible to sort in numerical order using sort

– The following program defines a list of chromosome pair 

numbers and assigns them to another array, called 

@chromosomes, and the array is then printed to STDOUT:

my @chromosomes = qw( 17 5 13 21 1 2 22 15 );

print "Before sorting:\n\t-> @chromosomes\n";

@sorted = sort { $a <=> $b } @chromosomes;

@reversed = sort { $b <=> $a } @chromosomes;

print "Sorted order (using sort { \$a <=> \$b }):\n\t-> @sorted\n";

print "Reversed order (using sort { \$b <=> \$a }):\n\t-> @reversed\n";

160

161

And its results

>perl -w sort2.pl

Before sorting:

-> 17 5 13 21 1 2 22 15

Sorted order (using sort { $a <=> $b }):

-> 1 2 5 13 15 17 21 22

Reversed order (using sort { $b <=> $a }):

-> 22 21 17 15 13 5 2 1

>Exit code: 0

• To learn more, use the following command-line to 
read the on-line documentation for sort that comes
with Perl:

>perldoc -f sort

>man sort

The sortfile Program…

• The following program takes any disk-file and sorts 

the lines in the disk-file in ascending order
#! /usr/bin/perl -w

# sortfile - sort the lines in any file.

use strict;

my @the_file;

while ( <> )

{

chomp;

push @the_file, $_;

}

my @sorted_file = sort @the_file;

foreach my $line ( @sorted_file )

{

print "$line\n";

}

162



Copyright 2000 N. AYDIN. All rights 

reserved. 28

…The sortfile Program

• Before running sortfile

Icimde ve evlerde balkon

Bir tabut kadar yer tutar

Camasirlarinizi asarsiniz hazir kefen

Sezlongunuza uzanin olu

Gelecek zamanlarda

Oluleri balkonlara gomecekler

Insan rahat etmeyecek

Oldukten sonra da

Bana sormayin boyle nereye

Kosa kosa gidiyorum

Alnindan opmeye gidiyorum

Evleri balkonsuz yapan mimarlarin

• After running sortfile

163

• Same thing could also be done by using Linux sort utility in command-line:

sort sort.data

164

HERE Documents

• Consider the requirement to display the following text on 
screen in exactly the format shown from within a program:

Shotgun Sequencing

This is a relatively simple method of reading

a genome sequence. 

It is ''simple'' because

it does away with the need to locate 

individual DNA fragments on a map before

they are sequenced. 

The Shotgun Sequencing method relies on 

powerful computers to assemble the finished

sequence. 

165

Without HERE Documents

• Could be done by using a sequence of print statements

as follows:

print "Shotgun Sequencing\n\n";

print "This is a relatively simple method of reading\n";

print "a genome sequence. It is ''simple'' because\n";

print "it does away with the need to locate\n";

print "individual DNA fragments on a map before\n";

print "they are sequenced.\n\n";

print "The Shotgun Sequencing method relies on\n"; 

print "powerful computers to assemble the finished\n";

print "sequence.\n";

166

Output

>perl -w shotgun1.pl

Shotgun Sequencing

This is a relatively simple method of reading

a genome sequence. It is ''simple'' because

it does away with the need to locate

individual DNA fragments on a map before

they are sequenced.

The Shotgun Sequencing method relies on

powerful computers to assemble the finished

sequence.

>Exit code: 0

167

With HERE Documents

• A better way to do this is to use Perl’s HERE document mechanism

my $shotgun_message = <<ENDSHOTMSG;

Shotgun Sequencing

This is a relatively simple method of reading

a genome sequence. It is ''simple'' because

it does away with the need to locate 

individual DNA fragments on a map before

they are sequenced. 

The Shotgun Sequencing method relies on 

powerful computers to assemble the finished

sequence. 

ENDSHOTMSG

print $shotgun_message;
168

Output

>perl -w shotgun2.pl

Shotgun Sequencing

This is a relatively simple method of reading

a genome sequence. It is ''simple'' because

it does away with the need to locate

individual DNA fragments on a map before

they are sequenced.

The Shotgun Sequencing method relies on

powerful computers to assemble the finished

sequence.

>Exit code: 0



Copyright 2000 N. AYDIN. All rights 

reserved. 29

169

Even Better HERE Documents

• It is possible to improve previous program by removing the need for the

$shotgun message scalar and printing the HERE document directly, as 
follows:

print <<ENDSHOTMSG;

Shotgun Sequencing

This is a relatively simple method of reading

a genome sequence. It is ''simple'' because

it does away with the need to locate 

individual DNA fragments on a map before

they are sequenced. 

The Shotgun Sequencing method relies on 

powerful computers to assemble the finished

sequence. 

ENDSHOTMSG

170

Output

>perl -w shotgun3.pl

Shotgun Sequencing

This is a relatively simple method of reading

a genome sequence. It is ''simple'' because

it does away with the need to locate

individual DNA fragments on a map before

they are sequenced.

The Shotgun Sequencing method relies on

powerful computers to assemble the finished

sequence.

>Exit code: 0

HERE Documents

• HERE documents are useful, 

– especially when it comes to dynamically producing 

HTML documents. 

• This use of HERE documents will be discussed later

171

Downloading Datasets…

• Downloading from the Web

– a highly interactive mechanism

– useful for downloading individual data-files

– cumbersome for downloading large number of 

data-files

• Some technologies allow the easy integration 

of data sources across the Internet.

• However, it is often convenient to download 

frequently used datasets and store them locally. 

172

…Downloading Datasets…

• The advantages of downloading and storing

datasets locally :

– Ease of access 

• accessing data-files on a local hard disk easier than 

writing an interface routine to download them as needed 

from a – possibly congested – location on the Internet.

– Speed 

• Local hard-disk access, even over a shared file system, 

is usually faster than operating through external 

networks to Internet locations. 

– When the processing is performed locally, it may be possible to 

allocate extra computational resources to the analysis.

173

…Downloading Datasets…

– Reliability 

• Accessing local hard-disk copies of data-files is more 
reliable than network connections and WWW servers. 

– Stability 

• If the data changes frequently, it is often helpful to 
‘‘freeze’’ it by downloading a copy and using it locally 
until all analyses are completed.

– Flexibility 

• Often the search facilities that exist on the WWW lack 
certain required functionality. 

– Security 

• Data or results are often sensitive, and sending them to a 
remote, third-party Internet site may be unacceptable.

174



Copyright 2000 N. AYDIN. All rights 

reserved. 30

…Downloading Datasets…

• The disadvantages of downloading and storing datasets 
locally :
– Stale data

• The local copy is a one-time ‘‘snapshot’’ of the dataset at a particular
point in time. 

– At some stage, it will need to be updated or replaced by newer data.

– Storage 
• The dataset has to be stored somewhere, and some datasets can be

large. 
– The Protein Databank (PDB) is close to four gigabytes, and the PDB is one of 

the smaller databases! 

• Consequently, storing multiple copies of the PDB is often impractical.

– Performance
• The centralised specialist services accessible from the WWW are often 

configured with dedicated parallelised systems, designed to service
requests as quickly as possible. 

– If the stored dataset is designed with such systems in mind, it is unlikely that a 
local system will be able to match this advanced processing capability. 

• Consequently, some analyses may be slower locally when compared to 
those performed on the WWW.

175

…Downloading Datasets

• can be accomplished in a number of ways:

– by using established sequence analysis programs, 
such as EMBOSS

– http://emboss.sourceforge.net/

• have specific methods for performing downloads. 

– Typically, datasets are accessed via a standard network 
connection to remote Internet sites. 

– Frequently, downloads are automated to occur at regular 
intervals.

– The wget program, included with most Linux 
systems, can be used to do just this.

• wget is an excellent example of GNU software as 
distributed by the Free Software Foundation. 

– https://www.gnu.org/software/wget/

– http://gnuwin32.sourceforge.net/packages/wget.htm

176

Using wget to download PDB data-files

• To download a single data-file via anonymous 

FTP, simply provide the URL of the data-file 

required after the wget command. 

– For example, to download the two PDB structures, 

use these commands:

mkdir structures

cd structures

wget ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb1m7t.ent.Z

wget ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb1lqt.ent.Z

177

Mirroring a dataset

• wget can be used to mirror datasets. 

– to download the entire PDB, which is four 

gigabytes of data, stored in over 18000 data-files:
wget --mirror ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb

• Such a command should be invoked only when 

there is a real need to mirror the PDB. 

– a download of this size takes a considerable 

amount of time and disk space. 

• If such a need exists, once complete, another invocation 

of the same command downloads only additions or 

updates to the PDB since the last mirror.

178

Smarter mirroring…

• The wget command (in slide 178) results in a deep 
directory tree. 

– The actual data-files are found in 

structures/ftp.rcsb.org/pub/pdb/data/structures/all/pdb

• Such a deep directory structure can be very 
inconvenient and frustrating to navigate.

• Following wget invocation can help with this 
problem:
wget --output-file=log --mirror --http-user=anonymous \

--http-passwd=email@where.ever.net \

--directory-prefix=structures/mmCIF \

--no-host-directories \

--cut-dirs=6 ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb

179

…Smarter mirroring

• The wget command sets a number of options:
– --output-file 

• a disk-file into which any message produced by wget is placed.

– --mirror 
• turns on mirroring.

– --http-user 
• sets the web username to use (if needed).

– --http-passwd
• sets the web password to use (if needed).

– --directory-prefix 
• the place to put the downloaded data-files.

– --no-host-directories 
• the instruction not to use the hostname when creating a mirrored directory 

structure, which is the ‘‘ftp.rcsb.org’’ part.

– --cut-dirs
• instructs wget to ignore the indicated number of directory levels.

– In the previous example, six directory levels are to be ignored, that is, the
‘‘pub/pdb/data/structures/all/pdb’’ part.

180

http://emboss.sourceforge.net/
https://www.gnu.org/software/wget/
http://gnuwin32.sourceforge.net/packages/wget.htm


Copyright 2000 N. AYDIN. All rights 

reserved. 31

Downloading a subset of a dataset…

• On many occasions, the entire contents of an 
FTP site might not be required

• wget can fetch a specific data-file, placing it in 
the current directory.

– Use a command similar to this:
wget ftp://beta.rcsb.org/pub/pdb/uniformity/data/mmCIF/all/1ger.cif.Z

• While multiple URLs to data-files can be 
supplied on the command-line (separated by 
spaces), it is often more convenient to place the 
URLs in a data-file and use the ‘‘--input file=’’ 
switch.

181

…Downloading a subset of a dataset…

• The pdbselect program takes the PDB-Select list 

produced in the Non-Redundant Datasets (discusssed 

later), builds a list of URLs, removes the duplicates 

and then downloads them:
#! /usr/bin/perl

# pdbselect <list of PDB IDs> - a program that takes a list of PDB ID

# codes; build a list of URLs for them;

# and automates the downloading of them

# using ’wget’.

use strict;

my $Base_URL = "ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb";

my $Output_Dir = "structures";

open URL_LIST, ">pdb_select_url.lst"

182

…Downloading a subset of a dataset…

or die "Cannot write to file: ’pdb_select_url.lst’\n";

while ( <> )

{

if ( /Failed/ )

{

next;

}

s/ //g;

my ( $Structure, $Length ) = split ( ":", $_ );

my ( $ID, $Chain ) = split ( ",", $Structure );

$ID =~ tr /[A-Z]/[a-z]/;

print URL_LIST "$Base_URL/pdb$ID.ent.Z\n";

}

183

…Downloading a subset of a dataset…

close URL_LIST;

if ( !-e $Output_Dir )

{

system "mkdir $Output_Dir";

}

if ( !-w $Output_Dir or !-d $Output_Dir )

{

die "ERROR: Cannot access directory: ’$Output_Dir’. Exiting\n";

}

system "sort -u pdb_select_url.lst > unique_urls.lst";

system "rm $Output_Dir/* > /dev/null";

system "wget --output-file=log --http-user=anonymous \

--http-passwd=email\@some.where.net \

--directory-prefix=$Output_Dir -i unique_urls.lst";

184

…Downloading a subset of a dataset

• This program takes a list of PDB ID codes from 

STDIN and downloads them from the URL specified 

in the scalar variable $Base_URL6. 

– Those structures marked as Failed are skipped, otherwise a 

URL is built and written to the pdb_select_url.lst file. 

– Duplicate structures are filtered out using the sort -u

operating system utility.

– Error-checking is performed to see if the output directory 

exists (otherwise it is created) and that the directory can be 

accessed. 

• All previous files in it are then deleted using the rm system call.

– Finally, wget is invoked with the list of URLs.

185

The Protein Databank…

• The similarity between the amino acid sequence of a 

‘‘new’’ protein and one previously characterized can 

give an indication of the function of the new protein.

– Sequence search algorithms assume some groups of amino 

acids have similar functional roles and consequently, occur 

in both sequences. 

– It is also assumed that these amino acids have similar local 

structures (the amino acids arrangement in space). 

• It is these structures that determine the function of a 

protein. 

– Although these assumptions are are useful as a working 

model.

186



Copyright 2000 N. AYDIN. All rights 

reserved. 32

…The Protein Databank

• Determining the detailed structure of a protein 

is more difficult than finding a DNA or amino 

acid sequence.

• The aim of some structural studies 

– to know how the protein (or other biomolecule) 

‘‘does what it does’’

– to alter its function. 

• for example, to design a small molecule that binds to the 

protein, more commonly known as a ‘‘drug’’.

187

Determining Biomolecule Structures

• There are many methods used for gaining 

information about the structure of a 

biomolecule

• The two major methods by which the location 

of atoms can be determined to a useful 

accuracy 

– X-Ray Crystallography 

– Nuclear Magnetic Resonance (NMR).

188

X-Ray Crystallography…

• a technique for determining the three-dimensional 
structure of molecules, 
– including complex biological macromolecules such as 

proteins and nucleic acids. 

• a powerful tool in the elucidation of the three-
dimensional structure of a molecule at atomic 
resolution. 

• Data is collected by diffracting X-rays from a single 
crystal, which has an ordered, regularly repeating 
arrangement of atoms. 

• Based on the diffraction pattern obtained from X-ray 
scattering off the periodic assembly of molecules or 
atoms in the crystal, the electron density can be 
reconstructed.

189

…X-Ray Crystallography…

• a tool used for determining the atomic and molecular 
structure of a crystal. 

• The underlying principle is that the crystalline atoms 
cause a beam of X-rays to diffract into many specific 
directions. 

• By measuring the angles and intensities of these diffracted 
beams, a crystallographer can produce a 3D picture of the 
density of electrons within the crystal. 

190

…X-Ray Crystallography…

• From this electron density image, the mean positions 

of the atoms in the crystal can be determined, as well 

as their chemical bonds, their disorder, and various 

other information. 

– The method revealed the structure and function of many 

biological molecules, including vitamins, drugs, proteins, 

and nucleic acids, such as DNA. 

• Note that the double helix structure of DNA discovered by James 

Watson and Francis Crick was revealed by X-ray crystallography. 

• Recent advances in image reconstruction technology 

have made X-ray crystallography amenable to the 

structural analysis of much larger complexes, such as 

virus particles. 
191

…X-Ray Crystallography

• Viral capsid structure obtained by

X-ray crystallography.

(A) Poliovirus capsid with T=3 

symmetry. 

(B) Hepatitis B virus capsid with T=4 

• The major shortcomings of X-ray crystallography 

– it is difficult to obtain a crystal of virus particles, which is a 

prerequisite for X-ray crystallography. 

– X-ray crystallography generally requires placing the 

samples in nonphysiological environments, which can 

occasionally lead to functionally irrelevant conformational 

changes.

192



Copyright 2000 N. AYDIN. All rights 

reserved. 33

Nuclear magnetic resonance…

• In NMR, no crystals are used in the process, and 
the protein remains in solution throughout the 
entire experiment. 

• An intense and very linear magnetic field aligns 
the atomic nuclei of the protein into one of two 
spin states. 

• A series of radio frequency pulses is used to 
perturb these by ‘‘flipping’’ some of the nuclei 
from one spin state to the other.

• As the total amount of energy absorbed is low, the 
protein remains undamaged and functions as 
normal. 

193

…Nuclear magnetic resonance…

• Eventually, the ‘‘flipped’’ spin state of the nuclei 

realigns to the normal state, emitting a radio 

frequency pulse as it does so. 

• The timing of this re-emission of energy is 

determined by the electronic environment in

which the nucleus is embedded. 

• A feature of this environment is the lectrostatic

shielding effects of the surrounding nuclei. 

• The nuclei, in addition to the bonds linking them, 

can be identified by their spin decay properties.

194

…Nuclear magnetic resonance

• A problem with NMR methods is the size of the proteins 
that can be studied.
– Using current techniques, this equates to a maximum of 200 

amino acids. 
• This is low compared to the many hundreds of amino acids that can be 

studied using X-Ray Crystallography.

• The X-Ray Crystallography and NMR systems are 
complementary in many respects, as both determine, to a 
high accuracy, the coordinates of the atoms in protein 
structures. 
– If protein structures determined by X-Ray Crystallography and 

NMR are compared, they are generally consistent with each other 
and moreover are biologically plausible. 

• This should give the researcher confidence when using 
them.

195

The Protein Databank…

• contains a large collection of previously 
determined biological structures.
– For inclusion in the PDB, the spatial locations of the 

atoms have to be determined with sufficient accuracy 
to usefully describe protein structures. 

• also includes experimental details of how the 
structure was determined, what publications and 
other databases to consult for more information on 
the structure, some ‘‘derived data’’ and details of 
any ill-defined regions. 
– While this information is meant to be included in the 

PDB, some of it may be missing, incomplete or 
incorrect for some database entries.

196

…The Protein Databank…

• one of the oldest bioscience data stores, dating back to 1971. 

• It originally stored the 3D coordinates of protein structures as 
determined by the Xray Crystallography method. 

• Prior to the PDB, structures were typically published in journals, and 
many researchers re-entered the information manually into their
computers so as to facilitate further manipulation of them. 

• The original PDB data-file format adopted was a ‘‘flat’’ textual disk-
file that was 80 columns wide.

• Today, the structures in the PDB are determined by either X-Ray 
Crystallography or NMR. 
– Often, many years of effort go into determining an individual structure.

• This is reflected in the growth of the number of entries in the PDB 
over some 40 years. 

197

…The Protein Databank

• PDB Statistics: 

– Overall Growth of Released Structures Per Year

198



Copyright 2000 N. AYDIN. All rights 

reserved. 34

The PDB Data-file Formats

• available in one of two formats. 
– These formats are inter-convertible

• PDB flat file 
– The original, generic and highly unstructured PDB data-file 

format that is still widely used by researchers. 
• When biologists talk of ‘‘PDB files’’ or ‘‘PDB format’’, they are 

referring to this data-file format. 

• The current standard format is the 2.3 version.

• mmCIF
– The new PDB data-file format that is designed to offer a 

highly structured, modern replacement to the original PDB 
Flat File format. 

• The mmCIF format is often informally referred to as the ‘‘new PDB 
format’’.

199

Example structures

• 1LQT 

– A modern, high-resolution ‘‘Oxidoreductase’’ enzyme 

structure produced using X-Ray Crystallographic 

techniques.

200

Example structures

• 1M7T 

– A modern protein structure of ‘‘Thioredoxin’’ produced 

using NMR.

201

Downloading PDB data-files

• PDB structure data-files can be downloaded 

from many web-site locations on the Internet. 

• The RCSB web-site is always a good place to 

start:

– http://www.rcsb.org/pdb/

• Alternatively, the EBI hosts a European mirror. 

Follow the links from:

– http://www.ebi.ac.uk/services/

to access the PDB from the EBI.

202

Accessing Data in PDB Entries

• There are some common sections to all PDB 

entries: 

– those concerned with

• indexing, 

• bibliographic data, 

• notable features 

• 3D coordinates. 

• Other sections are radically different from each 

other, as they depend on the experimental

technique (X-Ray Crystallography or NMR) 

used to determine the structure.
203

Accessing Data in PDB Entries

• In a PDB data-file there is a left-right split (per 

line) and a top-bottom split (per data-file):

• Left-right 

– The left-most characters (a maximum of nine) on 

each line indicate what information is present on 

the right-hand side.

• Top-bottom 

– There is an upper HEADER section that contains 

the annotation about the structure (top) and a lower 

coordinates section that contains the 3D spatial 

locations of the atoms in the structure (bottom). 
204

http://www.rcsb.org/pdb/
http://www.ebi.ac.uk/services/


Copyright 2000 N. AYDIN. All rights 

reserved. 35

A short description of the most important fields in the PDB data-file

• HEADER 
– Contains a brief description of the structure, the date and the PDB ID

code.

• TITLE 
– The title of the structure.

• COMPND 
– Brief details of the structure.

• SOURCE 
– Identifies which organism the structure came from.

• KEYWDS 
– Lists a set of useful words/phrases that describe the structure.

• AUTHOR 
– The scientists depositing the structure.

• REVDAT 
– The date of the last revision.

205

A short description of the most important fields in the PDB data-file

• JRNL 
– One or more literature references that describe the structure.

• REMARK 1 through REMARK 999 
– Details of the experimental methods used to determine the 

structure are contained in this subsection (see the example in the 
next section).

• DBREF 
– Cross links to other databases.

• SEQRES 
– The official amino acid sequence (protein, RNA or DNA) of the 

structure.

• HELIX/SHEET 
– Details of the regions of secondary structure found in the protein.

• ATOM/HETATM 
– The 3D spatial coordinates of particular atoms in the protein

structure or other molecules such as water or co-factors.

206

Accessing PDB Annotation Data

• There are many examples of parsing data from the 
HEADER section of PDB data-files, all of which 
involve pattern matching. 
– Perl is exceptionally good at this. 

• Two representative examples exploring
– the relationship between the resolution of a structure and its 

Free R value, both of which are measures of the quality of 
the X-Ray Crystallographic structures.

• the Free R value measures the agreement between the model and the 
observed x-ray reflection data. 

• The lower the Free R Value, the better the fit between the model 
and the observed data.

– the database cross-referencing section used to link to other 
databases.

207

Free R and resolution…

• The REMARK tag, type 2 subsection stores resolution, 
whereas the Free R value is quoted in REMARK tag, 
type 3. 
– Here’s a small extract from the 1LQT entry:

REMARK 2

REMARK 2 RESOLUTION. 1.05 ANGSTROMS.

• In NMR structures, REMARK tag, type 2 and type 3 are 
present, but the data in them is ‘‘NOT APPLICABLE’’ 
for REMARK tag, type 2 and ‘‘NULL’’ or free text for 
REMARK tag, type 3.
– Extract from the 1M7T structure’s HEADER:

REMARK 215 NMR STUDY

REMARK 215 THE COORDINATES IN THIS ENTRY WERE GENERATED FROM SOLUTION

REMARK 215 NMR DATA. PROTEIN DATA BANK CONVENTIONS REQUIRE THAT

REMARK 215 CRYST1 AND SCALE RECORDS BE INCLUDED, BUT THE VALUES ON

REMARK 215 THESE RECORDS ARE MEANINGLESS.

208

…Free R and resolution

• Structural Refinement is the process of iteratively 
fitting the model structure into the electron density 
map, and details of this refinement are stored in 
REMARK tag, type 3.

• Here is an extract :
.

.

.

REMARK 3 FIT TO DATA USED IN REFINEMENT.

REMARK 3 CROSS-VALIDATION METHOD : THROUGHOUT

REMARK 3 FREE R VALUE TEST SET SELECTION : RANDOM

REMARK 3 R VALUE (WORKING + TEST SET) : 0.134

REMARK 3 R VALUE (WORKING SET) : 0.134

REMARK 3 FREE R VALUE : 0.153

REMARK 3 FREE R VALUE TEST SET SIZE (%) : NULL

REMARK 3 FREE R VALUE TEST SET COUNT : 2200

209

A Perl program extracts the resolution and Free R Value from any PDB data-files

#! /usr/bin/perl -w

# free_res - Designed to extract the ’Free R Value’ and ’Resolution’

# quantities from ’PDB data-files’ containing structures

# produced by ’Diffraction’.

use strict;

my $PDB_Path = shift;

opendir ( INPUT_DIR, "$PDB_Path" )

or die "Error: Cannot read from mmCIF directory: ’$PDB_Path’\n";

my @PDB_dir = readdir INPUT_DIR;

close INPUT_DIR;

my @PDB_Files = grep /\.pdb/, @PDB_dir;

foreach my $Current_PDB_File ( @PDB_Files )

{

my $Free_R;

my $Resolution;

open ( PDB_FILE, "$PDB_Path/$Current_PDB_File" )

or die "Cannot open PDB File: ’$Current_PDB_File’\n";

210



Copyright 2000 N. AYDIN. All rights 

reserved. 36

A Perl program extracts the resolution and Free R Value from any PDB data-files

while ( <PDB_FILE> )

{

if ( /^EXPDTA / and !/DIFFRACTION/ )

{

last;

}

if ( /^REMARK 2 RESOLUTION/ )

{

( undef, undef, undef, $Resolution ) = split ( " ", $_ );

}

if ( /^REMARK 3 FREE R VALUE / )

{

$Free_R = substr ( $_, 47, 6 );

$Free_R =~ s/ //g;

211

A Perl program extracts the resolution and Free R Value from any PDB data-files

if ( $Free_R =~ /NULL/ or $Resolution eq "" )

{

last;

}

else

{

printf ( "%7s %4.2f %7.3f \n", $Current_PDB_File,

$Resolution, $Free_R );

last;

}

}

}

close ( PDB_FILE );

}

212

Non-redundant Datasets

• There may be many reasons for redundancy in a 
dataset. 
– Scientific 

• It is often advantageous to study molecules with similar 
structures.

– This is a classic scientific investigative methodology: change a 
small part, then identify the change in structure or function to form 
hypotheses about the reasons for the change. 

– Consequently, researchers are encouraged to study similar 
molecules to those studied previously.

– Technological limitations 
• In X-Ray Crystallography, it is easier to obtain the structure 

of a molecule that is similar to one that is already known, as
molecules with similar conformations are likely to have 
similar crystallisation conditions. 

– This, conveniently, allows two of the most difficult aspects of 
using X-Ray Crystallography to be dealt with.

213

Reduction of redundancy

• There are two reasons for supporting the reduction 

of a database:

– Conceptually, to remove bias within the database. 

• The statistical analysis based upon the non-redundant dataset 

will be more representative of all the items in the database, 

rather than just the largest dominant group.

– As a practical measure, to reduce the computational 

requirements caused by analysing examples that are 

unnecessary. 

• For example, the PDB-Select structural non-redundant dataset 

contains approximately 1600 protein structures, whereas the 

entire PDB contained approximately 18,000. 

214

Database cross references…

• The DBREF subsection gives a list of cross references 
to other Bioinformatics databases. 
– This makes it easier for researchers to integrate biological 

datasets.

• The second value on the DBREF line is the PDB 
identifier. 
– By examining this value, researchers and automatic parsing 

programs can tell to which structure the entry belongs. 

• Example DBREF lines :
DBREF 1LQT A 1 456 GB 13882996 AAK47528 1 456 

DBREF 1LQT B 1 456 GB 13882996 AAK47528 1 456 

DBREF 1AFI 1 72 SWS P04129 MERP_SHIFL 20 91 

DBREF 1M7T A 1 66 SWS P10599 THIO_HUMAN 0 65 

DBREF 1M7T A 67 106 SWS P00274 THIO_ECOLI 68 107

215

…Database cross references…

• The PDB publishes a table of database names 

and their associated, abbreviated codes.

216



Copyright 2000 N. AYDIN. All rights 

reserved. 37

…Database cross references

• The DBREF lines identify the following fields, working 
from left to right:

– PDB ID code.

– Chain identifier (if needed).

– The start of the sequence.

– Insertion code.

– End of the sequence.

– The external database to which the cross reference refers.

– The external database accession code.

– The database external accession name.

– The start, insertion and end of the sequence in the external 
database.

217

Coordinates section

• The coordinate data for the locations of atoms in the 
macromolecular structure is straightforward, especially when 
compared to the annotation contained in the HEADER section 
of the PDB data-file.

– The coordinates are presented as points in space, the atoms they represent are 
actually in motion. 

– In crystallographic structures, isotropic B-factors, commonly referred to as 
‘‘Temperature Factors’’, give us an idea of the vibration of the molecule. 

• For very high-resolution structures, Anisotropic Temperature Factors may be included in
the ANISOU lines. 

– These provide an idea of the vibration of the molecule in the directions of the 
coordinate axes.

– In NMR structures, the variation in position of a particular atom between 
different models in the ensemble can be used as a similar measure of motion or 
as an indication of the error between the minimisation models.

• Here is an example from 1M7T:

REMARK 210

REMARK 210 BEST REPRESENTATIVE CONFORMER IN THIS ENSEMBLE : 21

REMARK 210

218

Data section

• Referring to the 1LQT x-ray structure, an extract of lines from 

the coordinate section looks like this:

219

Data section

220

Data section

• For the 1M7T NMR structure, an extract of lines from the 

coordinate section looks like this:

221

Data section

222



Copyright 2000 N. AYDIN. All rights 

reserved. 38

Data section

• In each ATOM line, the fields are as follows:

223

Extracting 3D co-ordinate data

• The technique involves extracting the three 

substrings from each line that contains the X, 

Y and Z coordinates. 

• Assuming the data is in $_, three invocations 

of Perl’s substr subroutine do the trick:

my ( $X, $Y, $Z ) = ( substr( $_, 30, 8 ),

substr( $_, 38, 8 ), 

substr( $_, 46, 8 ) );

224

The simple_coord_extract program

#! /usr/bin/perl -w

# simple_coord_extract <PDB File> - Demonstrates the extraction of 

# C-Alpha co-ordinates from a PDB 

# data-file.

use strict;

while ( <> )

{

if ( /^ATOM/ && substr( $_, 13, 4 ) eq "CA " )

{

my ( $X, $Y, $Z ) = ( substr( $_, 30, 8 ), 

substr( $_, 38, 8 ), 

substr( $_, 46, 8 ) );

$X =~ s/ //g; 

$Y =~ s/ //g; 

$Z =~ s/ //g;

print "X, Y & Z: $X, $Y, $Z\n";

}

}

225

Results from simple_coord_extract ... 

X, Y & Z: 25.150, -8.702, 38.505

X, Y & Z: 23.675, -8.497, 35.069

X, Y & Z: 20.747, -6.252, 34.332

X, Y & Z: 17.545, -8.297, 34.292

X, Y & Z: 15.182, -7.484, 31.454

X, Y & Z: 11.736, -8.952, 30.942

X, Y & Z: 10.261, -9.014, 27.451

X, Y & Z:  6.507, -9.548, 27.173

226

Introducing Databases…

• Many modern computer systems store vast amounts of 
structured data. 

• Typically, this data is held in a database system.

• Database

– a collection of one or more related tables.

• Table 

– a collection of one or more rows of data.
• The rows of data are arranged in columns, with each intersection of 

a row and column containing a data item.

• Row

– a collection of one or more data items, arranged in columns.
• Within a row, the columns conform to a structure.

227

…Introducing Databases

• For example, 

– if the first column in a row holds a date, then every 
first column in every row must also hold a date.

– if the second column holds a name, then every 
second column must also hold a name, and so on.

• The following data corresponds to the 
structure, in that there are two columns, the 
first holding a date, the second holding a name:

1960-12-21 P. Barry

1954-6-14 M. Moorhouse

228



Copyright 2000 N. AYDIN. All rights 

reserved. 39

Structured data

• Each column can be given a descriptive name.
-------------- ---------

Discovery_Date Scientist

-------------- ---------

1960-12-21 P. Barry

1954-6-14 M. Moorhouse

1970-3-4 J. Blow

2001-12-27 J. Doe

• In addition, the structure requires that each data item
held in a column be of a specific type. 

----------- ----------------

Column name Type restriction

----------- ----------------

Discovery_Date a valid Date

Scientist a String no longer than 64 characters

• This type information generally goes by one of two 
names: metadata or schema.

229 230

Relating tables…

• Extending the Discoveries table to include details of the discovery, an

additional column is needed to hold the data

-------------- --------- ---------

Discovery_Date Scientist Discovery

-------------- --------- ---------

1960-12-21 P. Barry Flying car

1954-6-14 M. Moorhouse Telepathic sunglasses

1970-3-4 J. Blow Self cleaning child

2001-12-27 J. Doe Time travel

• The inclusion of this new column requires an update to the structure of the table

----------- ----------------

Column name Type restriction

----------- ----------------

Discovery_Date a valid Date

Scientist a String no longer than 64 characters

Discovery a String no longer than 128 characters

231

…Relating tables

----------- ----------------

Column name Type restriction

----------- ----------------

Discovery_Date a valid Date

Scientist a String no longer than 64 characters

Discovery a String no longer than 128 characters

Date_of_birth a valid Date

Telephone_number a String no longer than 16 characters

-------------- --------- --------- ------------- ----------------

Discovery_Date Scientist Discovery Date_of_birth   Telephone_number

-------------- --------- --------- ------------- ----------------

1960-12-21 P. Barry Flying car 1966-11-18 353-503-555-91910

1954-6-14 M. Moorhouse Telepathic sunglasses 1970-3-24 00-44-81-555-3232

1970-3-4 J. Blow Self cleaning child 1955-8-17 555-2837

2001-12-27 J. Doe Time travel 1962-12-1 -

1974-3-17 M. Moorhouse Memory swapping toupee 1970-3-24 00-44-81-555-3232

1999-12-31 M. Moorhouse Twenty six hour clock 1958-7-12 416-555-2000

The problem with single-table databases

• Although the above table structure solves the problem of 
uniquely identifying each scientist, it introduces some other 
problems:
– If a scientist is responsible for a large number of discoveries, 

their identification information has to be entered into every row 
of data that refers to them. 

• This is time-consuming and wasteful.

– Every time identification information is added to a row for a 
particular scientist, it has to be entered in exactly the same way 
as the identification information added already. 

• Despite the best of efforts, this level of accuracy is often difficult to 
achieve.

– If a scientist changes any identification information, every row in 
the table that refers to the scientist’s discoveries has to be 
changed. 

• This is drudgery.

232

233

Solving the one table problem…

• The problems described in the previous section are solved by breaking the all-in-
one Discoveries table into two tables.

• Here is a new structure for Discoveries:

----------- ----------------

Column name Type restriction

----------- ----------------

Discovery_Date a valid Date

Scientist_ID a String no longer than 8 characters

Discovery a String no longer than 128 characters

----------- ----------------

Column name Type restriction

----------- ----------------

Scientist_ID a String no longer than 8 characters

Scientist a String no longer than 64 characters

Date_of_birth a valid Date

Address a String no longer than 256 characters

Telephone_number a String no longer than 16 characters

234

…Solving the one table problem

-------------- ------------ ---------

Discovery_Date Scientist_ID Discovery

-------------- ------------ ---------

1954-6-14 MM Telepathic sunglasses

1960-12-21 PB Flying car

1969-8-1 PB A cure for bad jokes

1970-3-4 JB Self cleaning child

1974-3-17 MM Memory swapping toupee

1999-12-31 MM2 Twenty six hour clock

2001-12-27 JD Time travel

------------ --------- ------------- ------- ----------------

Scientist_ID Scientist Date_of_birth Address Telephone_number

------------ --------- ------------- ------- ----------------

JB J. Blow 1955-8-17 Belfast, NI 555-2837

JD J. Doe 1962-12-1 Syndey, AUS -

MM M. Moorhouse 1970-3-24 England, UK 00-44-81-555-3232

MM2 M. Moorhouse 1958-7-12 Toronto, CA 416-555-2000

PB P. Barry 1966-11-18 Carlow, IRL 353-503-555-91910



Copyright 2000 N. AYDIN. All rights 

reserved. 40

Relational Databases

• Relating data in one table to that in another 

forms the basis of modern database theory. 

– It also explains why so many modern database 

technologies are referred to as Relational Database 

Management Systems (RDBMS).

• When a collection of tables is designed to 

relate to each other they are collectively 

referred to as a database. 

• It is usually a requirement to give the database 

a descriptive name.

235 236

Database system: a definition

• A database system is a computer program (or group 
of programs) 

– that provides a mechanism to define and manipulate 
• one or more databases

• A database system 
– allows databases, tables and columns to be created and 

named, and structures to be defined. 

– provides mechanisms to add, remove, update and interact 
with the data in the database. 

• Data stored in tables can be searched, sorted, sliced, 
diced and cross-referenced. 

• Reports can be generated, and calculations can be 
performed.

237

Available Database Systems

• Personal database systems: 

– Designed to run on PCs

• Access, Paradox, FileMaker, dBase

• Enterprise database systems: 

– Designed to support efficient storage and retrieval of vast

amount of data

• Interbase, Ingres, SQL Server, Informix, DB2, Oracle

• Open source database systems: 

– Free!!! (Linux!!!)

• PostgreSQL, MySQL

238

Chosing Database System

• Which type of database system is chosen 

depends on a number of factors, including (but 

not limited to):

– The amount of data to be stored in the database.

– Whether the data supports a small personal project or 

a large collaborative one.

– How much funds (if any) are available towards the 

purchase of a database system.

239

• Defining data with SQL (structured query 
language) 

• SQL provides two facilities:

– A database definition Language (DDL) 

• provides a mechanism  whereby databases can be 
created

– A Data Manipulation Language (DML) 

• provides a mechanism  to work with data in  tables

SQL: The Language of Databases

240

Installing a database system

• MySQL is a modern, capable and SQL-enabled database system.

• It is Open Source and freely available for download from the 
MySQL web-site:

http://www.mysql.com

• It comes as a standard, installable component of most Linux 
distributions

• The following commands switch on MySQL on RedHat and 
RedHat-like Linux distributions

chkconfig --add mysqld

chkconfig mysqld on

• If the first chkconfig command produces an error messages like 
this:

error reading information on service mysqld: No such file or directory

this means that MySQL is not installed and the second 
command will also fail.



Copyright 2000 N. AYDIN. All rights 

reserved. 41

241

Installing a database system

• Once MySQL is installed, it needs to be configured. 

• The first requirement is to assign a password to the 

MySQL superuser, known as ‘‘root’’. 

• The mysqladmin program does this, as follows:

mysqladmin -u root password 'passwordhere‘

• It is now possible to securely access the MySQL Monitor 
command-line utility with the following command, providing 
the correct password when prompted:

mysql -u root -p

A Database Case Study: MER

• A small collection of SWISS-PROT and EMBL entries are 
taken from the Mer Operon, a bacterial gene cluster that is 
found in many bacteria for the detoxification of Mercury 
Hg2+ ions. 

• These provide the raw data to a database, which is called 
MER. 

• The MER database contains four tables:
– proteins – A table of protein structure details, extracted from a 

collection of SWISS-PROT entries.

– dnas – A table of DNA sequence details, extracted from a 
collection of EMBL entries.

– crossrefs – A table that links the extracted protein structures to 
the extracted DNA sequences.

– citations – A table of literature citations extracted from both the 
SWISS-PROT and EMBL DNA entries.

242

A Database Case Study: MER

• Once the raw data is in the database, SQL can be 
used to answer questions about the data.

• For instance:
– How many protein structures in the database are longer 

than 200 amino acids in length?

– How many DNA sequences in the database are longer 
than 4000 bases in length?

– What’s the largest DNA sequence in the database?

– Which protein structures are cross-referenced with 
which DNA sequences?

– Which literature citations reference the results from the 
previous question?

243 244

Creating the MER database…

• SQL queries can be entered directly at the MySQL Monitor prompt.

mysql> create database MER;

Query OK, 1 row affected (0.36 sec)

mysql> show databases;

+------------+

| Databases  |

+------------+

| MER        |

| test       |

| mysql      |

+------------+

3 rows in set (0.00 sec)

• A list of databases is returned by MySQL. 

• There are three identified databases:
– MER – The just-created database that will store details on the extracted protein structures, DNA sequences, cross 

references and literature citations.

– test – A small test database that is used by MySQL and other technologies to test the integrity of the MySQL 
installation.

– mysql – The database that stores the internal ‘‘system information’’ used by the MySQL database system.

245

…Creating the MER database

• It is possible to use the MySQL superuser to create tables within the MER database.
• However, it is better practice to create a user within the database system to have

authority over the database, and then perform all operations on the MER database
as this user. 

• The queries to do this are entered at the MySQL Monitor prompt.

• Here are the queries and the messages returned:

mysql> use mysql;

Database changed

mysql> grant all on MER.* to bbp identified by 'passwordhere';

Query OK. 0 rows affected (0.00 sec)

mysql> quit

Bye

• The first query tells MySQL that any subsequent queries are to be applied to the
named database, which in this case is the mysql database. 

• The second query does three things:

– creates a new MySQL user called ‘‘bbp’’.

– assigns a password with the value of ‘‘passwordhere’’ to user ‘‘bbp’’.

– grants every available privilege relating to the MER database to ‘‘bbp’’.

246

Adding tables to the MER database

create table proteins

(

accession_number varchar (6) not null,

code varchar (4) not null,

species varchar (5) not null,

last_date date not null,

description text not null, 

sequence_header varchar (75) not null,

sequence_length int not null,

sequence_data text not null

)

$ mysql -u bbp -p MER < create_proteins.sql



Copyright 2000 N. AYDIN. All rights 

reserved. 42

Databases and Perl

• Why Program Databases?

– Customised output handling 
• Programs can be written to post-process the results of any SQL 

query and display them in any number of preferred formats.

– Customised input handling 
• Users of customised input handling programs do not need to know 

anything about SQL – all they need to know and understand is their 
data.

– Extending SQL 
• Some tasks that are difficult or impossible to do with SQL can be 

programmed more easily.

– Integrating MySQL into custom applications 
• Having the power of MySQL as a component of an application can 

be very powerful. 

247

Perl Database Technologies

• A number of third-party CPAN modules provide access 
to MySQL from within a Perl program. 
– One such module is Net::MySQL by Hiroyuki Oyama, 

which provides a stable programming interface to MySQL
functionality. 

• In fact, nearly every database system provides a specific 
technology for programmers to use when programming 
their particular database. 
– This technology is referred to as an API, an application 

programming interface.

• Unfortunately, the effort expended in learning how to 
use Net::MySQL is of little use when a program has to 
be written to interface with Oracle or Sybase

248

Perl Database Technologies

• The DBI module provides a database 
independent interface for Perl. 

– By providing a generalised API, programmers can 
program at a ‘‘higher level’’ than the API provided 
by the database system, in effect insulating 
programs from changes to the database system. 

• To connect the high-level DBI technology to a 
particular database system, a special driver 
converts the general DBI API into the database 
system-specific API. 

– These drivers are implemented as CPAN modules.

249 250

Preparing Perl

DBI and DBD::mysql modules need to be installed

$ man DBI

$ man DBD::mysql

$ find `perl -Te 'print "@INC"' ` -name '*.pm' -print | grep 'DBI.pm'

$ find `perl -Te 'print "@INC"' ` -name '*.pm' -print | grep 'mysql.pm'

$ locate DBI.pm

$ locate mysql.pm

DBI (previously called DBperl) is a database independent interface module for Perl. 

DBD: Data Base Description 

251

Checking the DBI installation

#! /usr/bin/perl -w

# check_drivers - check which drivers are installed with DBI.

use strict;

use DBI;

my @drivers = DBI->available_drivers;

foreach my $driver ( @drivers )

{

print "Driver: $driver installed.\n";

}

252

Programming Databases With DBI
#! /usr/bin/perl -w

# show_tables - list the tables within the MER database.

# Uses "DBI::dump_results" to display results.

use strict;

use DBI qw( :utils );

use constant DATABASE => "DBI:mysql:MER";

use constant DB_USER => "bbp";

use constant DB_PASS => "passwordhere";

my $dbh = DBI->connect( DATABASE, DB_USER, DB_PASS )

or die "Connect failed: ", $DBI::errstr, ".\n";

my $sql = "show tables";

my $sth = $dbh->prepare( $sql );

$sth->execute;

print dump_results( $sth ), "\n";

$sth->finish;

$dbh->disconnect;

• DATABASE 
– Identifies the data source to use

• DB_USER 
– Identifies the username to use 

when connecting to the data 
source

• DB_PASS 
– Identifies the password to use 

when authenticating to the data 
source



Copyright 2000 N. AYDIN. All rights 

reserved. 43

The Sequence Retrieval System…

• Sequence Retrieval System (SRS) is a web-based  

database integration system that allows for the 

querying of data contained in a maltitude of 

databases, all through a single user interface.

• This makes the individual databases appear as if 

they are really one big relational database, 

organised with different subsections: 
– one called SWISS-PROT, 

– one called EMBL, 

– one called PDB, 

– …

253

…The Sequence Retrieval System…

• SRS makes it very easy to query the entire data 

set, using common search terms that work across 

all the different databases, regardless of what they 

are.

• Everything contained within the SRS is ‘‘tied 

together’’ by the web-based interface.

• Figure in the next slide is the database selection 

page from the EBI’s SRS web-site, which can be 

navigated to from the following Internet address:
– http://srs.ebi.ac.uk

• SRS is a trademark and the intellectual property of Lion 

Bioscience

254

255

EBI's SRS Database Selection Page …The Sequence Retrieval System

• SRS is important for two reasons:

– It is a useful and convenient service that every 
Bioinformatician should know about.

– It is an excellent example of what can be created 
when the World Wide Web, databases and 
programming languages are combined.

• Warning:

– Don't create a new data format unless absolutely 
necessary. 

– Use an existing format whenever possible

256

Web Technologies

• The WWW was invented in 1991 by Tim Berners-

Lee.

• The ability to publish data and applications on the 

Internet, in the form of custom web pages, is now 

considered an essential skill in many disciplines, 

including Biology. 

• The development infrastructure of the World 

Wide Web (WWW) is well established and well 

understood. 

• There is a standard set of infrastructural

components (as suggested by Tim Berners-Lee):

257 258

The Web Development Infrastructure…

• The web server 
– a program that when loaded onto a computer system, 

provides for the publication of data and applications
• often referred to collectively as content

– Examples (apache, Jigsaw, and Microsft’s IIS)

• The web client
– a program that can request content from a web server 

and display the content within a graphical window, 

providing a mechanism whereby user can interact with

the contents
• The common name for the web client is web browser 

– Examples (Chrome, Mozilla, MS Internet Explorer, KDE 

Konqueror, Opera, Lynx, …)

http://srs.ebi.ac.uk/


Copyright 2000 N. AYDIN. All rights 

reserved. 44

259

…The Web Development Infrastructure

• Transport protocol
– the “language” that the web server and web client use 

when communicating with each other.
• Think of this as the set of rules and regulations to which the 

client and server must adhere.
– The transport protocol employed by the WWW is called 

HyperText Transport Protocol (HTTP)

• The content 
– the data and applications published by the web server

• this is textual data formatted to conform to one of the 

HyperText Mark-up Language standards (HTML)
– HTML can be enhanced with embedded graphics. 

• Data published in the form of HTML is often referred to as 

HTML pages or web pages

260

Additional components…

• Client-side programming
– a technology used to program the web client, providing

a way to enhance the user’s interactive experience. 
• Java applets, JavaScript, Macromedia Flash, …

• Server-side programming
– a technology used to program the web server, 

providing a mechanism to extend the services provided
by the web server. 

• Java Servlets, JSP, Python, ASP, PHP, Perl, …

• Backend database technology
– a place to store the data to be published, which is 

accessed by the server-side programming technology. 
• MySQL, …

261

…Additional components

• The acronym LAMP is used to describe the favoured

WWW development infrastructure of many programmers. 
– The letters that form the acronym are taken from the words 

Linux, Apache, MySQL and Perl/Python/PHP. 
• O’Reilly & Associates provides an excellent LAMP web-site, available 

on-line at
– http://www.onlamp.com.

• The additional components turn the standard web 

development infrastructure into a dynamic and powerful 

application development environment.

• One of the reasons the WWW is so popular is the fact that 

creating content is so straightforward
– Adding a programming language into the mix allows even more 

to be accomplished

262

Creating Content For The WWW…

• There are a number of techniques employed to 

create HTML:
– Creating content manually 

• Any text editor can be used to create HTML, since HTML is mostly 

text. 

• Special tags within the text guide the web browser when it comes to 

displaying the web page on screen. 

• The tags are also textual and any text editor can produce them

• Advantages and disadvantages:
– provides the maximum amount of flexibility as the creator has complete 

control over the process. 

– to know what’s going on behind the scenes, so learning HTML is highly 

recommended

– can be time-consuming and tedious, as the creator of the page has to write 

the content as well as decide which tags to use and where

263

…Creating Content For The WWW…

– Creating content visually

• Special-purpose editors can create HTML pages 

visually, displaying the web page as it will appear in the 

web browser as it is edited. 

– Netscape Composer, Microsoft FrontPage and Macromedia 

Dreamweaver, .... 

• Advantages and disadvantages: 

– no need to know anything about HTML. 

– The editor adds the required tags to the text that’s entered by 

the user

– unnecessary tags added, 

– HTML pages are larger

264

…Creating Content For The WWW

– Creating content dynamically 

• Since HTML is text, it is also possible to create HTML 

from a program.

• Advantages and disadvantages: 

– HTML pages produced in this way can sometimes be useful 

when combined with a web server that allows for server-side 

programming of a backend database

• needs a web page creator to write a program to produce

even the simplest of pages

• A useful web-site:
– http://www.htmlprimer.com



Copyright 2000 N. AYDIN. All rights 

reserved. 45

265

A Simple HTML Page… 

• Content of simple-m.html created manually

<HTML>

<HEAD>

<TITLE>A Simple HTML Page</TITLE>

</HEAD>

<BODY>

This is as simple a web page as there is.

</BODY>

</HTML>

266

…A Simple HTML Page

• Content of simple-k.html created visually
– by using KompoZer

• http://www.kompozer.net/

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" 
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta content="text/html; charset=ISO-8859-1" http-

equiv="content-type">
<title> A Simple HTML Page</title>
</head>
<body>
This is as simple a web page as there is.
</body>
</html>

267

Producing HTML…

• Producing HTML with a Perl program using a HERE document:

#! /usr/bin/perl -w

# produce_simple - produces the "simple.html" web page using

# a HERE document.

use strict;

print <<WEBPAGE;

<HTML>

<HEAD>

<TITLE>A Simple HTML Page</TITLE>

</HEAD>

<BODY>

This is as simple a web page as there is.

</BODY>

</HTML>

WEBPAGE

268

…Producing HTML…

• HTML file produced by the program:

<HTML>

<HEAD>

<TITLE>A Simple HTML Page</TITLE>

</HEAD>

<BODY>

This is as simple a web page as there is.

</BODY>

</HTML>

269

…Producing HTML

• Another version of HTML generation
– written to use Perl’s standard CGI module

#! /usr/bin/perl -w

# produce_simpleCGI - produces the "simple.html" web page using

# Perl's standard CGI module.

use strict;

use CGI qw( :standard );

print start_html( 'A Simple HTML Page' ),

"This is as simple a web page as there is.",

end_html;

270

• The CGI module is designed to make the 

production of HTML as convenient as 

possible. 

• start_html subroutine produces the tags that 

appear at the start of the web page.

• end_html subroutine produces the following 

HTML, representing tags that conclude  a web 

page:

</body></html>

simple-m.html
simple-k.html


Copyright 2000 N. AYDIN. All rights 

reserved. 46

271

Results from produce_simpleCGI

• HTML file produced by the program:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">

<head>

<title>A Simple HTML Page</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

This is as simple a web page as there is.

</body>

</html>

Extra staff at the start is optional. Extra tags tell the web browser exactly which

version of HTML the web page conforms to. The CGI module includes these

tags for web browser to optimise its behaviour to the version of HTML 

identified

272

Static creation of WWW content

• simple.html web page is static

• If the web page is put on a web server it always 

appear in exactly the same way every time it is 

accessed. 

– It is static, and remains unchanged until someone 

takes the time to change it. 

• It rarely makes sense to create such a web page 

with a program unless you have a special 

requirement. 

– Create static web pages either manually or visually

273

The dynamic creation of WWW content

• When the web page includes content that is not 

static, it is referred to as dynamic web page. 
– For example a page including current date and time

• It is not possible to creat a web page either 

manually or visually that includes dynamic 

content, and 
– this is where server side programming technologies 

come into their own.

274

#! /usr/bin/perl -wT

# whattimeisit - create a dynamic web page that includes the

# current date/time.

use strict;

use CGI qw( :standard );

print start_html( 'What Date and Time Is It?' ), 

"The current date/time is: ", scalar localtime, 

end_html;

The dynamic creation of WWW content

275

Results from whattimeisit

>perl -wT whattime.pl

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-
US"><head><title>What Date and Time Is It?</title>

</head><body>The current date/time is: Thu Mar 29 18:56:17 
2007</body></html>>Exit code: 0

• This web page, if served up by a web server, changes 

with each serving, as it is dynamic.

276

And some time later

>perl -wT whattime.pl

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" 
xml:lang="en-US"><head><title>What Date and Time Is It?</title>

</head><body>The current date/time is: Thu Mar 29 18:59:59 
2007</body></html>>Exit code: 0



Copyright 2000 N. AYDIN. All rights 

reserved. 47

277

• Note that use of the “T” command-line option at the 

start of the program. 

– This switches on Perl’s taint mode, 

• which enables a set of special security checks on the behaviour of 

the program.

• If a server-side program does something that could 

potentially be exploited and, as a consequence, pose a 

sequrity treat, Perl refuses to execute the program 

when taint mode is enabled.

• Always enable ‘‘taint mode’’ for server-side programs

• Test your web-site on localhost prior to deployment on the 

Internet

278

Sending Data To A Web Server…

• Switch on taint mode on the Perl command line

• Use CGI module, importing (at least) the standart set 
of subroutines

• Ensure the first print statement within the program is 
“print header”;

• Envelope any output sent to STDOUT with calls to 
the start_html and end_html subroutines

• Create a static web page to invoke the server-side 
program, providing input as necessary

279

…Sending Data To A Web Server

#! /usr/bin/perl -wT

# The 'match_emblCGI' program - check a sequence against the EMBL

# database entry stored in the

# embl.data.out data-file on the

# web server.

use strict;

use CGI qw/:standard/;

print header;

open EMBLENTRY, "embl.data.out"

or die "No data-file: have you executed prepare_embl?\n";

my $sequence = <EMBLENTRY>;

close EMBLENTRY;

280

match_emblCGI, cont.

print start_html( "The results of your search are in!" );

print "Length of sequence is: <b>", length $sequence, 

"</b> characters.<p>";

print h3( "Here is the result of your search:" );

my $to_check = param( "shortsequence" );

$to_check = lc $to_check;

if ( $sequence =~ /$to_check/ )

{

print "Found. The EMBL data extract contains: <b>$to_check</b>.";

}

else

{

print "Sorry. No match found for: <b>$to_check</b>.";

}

print p, hr, p;

print "Press <b>Back</b> on your browser to try another search.";

print end_html;

281

A Search HTML Page

<HTML>

<HEAD>

<TITLE>Search the Sequence for a Match</TITLE>

</HEAD>

<BODY>

Please enter a sequence to match against:<p>

<FORM ACTION="/cgi-bin/match_emblCGI">

<p>

<textarea name="shortsequence" rows="4" cols="60"></textarea>

</p>

<p>

<input type="reset" value="Clear">

<input type="submit" value="Try it!">

</p>

</FORM>

</BODY>

</HTML>

282

The ``Search the Sequence for a Match'' web page

figMERSEARCH.eps



Copyright 2000 N. AYDIN. All rights 

reserved. 48

283

Installing CGIs on a Web Server

$ su

$ cp mersearch.html /var/www/html

$ cp match_emblCGI /var/www/cgi-bin

$ chmod +x /var/www/cgi-bin/match_embl

$ cp embl.data.out /var/www/cgi-bin

$ <Ctrl-D>

284

The ``Results of your search are in!'' web page

figMERSEARCHFOUND.eps

285

The ``Sorry! Not Found'' web page

figMERSEARCHSORRY.eps

286

Using a HERE document

print <<MERFORM;

Please enter another sequence to match against:<p>

<FORM ACTION="/cgi-bin/match_emblCGIbetter">

<p>

<textarea name="shortsequence" rows="4" cols="60"></textarea>

</p>

<p>

<input type="reset" value="Clear">

<input type="submit" value="Try it!">

</p>

</FORM>

MERFORM

287

Better version: ``Results of your search are in!'' web page

figMERSEARCHBETTER.eps

288

Searching all the entries in the dnas table

figMERSEARCHMULTI.eps



Copyright 2000 N. AYDIN. All rights 

reserved. 49

289

The ``results'' of the multiple search on the dnas table

290

Installing DB Multi-Search

$ su

$ cp mersearchmulti.html /var/www/html

$ cp db_match_emblCGI /var/www/cgi-bin

$ chmod +x /var/www/cgi-bin/db_match_emblCGI

$ cp /home/barryp/DbUtilsMER.pm /var/www/cgi-bin

$ <Ctrl-D>

291

Web Automation

• Imagine you have 100 sequences to check. 

• If it takes average 1 minutes to enter the 
sequence into text area, entering 100 sequences
requires 100 minutes

• Why not automate it to save time

• Perl module WWW::Mechanize allows 
programmer to automate interactions with any 
web-site

292

Strategy to follow when automating interactions with any web page

• Load the web page of interest into a graphical browser

• Wiev the HTML used to display the web page by 
selecting the Page Source option from browser’s 
View menu

• Read the HTML and make a note of nthe names of the 
interface elements and form buttons that are of 
interest

• Write a Perl program that user WWW::Mechanize to 
interact with the web page (based on automatch, if 
needed)

• Use an appropriate regular expression to extract the 
interesting bits from the results returned from the web 
server

293

The automatch program…
#! /usr/bin/perl -w

# The 'automatch' program - check a collection of sequences against 

# the 'mersearchmulti.html' web page.

use strict;

use constant URL => "http://pblinux.itcarlow.ie/mersearchmulti.html";

use WWW::Mechanize;

my $browser = WWW::Mechanize->new;

while ( my $seq = <> )

{

chomp( $seq );

print "Now processing: '$seq'.\n";
294

…The automatch program
$browser->get( URL );

$browser->form( 1 );

$browser->field( "shortsequence", $seq );

$browser->submit;

if ( $browser->success )

{

my $content = $browser->content;

while ( $content =~ 

m[<tr align="CENTER" 
/><td>(\w+?)</td><td>yes</td>]g )

{

print "\tAccession code: $1 matched '$seq'.\n";

}

}

else

{

print "Something went wrong: HTTP status code: ", 

$browser->status, "\n";

}

}



Copyright 2000 N. AYDIN. All rights 

reserved. 50

295

Running the automatch program

$ chmod +x automatch

$ ./automatch sequences.txt

Results from automatch

Now processing: 'attccgattagggcgta'.

Now processing: 'aattc'.

Accession code: AF213017 matched 'aattc'.

Accession code: J01730 matched 'aattc'.

Accession code: M24940 matched 'aattc'.

Now processing: 'aatgggc'.

Now processing: 'aaattt'.

296

Results from automatch

Accession code: AF213017 matched 'aaattt'.

Accession code: J01730 matched 'aaattt'.

Accession code: M24940 matched 'aaattt'.

Now processing: 'acgatccgcaagtagcaacc'.

Accession code: M15049 matched 'acgatccgcaagtagcaacc'.

Now processing: 'gggcccaaa'.

Now processing: 'atcgatcg'.

Now processing: 'tcatgcacctgatgaacgtgcaaaaccacag'.

Accession code: AF213017 matched 'tcatgcacctgatgaacgtgcaaaaccacag'.

.

.

Now processing: 'ccaaat'.

Accession code: AF213017 matched 'ccaaat'.

Accession code: J01730 matched 'ccaaat'.

Accession code: M24940 matched 'ccaaat'.

297

Viewing the source of the mersearchmulti.html web page

figMERSEARCHSOURCE.eps


