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ABSTRACT 
 
Motivation: A number of techniques exist for the detection of short, 
subtle conserved regions within DNA and amino acid sequences.  
The purpose of this overview is to present the ideas of Gibbs sam-
pling in terms of the data, parameters, model, and procedure both in 
a general sense and through an application of Gibbs sampling for 
multiple sequence alignment.  This technical report was first pre-
sented at Washington University’s Institute for Biomedical Comput-
ing Statistics Study Group in May of 1997.  Since a number of indi-
viduals have found this overview helpful, it has been formatted as a 
technical report for further dissemination. 

1 GIBBS SAMPLING  
 
Gibbs sampling is a generalized probabilistic inference algo-
rithm used to generate a sequence of samples from a joint 
probability distribution of two or more random variables 
(Casella and George, 1992).  It is a variation of the Me-
tropolis-Hastings algorithm (Hastings, 1970; Metropolis et 
al., 1953).  The use of Gibbs sampling as a statistical tech-
nique was first described in 1984 (Geman and Geman, 
1984).  In the arena of bioinformatics, Gibbs sampling is 
one of several approaches to motif detection, including ex-
pectation-maximization approaches (Lawrence and Reilly, 
1990).  A number of modifications to the Gibbs sampler 
have been made (Newberg et al., 2007; Thompson et al., 
2007a; Thompson et al., 2007b; Thompson et al., 2003; 
Neuwald et al., 1995; Liu et al., 1995; Lawrence et al., 
1993) in order to more accurately detect subtle motif signals 
in multiple DNA and protein sequences.  This technical re-
port presents an overview of the Gibbs sampler with specific 
applications towards motif detection. 
 

1.1 Gibbs Sampling Requirements 
 
The first requirement for the Gibbs sampler is the observ-
able data. The observed data will be denoted Y. In the gen-
eral case of the Gibbs sampler, the observed data remains 
constant throughout.  Gibbs sampling requires a vector of 
parameters of interest that are initially unknown. These pa-
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rameters will be denoted by the vector Φ. Nuisance parame-
ters, Θ, are also initially unknown. The goal of Gibbs sam-
pling is to find estimates for the parameters of interest in 
order to determine how well the observable data fits the 
model of interest, and also whether or not data independent 
of the observed data fits the model described by the ob-
served data. 
 
Gibbs sampling requires an initial starting point for the pa-
rameters. Then, one at a time, a value for each parameter of 
interest is sampled given values for the other parameters and 
data. Once all of the parameters of interest have been sam-
pled, the nuisance parameters are sampled given the pa-
rameters of interest and the observed data. At this point, the 
process is started over. The power of Gibbs sampling is that 
the joint distribution of the parameters will converge to the 
joint probability of the parameters given the observed data. 

1.1 Explanation in Mathematical Terms 
 
The Gibbs sampler requires a random starting point of pa-
rameters of interest, Φ, and nuisance parameters, Θ, with 
observed data Y, from which a converging distribution can 
be found. For the sampler, there is an initial starting point 
(Θ1

(0) ,Θ2
(0) ,...,ΘD

(0) ,Φ(0) ).  The steps a-d listed below are 
then repeatedly run: 
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The vectors )()1()0( ,...,, tΘΘΘ  represent the realization of 
a Markov chain, where the transition probability from Θ’ to 
Θ is defined as: 
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The joint distribution of ),,...,( )()()(
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i ΦΘΘ  converges 

geometrically to )|,,...,( 1 Yp D ΦΘΘ as i  ∞.  
 
The Gibbs sampler differs from the Metropolis algorithm 
because in each step only one parameter, ΘD, is allowed to 
change. 
 

2 MULITPLE ALIGNMENT USING GIBBS 
SAMPLING 

 
One application of Gibbs sampling useful in computational 
molecular biology is the detection and alignment of locally 
conserved regions (motifs) in sequences of amino acids or 
nucleic acids assuming no prior information in the patterns 
or motifs (Thompson et al., 2003; Neuwald et al., 1995; 
Lawrence et al., 1993). Gibbs sampling strategies claim to 
be fast and sensitive, avoiding the problem that EM algo-
rithms fall into as far as getting trapped by local optima. As 
an example, a set of 29 DNA sequences have been provided. 
These sequences contain sequences necessary for recogni-
tion by erythroid transcription factors, most notably a six 
nucleotide GATA binding site. 
 

2.1 Basic Algorithm 
 
First the basic multiple alignment strategy is examined 
where a single motif is desired. The most basic implementa-
tion, known as a site sampler, assumes that there is exactly 
one motif element located within each sequence. 
 
2.1.1 Notation 
 
• N : number of sequences 
• S1… SN : set of sequences 
• W: width of motif to be found in the sequences 
•  J: the number of residues in the alphabet. J = 4 for nu-

cleic acid sequences and 20 for amino acid sequences. 
• ci, j,k: Observed counts of residue j in position i of motif 

k.  j ranges from 1.. J, i ranges from 0..W where c0, j 
contains the counts of residue j in the background. If it 
is assumed that only a single motif is searched for, the k 
term can drop out. 

•  qi, j : frequency of residue j occurring in position i of 
the motif. i ranges from 0..W as above. Note that in the 
literature, q0, j (the vector of background residue fre-
quencies) is sometimes denoted as pj. This is the pa-
rameter of interest, Φ. 

• ak: vector of starting positions of the motifs within the 
sequences. k ranges from 1..N. This is the nuisance pa-
rameter, Θ. 

•  bj: pseudocounts for each residue – needed according 
to Bayesian statistical rules to eliminate problems with 
zero counts and overtraining. 

• B: The total number of pseudocounts.  ∑=
j

jbB  

2.1.2 Initialization 
 
Once the sequences are known, the counts for each residue 
can be calculated. Initially, c0, j will contain the total counts 
of residue j within all of the sequences and ci,j is initialized 
to 0 for all other values of i. This is a summary observed 
data. The site sampler is then initialized by randomly select-
ing a position for the motif within each sequence and re-
cording these positions in ak. The counts are updated ac-
cording to this initial alignment. After the observed counts 
are set, qi, j can be calculated according to equations 1 and 2. 
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2.1.3 Predictive Update Step 
 
The first step, known as the predictive update step, selects 
one of the sequences and places the motif within that se-
quence in the background and updates the residue counts. 
One of the N sequences, z, is chosen. The motif in sequence 
z is taken from the model and placed in the background. The 
observed counts ci,j are updated as are the frequencies qi, j . 
The selection of z can be random or in a specified order. 
 
2.1.4 Sampling Step 
 
In the sampling step, a new motif position for the selected 
sequence is determined by sampling according to a weight 
distribution. All of the possible segments of width W within 
sequence z are considered. For each of these segments x, a 
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weight Ax is calculated according to the ratio 
x

x
x P

Q
A =  

where ∏
=

=
W

i
rix qQ

1
, is the model reside frequency accord-

ing to equation 1 if segment x is the model, and 

∏
=

=
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i
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1
,0 is the background residue frequency accord-

ing to equation 2.  ri refers to the residue located at position 
i of segment x . Once Ax is calculated for every possible x, a 
new position az is chosen by randomly sampling over the set 
of weights Ax. Thus, possible starting positions with higher 
weights will be more likely to be chosen as the new motif 
position than those positions with lower weights. Since this 
is a stochastic process, the starting position with the highest 
weight is not guaranteed to be chosen. 
 
Once the iterative predictive update and sampling steps have 
been performed for all of the sequences, a probable align-
ment is present. For this alignment, a maximum a posteriori 
(MAP) estimate can be calculated using equation 3. 
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Alignment conditional log-likelihood 

 
(3) 

 
The goal is to maximize F. This is accomplished using the 
following pseudocode: 
 
 
globalMaxAlignmentProb = 0 
For Iteration = 1 to 10: 
  Initialize Random alignment 
  localMaxAlignmentProb = 0; 
  while (not in local maximum and  
         innerloop < MAXLOOP) do 
    for each sequence do { 
      Predictive Update 
      Sample 
    } 
    calculate AlignmentProb 
    if (AlignmentProb > localMaxAlignmentProb) 
    { 
      localMaxAlignmentProb = AlignmentProb; 
      not in local maximum = true; 
    } 
    innerloop++; 
  } 
  if (localMaxAlignmentProb ==  
      globalMaxAlignmentProb) 
    exit // max found twice 
  else if (localMaxAlignmentProb >  
           globalMaxAlignmentProb) 
    globalMaxAlignmentProb = localMaxAlignmentProb 
} 

 
 
 
 

2.1.4 Explanation 
 
The idea is that the more accurate the predictive update step 
is, the more accurate the sampling step will be since the 
background will be more distinguished from the motif de-
scription. Given random positions ak in the sampling step, 
the pattern description qi,j will not favor any particular seg-
ment. Once some correct ak has been selected by chance, the 
qi, j begins to favor a particular motif. 
 
2.1.5 Details 
 
There are a couple of problems that need to be addressed. 
First, it is possible that the correct pattern has not been cho-
sen, but rather a shift of it has. This can be taken care of by 
shifting the alignment to the left and right by a specified 
number of columns and sampling from the values of F. 
 
Another problem is that the pattern width W must also be 
specified. In order to decide what the width should be, the 
incomplete-data log-probability ratio as shown in Equation 
4 can be implemented. 
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Incomplete-data log-probability ratio 

 
(4) 

 
In equation 4, Li′ is the number of the possible positions for 
the pattern within sequence i and Yi,j is the normalized 
weight of position j . Dividing G by the number of free pa-
rameters needed to specify the pattern (19 *W for protein 
sequences, 3*W for nucleotide sequences) results in an in-
formation per parameter quantity. It is then desired to 
maximize the information per parameter to determine the 
value of W. 
 

2.2 Algorithm Improvements 
 
The method of determining motifs as described above re-
quires multiple runs on the same data set with varying 
widths to find the correct pattern size. The Protein Science 
paper (Neuwald et al., 1995) discusses a method to deter-
mine the width of the motif in a single run of the program, 
while at the same time determining gaps within the motif. 
The Gibbs sampler described thus far also requires the exis-
tence of exactly one motif in each sequence. Another im-
provement made is to allow multiple motifs within se-
quences, and allow the possibility that a sequence does not 
have any motifs. The improvements made within the Pro-
tein Science paper describe a technique known as a motif 
sampler. 
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2.2.1 Allowing a Variable Number of Motif Sites 
 
Assume that there are m different motif patterns that we are 
searching for in the sequences. Let nk represent the number 
of sites matching motif k in the sequence.  Initially, it is not 
known how many motif sites there are. To overcome this, a 
prior expectation ek is made for each nk . The new algorithm 
allows the prior expectations to become posterior expecta-
tions as it learns the number of sites for each motif. For the 
initialization step, ek random starting points are selected for 
motif pattern k instead of selecting one starting point ran-
domly within each of the N sequences. Now we can go 
through all possible motif starting locations in each se-
quence and decide if it is a motif starting site by using equa-
tion 5. 
 

 
 

 
Current motif site probability 

 
(5) 

 
Where pj is the posterior probability that any site belongs to 
the model (see the appendix of the Protein Science paper for 
the prior and posterior calculations of Pj), and Ax is the same 
as in the site sampler. 
 
2.2.2 Width Optimization by Column Sampling 
 
In order to help introduce gaps and include only the most 
informative positions of the motif, column sampling is in-
troduced where only C columns out of a specified number 
of contiguous columns wmax ≥ C are used for the residue 
frequency model. This is accomplished in a two step proc-
ess. First, turn off one column either randomly or by select-
ing it proportional to how little information it provides. 
Then sample one of the columns that are turned off propor-
tional to how information rich it is and turn it on. The col-
umn move operations need to be weighted in order to assure 
that there is not a bias to longer motif widths. A discussion 
is provided in the appendix of the Protein Science paper. 
 

3 PROPERTIES OF GIBBS SAMPLING  
 
While Gibbs sampling can be an effective means of deter-
mining common motif patterns, it is important to keep in 
mind some of its properties in order to ensure proper use 
and analysis of results.  The Gibbs sampler requires rela-
tively large sets (on the order of 15 or more sequences) for 
weakly conserved patterns to reach statistical significance.  
Gibbs sampling is a heuristic and not an exhaustive search, 
so you are not guaranteed to reach an optimal value.  How-
ever, the sampling approach allows motif detection to move 
away from locally optimal solutions unlike expectation-

maximization approaches.  In order for motifs to be de-
tected, the user must specify an estimate for the width of the 
motifs, and how many motifs should be detected for the 
algorithm to perform the best.  Gibbs sampling allows the 
user to view suboptimal results which may in themselves be 
meaningful.  This approach is fast and sensitive, generally 
finding an optimized local alignment model for N sequences 
in N-linear time. 

4 RESULTS 
 

4.1 Site Sampler 
 
The site sampler is tested using a set of erythroid sequences. 
The set is tested for the presence of a GATA box, which 
should have a sequence (T/A)GATA(A/G), which in the 
reverse complement is (C/T)TATC(A/T). Since the 
width of the GATA box is shown, it is known that for this 
example W = 6. The process of determining the best align-
ment using the site sampler is described. 
 
4.1.1 Initialization  
 
The first step in the site sampler is to randomly assign an 
alignment to the set of sequences. Figure 1 indicates one 
such random alignment. 
 
TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT 
CCCACGCAGCCGCCCTCCTCCCCGGTCACTGACTGGTCCTG 
TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG 
AAAACACTTGAGGGAGCAGATAACTGGGCCAACCATGACTC 
GGGTGAATGGTACTGCTGATTACAACCTCTGGTGCTGC 
AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA 
GCCTCAGGATCCAGCACACATTATCACAAACTTAGTGTCCA 
CATTATCACAAACTTAGTGTCCATCCATCACTGCTGACCCT 
TCGGAACAAGGCAAAGGCTATAAAAAAAATTAAGCAGC 
GCCCCTTCCCCACACTATCTCAATGCAAATATCTGTCTGAAACGGTTCC 
CATGCCCTCAAGTGTGCAGATTGGTCACAGCATTTCAAGG 
GATTGGTCACAGCATTTCAAGGGAGAGACCTCATTGTAAG 
TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCTTTTGA 
CCTTATCTGTGGGGGAGGCTTTTGAAAAGTAATTAGGTTTAGC 
ATTATTTTCCTTATCAGAAGCAGAGAGACAAGCCATTTCTCTTTCCTCCC
GGT 
AGGCTATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTC 
CCAGCACACACACTTATCCAGTGGTAAATACACATCAT 
TCAAATAGGTACGGATAAGTAGATATTGAAGTAAGGAT 
ACTTGGGGTTCCAGTTTGATAAGAAAAGACTTCCTGTGGA 
TGGCCGCAGGAAGGTGGGCCTGGAAGATAACAGCTAGTAGGCTAAGGCCA
G 
CAACCACAACCTCTGTATCCGGTAGTGGCAGATGGAAA 
CTGTATCCGGTAGTGGCAGATGGAAAGAGAAACGGTTAGAA 
GAAAAAAAATAAATGAAGTCTGCCTATCTCCGGGCCAGAGCCCCT 
TGCCTTGTCTGTTGTAGATAATGAATCTATCCTCCAGTGACT 
GGCCAGGCTGATGGGCCTTATCTCTTTACCCACCTGGCTGT 
CAACAGCAGGTCCTACTATCGCCTCCCTCTAGTCTCTG 
CCAACCGTTAATGCTAGAGTTATCACTTTCTGTTATCAAGTGGCTTCAGC
TATGCA 
GGGAGGGTGGGGCCCCTATCTCTCCTAGACTCTGTG 
CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC 

 
Fig. 1 Initial motif locations for site sampler. 
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The number of A’s in all of the sequences combined is 327, 
the number of C’s is 317, the number of G’s is 272, and the 
number of T’s is 304. In order to alleviate the issue of zero 
counts and overtraining of the data, pseudocounts are intro-
duced to the observed counts.  If information about the mo-
tif model is known a priori, pseudocounts can be incorpo-
rated according to the predicted model description.  If not, 
one simple method, known as Laplace’s rule, is to add a 
count of one to each known observed count.  Thus the fol-
lowing information is known before any of the initial motif 
sites are set: 
 

1220

;304;272;317;327
4

1 ,0

4,03,02,01,0

=

====

∑ =i ic

cccc
 

 
0.4;0.1;0.1;0.1;0.1 4321 ===== Bbbbb  

If we assume we have the initial random alignment as de-
scribed in figure 1, we can recalculate the counts and calcu-
late the residue frequencies. Table I gives the results of 
these calculations, and Table II indicates the updated obser-
vations incorporating Laplace’s rule. 
 
Table I: Calculation of observed counts for initial motif 

alignment (taken from Fig 1) 
 

 Motif Position (0 = Background) 
Nucleotide 0 1 2 3 4 5 6 

A 279 6 12 6 6 11 7 
C 280 8 3 5 7 7 7 
G 225 9 8 10 7 5 8 
T 262 6 6 8 9 6 7 

 
Table II: Updated counts with Laplace pseudocounts 

 
 Motif Position (0 = Background) 

Nucleotide 0 1 2 3 4 5 6 
A 279 7 13 7 7 12 8 
C 280 9 4 6 8 8 8 
G 225 10 9 11 8 6 9 
T 262 7 7 9 10 7 8 

 
Based upon the updated counts, the frequency of each nu-
cleotide in each position can be calculated based upon the 
observed number of A, C, G, T in each column divided by 
the total number of observations of A+C+G+T.  Table III 
shows the frequency information.  Using Table III as a 
guideline, an odds ratio can be calculated for each position 
as the frequency of a particular residue occurring in that 
location in the motif divided by the frequency of that resi-
due occurring in the background, which is characterized as 
position 0 in the motif (Table IV).  In order to handle small 
probabilities, a log2 transform of the odds ratio can be calcu-
lated, as is shown in Table V. 

Table III: Residue frequencies 
 

 Motif Position (0 = Background) 
Nt 0 1 2 3 4 5 6 
A 0.267 0.212 0.394 0.212 0.212 0.364 0.242 
C 0.268 0.273 0.121 0.182 0.242 0.242 0.242 
G 0.215 0.303 0.273 0.333 0.242 0.182 0.273 
T 0.250 0.212 0.212 0.272 0.303 0.212 0.242 
 

Table IV: Odds ratios 
 

 Motif Position 
Nucleo-

tide 
1 2 3 4 5 6 

A 0.795 1.477 0.795 0.795 1.363 0.909 
C 1.019 0.453 0.679 0.906 0.906 0.906 
G 1.409 1.268 1.550 1.127 0.845 1.268 
T 0.847 0.847 1.089 1.210 0.847 0.968 

 
Table V: Initial log-odds ratios 

 
 Motif Position 

Nucleotide 1 2 3 4 5 6 
A -0.33 0.56 -0.33 -0.33 0.45 -0.14 
C 0.03 -1.14 -0.56 -0.14 -0.14 -0.14 
G 0.49 0.34 0.63 0.17 -0.24 0.34 
T -0.24 -0.24 0.12 0.27 -0.24 -0.05 

 
 
4.1.2 Predictive Update Step 
 
Now that the initial random alignment for the site sampler is 
known, the predictive update step begins by choosing one of 
the sequences to update. For simplicity, choose the first se-
quence. In the predictive update stage, the motif for the se-
lected sequence is placed in the background and the counts 
and frequencies are updated. Since the motif in the first se-
quence is ATTTAT, tables I-IV can be recalculated. 
 
4.1.3 Sampling Step 
 
Once the counts and frequencies have been updated in the 
predictive update step, the sampling step begins. In this step, 
all possible motif starting positions within the sequence se-
lected from the predicted update are considered. The first 
sequence has a length of 41, and the width of the motif is 6.  
Therefore, there are 41 - 6 + 1 = 36 possible starting sites. 
The probability of each of these sites being in the model is 
calculated and then sampled from their weights.  The nor-
malized log2-odds scores for each of the possible motif loca-
tions for sequence 1, based on the log-odds ratios in Table 
V, are shown in Table VI. 
 
Using the information in table VI, one of the segments will 
be sampled in according to the normalized value of Ax. The 
predictive update and sampling steps are repeated for each 
of the sequences. Once each of the sequences have been 
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Table VI: Weights for segments within sequence 1 
 

X Sequence Ax Normalized Ax

1 TCAGAA 5.494 0.027 
2 CAGAAC 7.110 0.034 
3 AGAACC 5.465 0.026 
4 GAACCA 6.401 0.031 
5 AACCAG 6.488 0.031 
6 ACCAGT 4.536 0.022 
7 CCAGTT 5.209 0.025 
8 CAGTTA 7.011 0.034 
9 AGTTAT 6.693 0.032 
10 GTTATA 5.895 0.029 
11 TTATAA 5.971 0.029 
12 TATAAA 6.480 0.031 
13 ATAAAT 5.564 0.027 
14 TAAATT 5.729 0.028 
15 AAATTT 6.092 0.029 
16 AATTTA 6.327 0.031 
17 ATTTAT 6.272 0.030 
18 TTTATC 5.330 0.026 
19 TTATCA 5.513 0.027 
20 TATCAT 6.649 0.032 
21 ATCATT 4.931 0.024 
22 TCATTT 5.119 0.025 
23 CATTTC 6.547 0.032 
24 ATTTCC 5.752 0.028 
25 TTTCCT 5.562 0.027 
26 TTCCTT 5.093 0.025 
27 TCCTTC 4.941 0.024 
28 CCTTCT 5.644 0.027 
29 CTTCTC 5.613 0.027 
30 TTCTCC 5.394 0.026 
31 TCTCCA 5.109 0.025 
32 CTCCAC 5.719 0.028 
33 TCCACT 4.648 0.023 
34 CCACTC 4.925 0.024 
35 CACTCC 6.196 0.030 
36 ACTCCT 5.116 0.025 

 
sampled, an alignment is present and the alignment prob-
ability is tested. This procedure is repeated until a plateau is 
reached. Then another initial random alignment is tested and 
the process begins again. 
 
For the example used thus far, the final alignment is as 
shown in Fig. 2. This alignment yields the counts and log2-
odds ratios described in tables VII and VIII. 
 
If the predictive update/sampling stages were repeated with 
these results, the next motif position would be sampled from 
the log-odds scores shown in table IX. 

TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT 
CCCACGCAGCCGCCCTCCTCCCCGGTCACTGACTGGTCCTG 
TCGACCCTCTGGAACCTATCAGGGACCACAGTCAGCCAGGCAAG 
AAAACACTTGAGGGAGCAGATAACTGGGCCAACCATGACTC 
GGGTGAATGGTACTGCTGATTACAACCTCTGGTGCTGC 
AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA 
GCCTCAGGATCCAGCACACATTATCACAAACTTAGTGTCCA 
CATTATCACAAACTTAGTGTCCATCCATCACTGCTGACCCT 
TCGGAACAAGGCAAAGGCTATAAAAAAAATTAAGCAGC 
GCCCCTTCCCCACACTATCTCAATGCAAATATCTGTCTGAAACGGTTCC 
CATGCCCTCAAGTGTGCAGATTGGTCACAGCATTTCAAGG 
GATTGGTCACAGCATTTCAAGGGAGAGACCTCATTGTAAG 
TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCTTTTGA 
CCTTATCTGTGGGGGAGGCTTTTGAAAAGTAATTAGGTTTAGC 
ATTATTTTCCTTATCAGAAGCAGAGAGACAAGCCATTTCTCTTTCCTCCC
GGT 
AGGCTATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTC 
CCAGCACACACACTTATCCAGTGGTAAATACACATCAT 
TCAAATAGGTACGGATAAGTAGATATTGAAGTAAGGAT 
ACTTGGGGTTCCAGTTTGATAAGAAAAGACTTCCTGTGGA 
TGGCCGCAGGAAGGTGGGCCTGGAAGATAACAGCTAGTAGGCTAAGGCCA
G 
CAACCACAACCTCTGTATCCGGTAGTGGCAGATGGAAA 
CTGTATCCGGTAGTGGCAGATGGAAAGAGAAACGGTTAGAA 
GAAAAAAAATAAATGAAGTCTGCCTATCTCCGGGCCAGAGCCCCT 
TGCCTTGTCTGTTGTAGATAATGAATCTATCCTCCAGTGACT 
GGCCAGGCTGATGGGCCTTATCTCTTTACCCACCTGGCTGT 
CAACAGCAGGTCCTACTATCGCCTCCCTCTAGTCTCTG 
CCAACCGTTAATGCTAGAGTTATCACTTTCTGTTATCAAGTGGCTTCAGC
TATGCA 
GGGAGGGTGGGGCCCCTATCTCTCCTAGACTCTGTG 
CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC 

 
Fig. 2: Final alignment for site sampler 
 

Table VII: Final observed counts from Fig. 2 
 

 Motif Position (0 = Background) 
Nucleotide 0 1 2 3 4 5 6 

A 276 3 1 21 0 11 15 
C 287 10 0 0 0 18 2 
G 256 0 8 8 0 0 0 
T 227 16 20 0 29 0 12 

 
 

Table VIII: Final site sampler log-odds ratios 
 

 Motif Position 
Nucleotide 1 2 3 4 5 6 

A -0.33 0.56 -0.33 -0.33 0.45 -0.14 
C 0.03 -1.14 -0.56 -0.14 -0.14 -0.14 
G 0.49 0.34 0.63 0.17 -0.24 0.34 
T -0.24 -0.24 0.12 0.27 -0.24 -0.05 

 

4.2 Comparison of site and motif samplers  
 
The site sampler and motif sampler follow the same basic 
Gibbs techniques. The difference is that the motif sampler 
will allow for the detection of zero or more motif locations 
in each sequence, whereas the site sampler detects exactly 
one. Thus, for the initialization step with the motif sampler, 
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Table IX: Final weights for segments within sequence 1 
 

X Sequence Ax Normalized Ax

1 TCAGAA 8.350 0.030 
2 CAGAAC 4.383 0.016 
3 AGAACC 6.645 0.024 
4 GAACCA 6.926 0.025 
5 AACCAG 2.412 0.009 
6 ACCAGT 2.734 0.010 
7 CCAGTT 5.931 0.022 
8 CAGTTA 8.725 0.032 
9 AGTTAT 9.096 0.033 
10 GTTATA 5.288 0.019 
11 TTATAA 15.237 0.056 
12 TATAAA 6.074 0.022 
13 ATAAAT 9.226 0.034 
14 TAAATT 7.200 0.026 
15 AAATTT 9.360 0.034 
16 AATTTA 6.995 0.026 
17 ATTTAT 10.914 0.040 
18 TTTATC 6.032 0.022 
19 TTATCA 15.958 0.058 
20 TATCAT 6.047 0.022 
21 ATCATT 5.572 0.020 
22 TCATTT 11.155 0.041 
23 CATTTC 6.244 0.023 
24 ATTTCC 10.150 0.037 
25 TTTCCT 9.470 0.035 
26 TTCCTT 7.482 0.027 
27 TCCTTC 7.255 0.026 
28 CCTTCT 9.568 0.035 
29 CTTCTC 4.868 0.018 
30 TTCTCC 12.035 0.044 
31 TCTCCA 6.670 0.024 
32 CTCCAC 6.078 0.022 
33 TCCACT 6.623 0.024 
34 CCACTC 4.433 0.016 
35 CACTCC 8.174 0.030 
36 ACTCCT 4.734 0.017 

 
a random alignment is made according to an estimate as to 
how many motif sites exist in total. An example of an initial 
alignment is given in Fig. 3. 
 
Note that the estimate does not need to be the exact number 
of motif positions to be found. This is just a starting number 
that will evolve within the motif sampler. Using the same 
data that is used with the site sampler, the maximal align-
ment using the motif sampler is given in Fig. 4. With the 
motif sampler, any given location is sampled into the model 
based on the ratio of the site being in the model to it being 
in the background. 

TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT 
CCCACGCAGCCGCCCTCCTCCCCGGTCACTGACTGGTCCTG 
TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG 
AAAACACTTGAGGGAGCAGATAACTGGGCCAACCATGACTC 
GGGTGAATGGTACTGCTGATTACAACCTCTGGTGCTGC 
AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA 
GCCTCAGGATCCAGCACACATTATCACAAACTTAGTGTCCA 
CATTATCACAAACTTAGTGTCCATCCATCACTGCTGACCCT 
TCGGAACAAGGCAAAGGCTATAAAAAAAATTAAGCAGC 
GCCCCTTCCCCACACTATCTCAATGCAAATATCTGTCTGAAACGGTTCC 
CATGCCCTCAAGTGTGCAGATTGGTCACAGCATTTCAAGG 
GATTGGTCACAGCATTTCAAGGGAGAGACCTCATTGTAAG 
TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCTTTTGA 
CCTTATCTGTGGGGGAGGCTTTTGAAAAGTAATTAGGTTTAGC 
ATTATTTTCCTTATCAGAAGCAGAGAGACAAGCCATTTCTCTTTCCTCCC
GGT 
AGGCTATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTC 
CCAGCACACACACTTATCCAGTGGTAAATACACATCAT 
TCAAATAGGTACGGATAAGTAGATATTGAAGTAAGGAT 
ACTTGGGGTTCCAGTTTGATAAGAAAAGACTTCCTGTGGA 
TGGCCGCAGGAAGGTGGGCCTGGAAGATAACAGCTAGTAGGCTAAGGCCA
G 
CAACCACAACCTCTGTATCCGGTAGTGGCAGATGGAAA 
CTGTATCCGGTAGTGGCAGATGGAAAGAGAAACGGTTAGAA 
GAAAAAAAATAAATGAAGTCTGCCTATCTCCGGGCCAGAGCCCCT 
TGCCTTGTCTGTTGTAGATAATGAATCTATCCTCCAGTGACT 
GGCCAGGCTGATGGGCCTTATCTCTTTACCCACCTGGCTGT 
CAACAGCAGGTCCTACTATCGCCTCCCTCTAGTCTCTG 
CCAACCGTTAATGCTAGAGTTATCACTTTCTGTTATCAAGTGGCTTCAGC
TATGCA 
GGGAGGGTGGGGCCCCTATCTCTCCTAGACTCTGTG 
CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC 

 
Fig. 3: Initial alignment for motif sampler (e=30). 
 
 
TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT 
CCCACGCAGCCGCCCTCCTCCCCGGTCACTGACTGGTCCTG 
TCGACCCTCTGGAACCTATCAGGGACCACAGTCAGCCAGGCAAG 
AAAACACTTGAGGGAGCAGATAACTGGGCCAACCATGACTC 
GGGTGAATGGTACTGCTGATTACAACCTCTGGTGCTGC 
AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA 
GCCTCAGGATCCAGCACACATTATCACAAACTTAGTGTCCA 
CATTATCACAAACTTAGTGTCCATCCATCACTGCTGACCCT 
TCGGAACAAGGCAAAGGCTATAAAAAAAATTAAGCAGC 
GCCCCTTCCCCACACTATCTCAATGCAAATATCTGTCTGAAACGGTTCC 
CATGCCCTCAAGTGTGCAGATTGGTCACAGCATTTCAAGG 
GATTGGTCACAGCATTTCAAGGGAGAGACCTCATTGTAAG 
TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCTTTTGA 
CCTTATCTGTGGGGGAGGCTTTTGAAAAGTAATTAGGTTTAGC 
ATTATTTTCCTTATCAGAAGCAGAGAGACAAGCCATTTCTCTTTCCTCCC
GGT 
AGGCTATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTC 
CCAGCACACACACTTATCCAGTGGTAAATACACATCAT 
TCAAATAGGTACGGATAAGTAGATATTGAAGTAAGGAT 
ACTTGGGGTTCCAGTTTGATAAGAAAAGACTTCCTGTGGA 
TGGCCGCAGGAAGGTGGGCCTGGAAGATAACAGCTAGTAGGCTAAGGCCA
G 
CAACCACAACCTCTGTATCCGGTAGTGGCAGATGGAAA 
CTGTATCCGGTAGTGGCAGATGGAAAGAGAAACGGTTAGAA 
GAAAAAAAATAAATGAAGTCTGCCTATCTCCGGGCCAGAGCCCCT 
TGCCTTGTCTGTTGTAGATAATGAATCTATCCTCCAGTGACT 
GGCCAGGCTGATGGGCCTTATCTCTTTACCCACCTGGCTGT 
CAACAGCAGGTCCTACTATCGCCTCCCTCTAGTCTCTG 
CCAACCGTTAATGCTAGAGTTATCACTTTCTGTTATCAAGTGGCTTCAGC
TATGCA 
GGGAGGGTGGGGCCCCTATCTCTCCTAGACTCTGTG 
CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC 

 
Fig. 4: Initial alignment for motif sampler (e=30). 
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5 DISCUSSION 
 
This technical report discusses the basics behind the Gibbs 
sampling algorithm.  For further information, consult the 
following journal articles: 
 
Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, 
Wootton JC. 1993. Detecting subtle sequence signals: A Gibbs 
sampling strategy for multiple alignment.Science 262:208-214. 
 

This paper describes a Gibbs sampling strategy where there is 
assumed to be a single occurrence of the motif within each se-
quence. No gaps are allowed within the alignment. The imple-
mentation is known in the literature as a site sampler. 

 
Neuwald AF, Liu JS, Lawrence CE. 1995. Gibbs motif sampling: 
detection of outer membrane repeats. Protein Science 4:1618-
1632. 
 

This paper describes a Gibbs sampling strategy where the 
number of motifs is not known. This is the motif sampler. Ex-
amples are presented in the location of the immunoglobulin 
fold and hth motifs. 

 
Liu JS, Neuwald AF, Lawrence CE. 1995. Bayesian models for 
multiple local sequence alignment and Gibbs sampling strategies. 
Journal of the American Statistical Association 90, 432:1156-
1171. 
 

This paper contains more of the derivations for implementing a 
Bayesian model in the Gibbs sampler. The details of this paper 
are not covered here, but if further research into the deriva-
tions of the various formulas sounds interesting, this should be 
a good place to start. 

 
Tanner, MA. 1993. Tools for Statistical Inference. Springer-
Verlag. 
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