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An Expectation Maximization algorithm for ident’ification of DNA binding sites is 
presented. The approach predicts the location of binding regions while allowing variabltl 
length spacers within the sites. In addition to predicting the most likely spacer length for a 
set of DNA fragments, the method identifies individual sites that differ in spacer size. No 
alignment, of DNA sequences is necessary. The method is illustrated by application to 231 
Exherichin coli DNA fragments known to contain promoters with variable spacings between 
their consensus regions. Maximum-likelihood tests of the differences between the spacing 
ctlasses indicate that’ the consensus regions of the spacing classes are not distinct. Further 
tests suggest that several positions within the sparing region may contribute t.o promoter 
specificity. 

Kqwords: promoters; DNA-protein; Expectation Maximum; multiple alignment: 
consensus sequences 

1. Introduction 

Transcription is often regulated by proteins 
binding to specific regions of DNA and affecting the 
expression of nearby genes. Because of the impor- 
tance of the binding sites in regulation and of the 
time-consuming experiments necessary to identify 
them genetically or biochemically, several different 
statistical approaches have been developed to 
attempt to identify the binding sites using only the 
sequence data. There are many methods that utilize 
a set of known binding sites to extract important 
residue patterns from the DNA fragments and 
provide a representation of the binding sites that. 
can be used to locate new examples with reasonable 
reliability (Berg & von Hippel, 1987; Mulligan & 
McClure, 1986; Staden, 1984; Stormo, 1988, 1990a). 

A more difficult problem, but more valuable if 
solved, is to be able to identify the binding sites and 
determine their essential features from unaligned 
DNA fragments. The data for this type of problem 
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are a set of USA fragments each known to contain 
at least one binding site for some protein, perhaps 
from genetic mapping experiments or from binding 
studies on restriction fragments. The important 
point is that the binding site need only be known to 
be located somewhere within the fragment, and the 
actual alignment of the sites is unknown. The 
problem is difficult, in part, because of the dege- 
neracy in the binding sites of most regulatory pro- 
teins. If the fragments were about 200 bpf long and 
the common binding site were a completely 
conserved hexamer, it would not be difficult to 
identify (assuming the fragments were otherwise 
unrelated). However, a typical regulatory protein 
may have binding sites consisting of some highly 
conserved domains, with some positions more 
highly conserved than others, and perhaps none of 
the positions in the sites is absolutely conserved. 
For example, in Escherichia coEi promoter sites, 
t.he consensus patterns TTGACA and TATAAT 

$ r\bbreviations used: bp, base-pair(s): EM. 
Exptdation Maximization; CRP, cydic AMP rrcrptor 
protthin. 



typically appear at approximately 35 arid 10 kliLSC’8 
Mow t.he site of t.ranscript.ion intt.iat ion (Pritjtrotv. 
1!)176; Roscnherg & (‘ourt, 1979: Hawley & M(~(‘~IIIv. 
1983). but none of these bases is absolutely 
wnserrrd: in fa,ct. only about, 6:5O;, of all known 
promoters perfectly match even the most highI> 
caonsrrvrd region within these prornot)ers ( -- IO: 
TAxxxT: Harley & Reynolds. I9Xi). Furt,hrrtnore. 
the spacsittg bet\vfaerr the -3.5 ant1 - IO is not eon- 
plc%4y conserved: I7 bases is t.he most common 
spa&g but several others are observed. The, diver,- 
sit? in consensus matching imposes somr limitations 
rlf)otl tnct,hods t,hat focus on specific (zonscnsus 
descriptions or on finding “words” wit,hin segments 
of 1)X4 (Pearson $ Lipman. 19X8). 

Sotnf~ attempts havr butt madf~ t’o sol\-P the 
problem of findittg opt~itnal loc4 alignmenls of 
multipk~ sc~qu~rtc+es. each with particular limitations. 
Two methods require that t,he binding sitc,s be 
approximatelv a tgned initially. and then 

mat.; htnl; 
IISf’ 

‘.\yor(l” * * c:rit,eria to find thft rnosl 
conserved regions (Galas it ~1.. 19X5; Mengeritsky Cyr 
Smit,h, 1987). These methods have the advant)apc 
tha\t the!. can identify several conserved domains 
rven if the spacing between t’hem is variable, as long 
as all of the domains are initiallv aligned within a 
specified window of allowable shifting bet,wern t,he 
squences. Another approach uses a “greedy” algo- 
rit,htn, which searches for an alignment of tht, frag- 
ments t.hat, maximizes the “Information (‘ontent ‘. 
of the sites (Stormo dt Hart,zell, 1989: Hertz ~4 CL/.. 
1990). This method has the advantages that an 
initial alignment. of’ the fragmrnt.s is not rc~cluirc~tl 
and it rrturns srvcral alignments rank4 by t hcit 
significance. But it also has thta disadvatttagfa tha,t 
only fixed-length domains are identified. so regula- 
tory sites t)hat consist of multiple regions separated 
by variable spacing will be missed. Further tnaniptr- 
lations by hand. utilizing both optitnal and sub 
optimal aligntnents, can be usrd to identify sucsh 
binding sites (Stormo, 199Oh). but this procedure is 
far from automated and may not be very reliable. 

An Expectation Maximization (ICM) method has 
also been applied t’o t,his problem (I.awrenc~t~ K: 
Reilly. 199Oa). The initial EM method onl? allow4 
for fixed-length blocks and would. therefore, miss 
sites composed of multiple blocks with variablrl 
spacing between them. Here, we present. an extrrt- 
tion t,o t>he EM m&hod that, simultaneously predicts 
binding sit,es and aligns DNA fragments while 
allowing variability in the spacing regions between 
protein contact sites. We demonstrate the uw of t.hr 
method on E. coli promoters. a largr. well-st,udied 
data set, wit,h the properties of conserved binding 
domains separated by variable lrngth spacers 
(Harley $ Reynolds: 1987). The present EM pro- 
cedure also provides a method by which differential 
base conservat,ion among different spacing 4asses 
may be tested using the robust st,atistical methods 
of maximum likelihood. We apply the method to 
ti:. coli fragments to address the issue of different,ial 
base conservation as a function of spacer length 
(O’Neill, 1989a.c). 

2. The Expectation Maximization Algorithm 

KXljrY.li1tiOIt Maxitrrizittiotl is iL t Izc~-sl(~f~ it<sl’itti\ f’ 

proc~edurc~ for obtaining the global t~iaxitn~rtn liked 
lihood parameter rstima& for a tTlotlf~l of’ ol)stLr\otl 
data (1,itt.k CP Itubin. l!)X7). The algorithm itrvolvc~s 
calculating eXpef:tfd pararttf+f~r values thirt ~lf~h~~ribf~ 
t.he data (st.fsp I ). t hrn tt~~~sitttizitrg thr. lik<4ihoclcl IIf’ 
observing those \-alur~ (stf~p 2). ‘I’t~t~sf~ s1f.p at’f~ 

repeated until thr I)aramf~tc~rs that ljcsst c,xljlairi th(s 
da,ta arc’ obtairrc~tl. ‘I% details of’ our 15.\1 itlgorit htri 
arc’ given Ijt~lOw. l)ut ii sitnl)le ?xam[jlc~ (‘ill1 st’l’vf’ 10 
illust,rat~t~ the basic* idcha of’ Ii:J1. C:ivc*tt iI c3>llf*c~t ion of’ 
alignetl lpinding sitars for some f)r.olf~itt. il i.s ('ilhV 10 
df%erniinf~ it matrix 1 hat rf~f)rt~sertts t hf. sl)ec.ilic.ify 01‘ 
t.hat pr.olfGn (for rf~vif~us. sf’fl Slc~rtrro, l!48H. I 090~). 
On thfl othf~r. hand, if’ onf’ is gi\-cktr it sjJ~~~*ific*if 
matrix for that protf>itt. it is fbasy t 0 prf~clic4 !\.hf~rf~ 
the binding sitfss \vortltl bf* on :I c~clllt~c~ticrtr ot 
unaligrrf~ti fragments. 111 thus prohlf~rrt ttttclc~r C~II- 
sidf~ratiort. wt* art’ givtstt il c.ollt~c4ioti 01’ t’r;lgtttc~ttts. 
each known t,o c~otrt~ain a binding site, f’or some’ 
protein. but WY know mbit her the aligtttttf~ttt of t Irf* 
sit,rs (thchir positions on f’i1f.h f’rapmc~nl ) 1101 thcx 
specitic4,y mat)rix of’ thca protJcain atI<1 \\c l\‘attI to 
drtertninr both simult~anrousl>.. The 1511 iL~J[JfYJitf’ll is 
to altrrttatf- botwf~rtt f hf) t H’O rr~fb~ hocls just 
describrd, first using att init,ial guru as to the, IO(W 
tions of’ t hr sitars (WV st.art by assutning~all ljossi1)lch 
binding sit,rs arc c~qually likely) to clt~vc :I spoc’i- 
tic:it,y mal.rix. and then using that tn;tt,ris to IX’ 
estimat.fa 1 he locsations of’ the sites. This proct~tlurf~ is 
iterat,rfl until convrrgirttct*. L\:hilcb it. is not tliffic*ult 
to tnakt, up data st+s I hat Icad EJI 11) c~otrvc~ryt~ 
itiapl)ropriatrlS-, wf~ think that ttrost f’f’ill pro~jl6~ms 
will fYJnt,iLill S;uit,;1hlr dHt?l. Wt. rX1Jf’f.t t Ilitl t hf’ 

criteria for data bfAtig suitable arfs that t hfl binding 
sites can be represented ac~c~iirat~ely 1)~. i4 sfj(Gticit! 
tnat;ri?i *lntl that, thra l~rot)~‘t’ ii.ligttnic~t~f 01‘ 0163 
binding siffxs ott the fragments givtb ib tttort* sigtriti- 
cant matrix t ban any othrir possibk aligtttttf~tti. ‘I’hri 
statistical assumptions of’ the KM mc,t.hotl wit it 
rcspecf to I)NA sequenct’ tlala follow. t host, 
described by I,it~tlc & TCubin (1987) for tinile 
mixturr models. 

Belo\\ \vc’ use t,hc examplr of E. ro& protttot>crs to 
illustrate thr IMP of EM. In t,his rxampk. wt. take 
advantage of prior knowledge about t ht. siztb of 
promoters and their general charac:tc&titn of relet 
tively c*onservrd domains separat)rd k)y il ViWikL.L)IP 

Iengt,h spacer. In general. one might not have any 
prior knowledge of the binding sites being sought.. 
Tn that (*a~. the EM ttnalysis c~~uld be rt~peat,c~tl 
using different models for thr binding sitfls. Onto 
advantage of t,hr EM t,echniyur over othfbr prob 
ability-based sequence analysis methods is that 
different tnodels of the prot,eirr-I)SA interac%iott 
can br f~otnparetl directly and quant:itativrl,v t,ct 
determine which is the best, match tcJ the data. For 

cxamplr. the EM model (‘an account tijr st,ruc+ural 
properties of proteins involvrd in I)h’A binding ~JJ 

allowing correlated effects of’ residues across 
multiplr I)indinp site positions. This >tllo\vs ottt’ to 
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Fragment Sequence 

t‘rdabcd( 16) gatctcgtcaaATTTCAgacttatcgatcagacT.4TAATgttgtacctataaagga 

tyrt/212( 16) gATCATAcctacacagctgaagaT,4TGATgcgcgcaggtcgtgacg 

arabad( 16) ttagcggatcctacCTCACGctttttatcgcaactcTCTrCTgtttctccatacccgtt 

ampc/clG( 17) gctatcTTGACAgttgtcacgctgattgmtacaatctaacgtatcg 

lambda& 17) tacctctgccgaagTTGAGTatttttgctgtatttgtCATAATgactcctgttgatagat 

tn2661 bla-pb( 17) CctcGTGATAcgcttatttttataggtTAATGTcatgataataatggttt 

rpod-pb( 18) agccaggtCTGACCaccgggcaacttttagagCACTATcgtggtacaaat 

cit.util-431( 18) gacaggcacagcaTTGTACqatcaactgatttgtgccAATAATtaaatgaaatcac 

tnlOpin( 18) tcattaagTTPlAGGtggatacacatcttgtcaT,4TGATcaaatggtttcgcgaaa 

Figure 1. I~:xamples of E. coli DKA fragments containing prot,rin-binding sites. Spacing classes WV indic*atrd In 

t’est whet,her a binding sit)? is best represented by a 
direct or inverted repeat. or whether the t’otal 
c~ollection of binding sites is best separated into 
dixt’inct, classes. or other possible models of the 
protein-DXA interaction. The EM algorithm also 
generates estimates of residue frequencies for bases 
not included in the hinding sites. Consequently, if 
t)he regions around the binding sites are charact,er- 
ized by overall base frequencies different from those 
within the sites. the EM t,echnique will exploit the 
frequency differences. 

The frequency estimates in the EM model are 
derived using the “missing information principle” in 
the cont)rxt of the maximum likelihood estimation 
procedure (Edwards. 1972). Because DNA segments 
are unaligned when positional binding site informa- 
t,ion is unknown, the EM model treats the location 
of promoter sites as “missing”. For a set of N DNA 
fragments, each with k possible promoter sit,e loca- 
tions, there are kN possible combinations of 
promoters. The primary task is to identify the 
correct N binding sites and characterize the 
frequency of residues within those sites, This is 
performed by iteratively solving a series of prob- 
ability/expectation equations and maximizing the 
likelihood of the equations with respect to the 
observed DNA segments. 

Figure 1 shows some examples of D1LA fragments 
from K. coli that may be examined by the EM 
algorithm. All of these fragments contain variations 

of the -35 and - 10 consensus regions TTGACA 
and TATAAT (indicated in capital letters). but 
none is absolutely conserved. The EM technique is 
designed to identify the binding sites on each 
sequence and estimate the overall base frequencies 
for each position in the sites. 

Lawrence & Reilly (1990a) applied the EM model 
to 18 DXA fragments from E. coli containing known 
binding sites for the CAMP recept,or protein (CRP). 
Several constrained parameterizations of the EM 
algorithm also were applied to the CRP data (e.g. 
testing palindrome patterns by forcing equality of 
certain parameters). The simplest monoresidue 
model correctly identified I6 known primary 
binding sites in the 18 DNA fragments. Constrained 
representations of the binding sites permitted 
characterization of the major and minor groove 
openings in the fragments with respect to the CRP 
proteins. The findings reported by I,awrence & 
Reilly (1990a) illustrate the strength of the EM 
method for identifying binding sites in DSA frag- 
ments and characterizing structural features of the 
binding domains in relation to the binding proteins. 

The original formulation of the EM algorithm 
contained no provision for variable spacing lengths 
between primary binding regions. If modified to 
allow variable spacing, the EM algorithm should be 
able to distinguish between promot.ers having 
different numbers of bases between consensus 
regions. such as the 16, 17 and 18 bp examples in 



Figure I. whik r&aining thfb ahilit~y to idrtttifi 
l’rornoter start sites and characterize fragments 1)~ 
positional hasr composit~ion. (:i\.en the utility oft 11th 
EJI mftt,hod for analysis of binding s~trs in 
sequences having similar spacing lengths. and 
t)chc*ausrl of the importance of spacing in promoter 
t’tmc+tiori. it is rcasonalok to 6axpec*t that the 
strengths of t’he IO1 procedure may he enhanced 
substantially if modified t,o af~~n~nt for tlifferc~n~ 
spacer lengt’hs. Herr, WC’ drscrihr an fbxtrnsion of 
ihe WI algorithm to account for such rffpcts. 
I,awrencse & Reilly (19906) have independentI> 
d~elopetl a slightly different ext,ensiort of EXI to 
handk the case of variable length spacer regions. 
The>, show how it can hc used to identify (‘K I’ 
ttinding siks with rare spacer lengths between t)lte 
highly (sonserved domains of t)hr binding siks. 

3. Methods 

To allow variable spacer lengths in t,he EM algorit,hm. 
I)NA fragments containing proteirt-binding regions to bt 
identified are conceptualized as being composed of 2 
structural components: (1) the conserved regions of pro- 
tein binding containing an intervening segment of vari- 
able length: and (2) the segment of DNA outside the 
c.onserved regions. Recent analysis of the (IRI’ data illus- 
trate this classification scheme. Storm0 & Hartzell (1989) 
calculated the “information content”. a probability-based 
measure of protein specificity similar to the EM met’hod. 
for each residue in a (‘RFbinding region 22 bases in 
length. Their findings revealed high information content 
values for positions I to 8 and 1.5 to 22 of thr binding site. 
coupled wit,h modest values for sit,e positions 9 to II. In 
terms of the present EM techniyue, positions I to 22 
would be classified as conserved binding sites that contain 
a spacing region from positions 9 t,o 14 (category 1). and 
all unspecified regions of the DNA fragments would br 
classified as occurring outside the overall binding site 
(category 2). Tn order to allow variable spacer lengths in 
t,he EM algorithm. the probability of observing bases in 
both categories must be maximized while allowing the 
first category t,o vary in lengt’h. 

To formulate the EM algorithm using the classification 
scheme just outlined, we consider the overall binding 
region, which consists of consensus positions and the 
intervening spacer. to be a random variable of length J. 
We specify G as a similar random variable for the set of all 
possible spacer lengths within J. Tn K. coli promoters. the 
most highly conserved regions are expected to span 
6 bases at each end of the site and t)hr spacer is 
expected to vary between 1.5 and 21 positions. 
although most promoters have spacings in the range 
16 t,o 18. Thus. J = (27. 28.. .1 33). earresponding to 

region outsitlc thp ovcrwll bitttling sitri; i\dclitiottiri 
paratrtetclrs that define the probabilitks of obser’vittg 
an overall binding sitr aith s[tscer length !/ it/ 1 lici sr.1 
Ii[pg = I’((: = (/)I arc’ thtw added to ttw wt of’ itlll~rloMtlh 
to frrll~ c.harac+erizr tht3 motlcl. Nok that thta ovr~t~;rll 
rrsiducl freyurtt~it~s. not) at particaular posit ions. :trf’ ~ji 
ititerr~st for IIN-\ qions r)utsidr bintling hits (/J~,~),. 
whereas position ancl frr~yut~nc~~ itre potc~ntiall~ itltf)ortant 
(~onsideratiotts xvithin binding sites (/),, j). 

The K’:xpect~atiotl strft of the EM algorithttt ih tlrstgttc*tl 
to calcttlatcl cxpcctecl valut~ for t,hra paramt+rs I)~,,. oh,o. 
and pg. t3aytls‘ theortam (6s.g. sef% Kt~ndall HL St.uart l!K7) 
provides the t’oundat,iott tirr thttstx probal)ilitk~s. The, 
probabilitks arci f~aI(~ulatt~tl by initiall), taxpr(Gtig ttrc, 
model in terms of the c~otrditiottal probability c~f’obsrrvittg 
rac,h sryurttc~ S,. givcstt tfrat thfa bincting sitta hcspitts at 
position k of ttttk nth sryu~ttc~ attd t,he spac’c.r th (1 hascas 
long, thrst~ rearranging thfx c~otrditional I’robability (using 
Ka?-t~s‘ tti~ort~trt) to yitlld tl-tcl f)robabilit~~ that thr, Ititttlittg 
sit,, hegins it1 Itositiorr I;. givfbn th(s s~~yur~ttc*t~ ,‘;. antI spa,~‘t’ 
CJ( I I k I /,,-.I + 1: I,, is the ttumbc~r of c~bsc~rv~tl frost- 
tions itt st~c{uctt~*C~ S,]. It is ~lsf~t’ul t 0 c.ortsitlt~r ttrt, fi)rtttt~r 
c~onditiotial probabilitv it.i c,onsistittg of r! c~~ttt~tc)ttf~ttti~ 
(I) the f)roba~)ilit~ oi ohsrrvittp thv I)irttlitlg tqiott itt 
srqurnc~~ S,. given that tht, site, brgins itt I)osittott d, of’ j\k 
and has spacer kngt h ~1: klntl (2) thtl prob;ri)ilit,v ot 
ohserving thr nott-binding region in S, c~onditional on the, 
site beginning at position k and thta spat’er It,ttgtlt q ‘I’hc,sr 
f~onditional probabilitirs rttitj- ttta fortrtttlatt~~l iti t It,% 
following mantirr. 

Ikt Ji,k. it f)ositiott ittdic~irtc~r. t,yual I if tfre i)itttltttg sit,, 
in S, brgins at k: I,,k = 0 otherwise. Thtbtt t ttf> tirst 
conditional probability described above rrtny IF c~x~mssrfl 
as t,hr pro(luct of the probabilitirs of obsrrvittg ~(.h bast’ 
in the ovc,t,all binding region: 

/‘(S”, jl Y”-,. k = I I: = q) = I) pi;;‘” (1) 
,= 1 

where j’ = ,j + 1~ - I antl: 

I 
Vh,‘” = 

1 

ifs,, j, E .J and 8” j, = I) 

0 otherwise 

for each haar h in rach position j’ of sryurrtc’r )S,. These ,j’ 
are the rtositions in A’;. that constitute the binding sitta. 
from j = 1 t,o ,I. For each .J. t,he second prohabilit> 
described above is the product, of the probabilities of 
observing racah base outsidr the binding region: 

in which w = &pb~ “,o Stb’ for all bases. h. in positions. I, in 
t,he set of residues outside the binding site. A. Thus. the 
overall probability of observing sequence S, conditional 
upon the binding start position k and the spacer length y 
is expressed simply as the product of rxprrssiorts (I ) and 
(2): 

P(Ay I,, k = 1, c: = g) = QAS”, j Yn,k = 1. G = y)f’(As”,oI Y”,k = I. c: = CJ) 

=*k P:o fi P;;Pf” 
j= 1 

G = (15. 16, _, 21). The model parameters to be esti- 
mated are pb, j, the probabilities of observing each base. 
6. in each position, j, of the binding site J: and pb o, 
the probabilities of observing each base in the DkA 

Tt, should hr noted that when t,hr spacer length is tixed 
(i.e. G is a unit set), equation (3) is equivalent to eyuation 
(Al) given by Lawrence & Reilly (1990a) for the fixed 
spacer length situation. 

Bages’ theorem may then be applied to the conditional 
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probability shown in equation (3) to obtain the prob- 
ability that t)he overall binding site begins in position k. 
given each observed DNA fragment S,, and a spacer length 

II: 

spacer length g for the qth iteration is given by: 

19) 

Thir probability serves both as a frequency description of 
the different spacing groups and as a gap penalty in the 
alignment. Unlikely or uncommon spacer lengths yield 
small values of pg, which decrease the probahilit,ies of 
observing sequences with those uncommon spacers (see 
eqn (4)). Unusual spacer lengths will still be observed. 
provided that matches in the conserved domains are 
sufi&nt to compensate for the gap pen&y. 

The maximum likelihood estimates of the probabilities 
are thosr that maximize the log-likelihood equation: 

n-1 \D=ALj=l 

If a 1;rotrin binding site is perfectly predicted by the EM 
model. this quantity will equal I.0 for the position k that 
is the beginning of the site. For all other 12, the probabilit) 
will equal @O. The quantities P( Y” k = 1) cancel in this 
derivation because we assume. a pr’iori, that all possible 
binding start sit,es are equally likely w-ithin each DIVA 
fragment [P( Y”, k = I) = I/(!,,-.J+ I)] t,o avoid solutions 
near the boundaries. 

Thr conditional probability shown in equation (4) 
forms the basis for the Expectation step of the EM 
algorithm wit,h variable spacer lengths. The rxperted 
number of bases in each position of the binding site(s) 
may 1~6, c~alculat,rd as: 

and: 

Thus. for each position in the overall binding site, the 
expectations are calculated by adding the probabilit,y 
that the sitar begins in position k to the accumulating 
number of bases in each position of the site. For example. 
if the first 2 bases of the window that begins in position 15 
of some sequence S, are observed to be T and il, and thta 
probability t,hat the binding site begins in position 15 is 
010 (from eqn (4)). then @lo is added to the accumulating 
number of expected T residues in the first position and A 
residues in the second position. This procedure is repeated 
for all possible windows in the set of observed sequences. 

The expectations are used to calculate the probabilities 
for the qth iteration of the Maximization step in the 
algorithm: 

Finally, the probability of observing a binding region with 

_I WC / 

In this ryuation, fb, j and fb,o are t’he observed base 
frequencies for all fragments examined. Frequencies of 
sequrncxf’s with different spacing lengths are represented 
by jq. Tf positional binding site data wrre known and the 
fragments aligned with respeczt to the binding informa- 
tion, the maximum likelihood estimates of p,,, j. pb,O. and 
pg \vould br the sample frequencies fb,). jb, o, and f,. 

The free paramet,ers in this model tncludr ph,j and ps; 
all other expectations and probabilities may he caalculated 
using these unknown quantities. ah -hewn in equations (4) 
to (8). 1’pon convergence of the EM ..lgorit,hm, the free 
parameters and posterior probabilities for each I)X;Z frag- 
tnrnt contain valuable information about) the location and 
lengt,h of the protein-binding site(s) in each sryment of 
DSA. Thr pb,j parameters indicatr the extent to which 
rach residue located within the binding region is 
caonsrrvrd. the posterior probabilities point to the most 
likely start position of the binding site in earh D?JA 
fragment. and the accompanying spacer length probabili- 
ties (p,) indicate the most likely length of the conserved 
binding region. The obvious consequence of this treat- 
ment of variable spacing is t’hat the most probable spacer 
length for all the 1)X4 sequences examined will appear as 
thr highest estimated spacer length paramet,er. A less 
obvious consequence is that, each DNA segment has asso- 
ciatrd with it an expected protein-binding sit,e for all 
possible spacer lengths in the a priori defined set, U. which 
allows probable binding sites that contain spacers t,hat 
differ in length from the “consensus spacer Irngt,h” to be 
identified by thr algorit,hm. 

(b) 3pplication to E. coli pwmotrr.~ 

In order to assess the accuracy of the EM algorithm in 
locating, aligning and characterizing protein-binding 
regions, we applied the method to E. coli DNA fragments 
known to contain promoter regions. Promoters from 
E. co& provide an extremely useful set of sequences for 
examining different spacing classes because t,hey comprise 
an extensive and well-defined group of DKA fragments. 
Harley & Reynolds (1987) have compiled a large set of 
promoters and have described the consensus properties of 
this reference group. Their alignment is useful, but cannot 
be considered proven experimentally because the 
pol?merase-DKA contacts have been determined for only 
a few promoters. It is based on an initial alignment 
(Hawley & McClure, 1983) and an iterative procedure to 
find consistent “weight matrices” for the - 10 and -35 
regions. For t,he present application. 231 DNA fragments 



t’rotrr tilt, Harley ti K,eynolds (I!#:) c~onrpilatiotr NYJW 

c~?iatttirrt:dt. Of thcw “31 st’c~rlrnc’t’s. 50 (22(~or) M ?lf‘ I,lilSSI 
f&Y1 as having 16 bp s~~abtlg. 11 (IK”,,) \vith IS 111, 

sf)iwing, ant1 I12 (53 (?()) with I7 I~ses separat ittg thr 

c~~nsrrvrd hindiny rrgions. -1 small numlwr of t hca /<. crj/i 

fr&#mrnt,S aIs hi1VP Sp;tCittg rrgions spnnittg 15. I!). 20 

atld PI by) (4. 6. I and 5 srqurnws. tvspfY+ivc~l,y) .\II 

fragments roughly- c~otnprisr Iwsitinns -50 to -+ IO \vtttr 

rrspec*t to km)\+ II tranwriptionnl start points. 

I?. w/i protnotrrs art> the largest Mrll-c.)larac.tc,rizrtl sr,t 

of binding sitrs. For most of them. thtl ac+rraI posit,iotts of 

the initiation site of’ transc.ription ttr(L know,l. This 

infortnaticm cwultl Iw usrd to providr iin approxitnatc. 

alignment of thr promoters bwatrsr it is known that ttrr 

c~~t~servtd rrgions o(‘c~ur within a ttarroM rattgtb of sp,inps 

(Ii to I I bp) upstrram from t.hosr start p0int.s. Howrvt~r. 
WV have dwicled to not ttw the init,i;ttiott sitr infornr;~tic,tt 

in our EM analysw (except in I analysis ttrsc~ribt~tl I;tttat,) 

t)c~c~ttusr~ NY aant to trst thr trrrthod ott a ~)roblrtrr ~~ht~rc~ 

tto ;rligtttrttwt information is provi&d. That is. I+(’ trcsat 

the data of the ftromoter~c.ontajnitiK scqu~tt~w (from 

Table I of Hark>>, & Rrynoltis (198i) with the clxwptiotts 

trot,rd abovr) as though thr promotrr sitt> CY~III~I ol’c’ttt 
xn~whrw within the fragmrnt. \,VIL do use thrz Itriot 

intortnat,ion that promoter sites vary itt Ivngt,h fronr 27 to 

33 bp (from t)he hvginning of tht, -35 to thth end of tttv 
- IO) to avoid numerous rxploratory tnodrls that woultl 

tw nrrdrd if WV kntl\v nothing about the c.harwtrristics of 

the sites. iVr choow to ignore thr fact ttra.t t,herca aw ~vak 

consrrvations obsrrvrd for positions outsidta of the -- :(5 to 

--IO region. \1’e also havcl not tritstl to wparatt~ ottt 

promoters that rtyuirr an ac+ivator protein to givca 

substa.ntial transcv+ptjion. so thts collrc*tiott f)rot~abl) 

contains wvrral promoters that have, irrtrinsic~itll~~ IOU 

activity. Finally. in drtermining the alignntt~nt rrf 

promoters with dif+rent spacw Irngths SW ha\ P rtc~t 

attrmpted to sc3ttrr gal’s around to I)rovitlr any ovt~rall 

of)tirnal alignment. Rather. WC have always placwl tt.ts 

gaps at drfinrd posit,ions in t,hr tniddlr of spacer rrgiotts. 

The promot,rrs with 21 bp spwrs have no gaps wit,hin 

them. Thrse are alignrd with the 20 bp sIw*er promotctrs 

t’>, aligning a gal’ wit,h the 9th position of the 21 t)IJ 

sy’acw. I~OF thr promottw n:it,h shorter spac~~rs. t hr pii’s 

arv c~lust~rrrd begitttting at) the samr I’osition. This UIP~~IS 

t,trtb I5 bp spacer c4ass. the shortest. has the first 8 bases of’ 

the spawr aligned with tjhosr of the othrr c*lassrs. followetl 

by 6 gal) I)ositiotrs. and thr last 7 hasrs aligned bvith the 

last 7 of all the othvr classes. This aligtttnont is rssrtrtiall>~ 

identical wit)h t,hat rt~l)ortPtl by HarIp? & Rrynolds (1987). 

4. Results 

The accuracy of the Mb1 algorithm was asscsseti 
by applying the variable length formufat’ion 
allowing 15 to 21 hp spacing to t’hr 231 E. co/% 
fragments. For this analysis. we consider a 
predicted promoter position to he c~orrect. if it occurs 
with a spacing of 3 to 11 from a known initiation 

t A slight)ly larger number of fragments was available. 

but mutant forms of promoters wwe omit~trd from thr 
analysis. Also. I3 sequences were highly redundant with 

other fragment,s in thr data set: in these C:LSW. I CY’~J~ of 
rash redundant pair was arbitrarily c~liminatrtl. Thv 
fragments eliminated include arg1. c~~lE110.13. 

c*olicinEl-F’S, ~TPlrna100, p15primer. pBRRIVA1. 
rnp(RNaseP). rrn(&Pl. rrn(:-1’2. RHFrnaI. and 

Tn266Obla-T’X 
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Fragment Sequence Probability 

clodfrnai 

ompf 

psclOlorip2 

fuma 

tnlOxxxp3 

pyre-p2 

pcolviron-p2 

SPC 

trps 

acacgcggttgctcTTGAAGtgtgcgccaaagtccggcT.4CACTgganggnc~gatttgg 

ggtaggTAGCGAaacgttagtttgaatggA,4AGATgcctgcagacacataaa 

attatcaTTGACTagcccatctcaattggT,4TAGTqattaaaatcacctaga 

gtactagtctcagtTTTTGTtaaaaaagtgtgtaggaT.4TTGTtactcgct~~~aacagg 

ccatgatagaTTT.4AAataacataccgtcagtatgttTATGGTatcatgatg~tgtggtc 

gtaggcggtcataCTGCGGatcatagacgttcctgttTATAAAaggagaggtggaagg 

tgtttcaacaccATGTATtaattgtgtttatttgTAAAATtaattttctgacaataa 

ccgtttattttttcTACCCAtatccttgaagcggtgtTAT;2ATgccgcgccctcgata 

cggcgaggctatcgATCTCAgccagcctgatgtaattTATCAGtc~~~aaatgacc 

989 

948 

,991 

.442 

,192 

“309 

.371 

,390 

.323 

Figure 2. Selr&~d promoter sites and sit’e probabilities from the EM algorithm. (‘apitilized &es show rousensus 
regions from thtb Harley & Reynolds (19X7) alignment. I’rrdic*tetl &es from the EYI algorithm are underlined. 
‘rransc~rir)tional st,art points are shown in imlics if the sites are knonu. 

information (i.e. the alignment places t’he promoter 
and initiation sites in overlapping locations). These 
may be fragments that contain more than one 
promoter, but for only one of which has the 
init8iat,ion site been determined. 

Tt has been reported that t’here is a weak eonsen- 
sus of CAT at, the initiation site (the A is the usual 
first base of t,he transcript’). occurring with variable 
spacing from the - 10 region (Hawley & .\ilcClure. 
1983). To see if the inclusion of a conserved pattern 
at the initiation position would improve the predic- 
tions, we modified the previous EM algorithm to 
include a pattern of three bases, separated by a 2 to 
10 hp variable spacer following the last base of t’hr 
- 10 region. Note that in t,his analysis we are still 
not using the known initiation positions. but simply 
adding the (I y)rdori knowledge that an additional 
conserved pattern, three bases wide. is found at a 
variable d&tame downstream from the - 10 region. 
Application of this modified EM model yields 2171 
231 (94%) promoters identified correet,ly. by the 
criterion of being consistent with known initiation 
siks. Of the 14 that are inconsistent: seven of those 
also were identified as alternative alignments by 
Harley & Reynolds (1987). 

In a separate analysis, we forced the program to 
find promoter sites that are consistent with the 
known initiation sit,es. We did this by simply 
removing regions of the fragments that would 
permit an inconsistent site, and ran the EM algo- 
rithm (without) the modification described above 
that includes the initiation site pattern). All of the 
promoters identified in this manner are, of course, 

consistent, with t,he known initiat,ion sites, and 
nearly all are the same as those identified by Harley 
& Reynolds (19X7). but in a few cases the - 10 and 
-Xi regions we find are different from theirs. By 
log-likelihood analysis, our alignment and theirs are 
statistically equivalent: i.e. neither one can be said 
to be bet,ter than the other. This result emphasizes 
the point that. at least’ for some promot,ers. statis- 
tied eridener alone cannot unambiguously deter- 
mine the proper position of t.hr promoter. Indeed. it 
may be that for some promoters the RKA 
polymerasr-I)SiZ interaction is not always exactly 
t’he same. 

It has been suggested that E. r:oli promoters in 
different spacing classes also have distinct base eom- 
positions at various positions in the binding sites 
(O’Xeill. 1989n). Tf this conjecture is correct, then 
the EM algorithm will do better by separating the 
promoters into spacing classes first. This will allow 
the positional base frequencies for each class to be 
determined separately and will show an increased 
significance compared to the previous analysis in 
which t,he positional base frequencies are a combina- 
tion from all spacing classes mixed together. To test 
this possibility, we applied the EM model to the 
fragments in each of the 16, 17 and 1X bp spacing 
classes, as defined by Harley & Reynolds (1987), 
and compared the results to those obtained from 
analyses of the same promot’ers pooled together?. 

- 
t The small number of’ fragments within the 16. 19. 20 

anti dl bp spacing classes precluded similar comparisons 
for the fragments in these groups. 



Likelihood ratio t,ests formed the basis for these 
comparisons. 

The likelihood ratio test, is calculated as - 2 times 
the difference between t’he log-likelihoods of t,wo 
nested models and is asymptotically distributed as a 
(h-square statistic with degrees of freedom equal to 
the difference in the number of parameters esti- 
mated by the two models. Statistical significance of 
chi-square values may be assessed by comparison to 
critical values found in most statistics text,books 
(e.g. see Beyer. 1988) to determine the consistem,> 
of the model with the observed DNA fragments. In 
the present application, t’he likelihood ratio test was 
used to assess the similarit’y, or homogeneity, of 
sequence compositions by obtaining log-likelihood 
values (using eqn (10)) for sequences in each spacing 
class and comparing the sum of those values with 
the log-likelihood generated from the pooled 
sequences with variable spacer lengths. In addition 
to the test of spacing class homogeneity, the posi- 
tions in the spacer regions were examined to idell- 
tify those that may be important components of 
promoter specificity. 

The results of applications of the EM model to 
specific and combined promoter spacing classes are 
presented in Table 1. Models 1, 2 and 3 represent 
applications to the 16, 17 and 18 bp spacer length 
promoters, respectively. In these models? the spacer 
lengths were fixed on the basis of known spacing 
class and all positions within the spacer regions were 
allowed to exhibit different frequencies. In model 4, 
the 213 sequences in these groups were combined 
and the spacer length allowed to vary from 16 to 18 
bases. The chi-square homogeneity test of the data 
indicated that, the sequences are, indeed, similar as 
regards positional base composition of protein 
binding sites (xfss = 126724, p > 0.95). These 
results suggest that the overall promoter regions in 
E. coli fragments do not, have distinct consensus 
sequences and, therefore, need not’ be separated on 
t,he basis of spacing class. 

The probabilities for each spacing class and for 
the pooled data are listed in Table 2. As expected 
from the apparent sequence similarities, the -35 

and - 10 regions of high conservation do not differ 
dramatically bet’ween the 16. 17 and I8 bp spacing 
groups. These similarities were not)ed in the original 
compilation of the fragments by Harley dz Revnolds 
(1987). In general, the base frequencies aitkin the 
spacer regions also are similar for all spacer lengths, 
although some positions differ bet,ween spacing 
groups. For example, in position 9, the 16 and 17 
class promoters reveal somewhat high frequencies of 
T, but the 18 class fragments show thymine as the 
least frequent base in this position. Results from thcb 
likelihood ratio test suggest that these differences 
are within the range of expected fluctuations and 
that, overall, there is insufficient evidence to justify 
the separation of promoters into distinct classes. 
However, the EM algorithm does not ident,ify every 
promoter correctly, both when performed on each 
class separately and on the combined set. and it 
may be that properly aligned promoters would show 
significant spacing-class dependent) positional base 
frequencies. 

To further explore the finding of compositional 
sequence similarity for promoters having different, 
spacer lengths, we examined the data in the original 
published alignments (Harley & Reynolds, 1987). 
Contingency tables of “spacing class” by “base 
frequency” by “position” were tested using thr 
method of log-linear analysis (Bishop et al., 1975). 
All positions in the fragments, both within and 
outside the consensus regions (-50 to + 10 relative 
to transcription start sites), were included in this 
analysis. The log-linear method provides a likr- 
lihood ratio (h-square value that indicates whether 
or not the distributions of residues across positions 
are contingent upon spacing class. Results of the 
log-linear analysis support those of the EM model 
comparisons in revealing little evidence for differen- 
tial base frequencies as a function of promoter 
spacing class (x& = 324.58, p > 020). 

In addition to the global test of spacing-class 
related frequency differences, we calculated contin- 

gency chi-square values for the fragments, 
examining each position separate1.y to assess specific 
position-composition differences. Although this type 
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Table 2 (continued) 

wnscnsus: position 25 represents the start of the 
positions ar’r A(W9). (’ (02). (: (0.2%) anti ‘I’ ((E7 

of examination suffers from repeated assrssmei1t.s of 
the data. thus increasing t,he likelihood of observing 
a significant result, by chance. it presents a simplt> 
illustrative procedure for t,esting distribution differ 
enves of specific2 positions. I’sing the Harley & 
Keynolds (1987) sequence alignments, t’hrsr chi- 
square tests are essentially a replication of O’Neill’a 
(1989~) analyses, hut, using a sample t,hat is approxi- 
mately five t’imrs larger. The contingency analyst~s 
identiied only one position in the entire -50 to 
t 10 region as having substantially different base 
compositions for the three spacing classes. The OIN 
position that appeared to differ among spacing 
(*lasses is not onr known t’o be important for prot,cin 
binding (it is locat’ed - 11 relative to the - 35 
promoter region. ~2 = 22797. p = OWl). Thus. 
these results strongly support t,hose of t)he EM alpo- 
rithm in yielding little justitication for separation ot 
E. coli promoter fragment’s on the basis of spacing 
dass. 

To examine t’he spacing region of the IS. ~oli 
sequences in more det’ail. and t.o illustrate the utilit! 
of likelihood-based model comparisons in the EM 
algorithm. we conducted a series of model compari- 
sons to determine if certain spacer positions cwnt ri- 
butr to the specificity of binding sites, as sornc 
analyses have indicated (Deuschle ef ~1.. 1986: 
O’Neill. 1989a). For these t&s. our intention was to 
locate which spacer positions. if any. have base 
frequencies that) differ significant,ly from those of’ 

non-site positions. Results from the series of KM 
model comparisons are presented in Tablr 3. 

The first model listed in Table 3 is identical with 
the final model of Table 1. in \vhich all ~~otts~msus 

and spacer positions arr allowed to havt, clifieretlt 
frequencies. The sec~md model provides an omnibus 
t*est of the difference between frequencies of spacer 
residues and those outside the binding regions IJJ 
constraining all spa,cer parameters to equal thr, nori- 
sit,r frequencies and comparing t>hr rrsultiug log- 
likelihood with that of the full model (modrl I ). The 
&-square value for t)his test is highly signilivatrt 
suggest,ing that at least somcx of the positions in the, 
spacer region are ~, sipnific3ntly different from tiot1- 
site positions. To identify the spawr positions rnos~ 
important, in this respect. thy equality coonst raints 
were successively relaxed on specific positions until 
the likelihood did not’ differ signific*ant,ly from t,hat 
obtained in the fill1 model. The order in which this 
procedure was undertakcv was dictated 1)~ t.hcb 
probabilities shown in Table 2: the posit,ions were 
examined in decreasing order of base specificit) 
(specifically. the positional order was 16. 23, IO. 7. 9, 
19. 20 and 22 in relation t,o Table 2). This or&ring 
of model comparisons is not guaranteed 1.0 find a 
unique set of important positions. but is expect~~ to 
Tield a minimum number of positions that may be 
Important for promot,er spe+icit,y. The final motic~l 
from the series is listed as model 3 in ‘I’ablr~ 3. ‘I’hf 
procedure identified eight of the IX sparser posit iotls 

Table 3 
Tents of spucer parnmrters for E. coli promoter.5 

Model description I,I, 

(1) All spacer bases 
unconstrained 

(2) All spacer bases equal to 
overall base frequencies 

(3) Model 2, with sparer bases 
at 7. 9. . 10 ,,*, 16 19 20 1 42 
and 23 unconstrained 

Position 1 refers to the -35 siix; position 25 represents the - IO sit,e. LL. log-likelihood: A!’ Param. 
number of parameters estimated by the model. 
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as having base compositions that differ from non- 
site regions. Tn conjunction with the - 35 and - 10 
binding regions. these results generate the overa,lI 
consensus: 

TT(:AC‘.4 TxTTxxxxxAxxTTx$(:x TATAAT. 

although it is important to emphasize t’hat the 
spacer positions do not necessarily show a very high 
degree of conservation: but only a significant’ differ- 
ence from the composit)ion of bases outside the 
promoter regions. The low conservation also implies 
t’hat mutations in t’his region map not have large 
effects. Tn order t.o obt)ain mutatmns occurring in 
t)he spacer it may be necessary to select from an 
already weak promoter. or do mutagenesis likely to 
carrat.e several simult~aneous mut,ations. 

5. Discussion 

An extension of the EM algorithm (Lawrence & 
Keill,v. 1990~) has been developed t)hat allows for 
variable spacer lengths in promot,er regions of lI11’A. 
The variable spacer length model has the ability 
simultaneously to locat,e. align and characterize pro- 
tein-binding sites in biopolymer sequences. The 
primary- feature of the algorithm that is not) avail- 
able in previous methods is the ability to identify 
binding sites from a group of DNA sequences that 
share conserved regions but differ in spacing 
betwerhn the binding posit’ions. The rnethod also 
allows for rigorous comparisons of diRerent models 
for the hinding interaction. An additional practical 
advantage of the EM method over other search 
protocols is that the caomputer memory require- 
ment~s are slight (f,awrrnce & Reilly. 1990n). OnI?- 
the observed data [0(X x L,,,)]. the vectors of esti- 
mated parameters. and the posterior probabilities 
IO(NC x I,,,,)] need to he stored in computer 
memory. 

In applications of the EM model to a large set of 
E. c&’ promoter fragments, the algorithm appeared 
to perform very well in identifying promoter sites 
white allowing variation in spacing bet)ween the 
protein c:ont,ac+ regions. Approximately 87 9;, of the 
known promot,er sites were locat,ed by the algorithm 
in the absenccl of informat’ion about the initiation 
sites. or even of information concerning the weakl) 
(sonserved patt’ern that occurs around the initiation 
site. The predicted frequencies of fragments having 
different. spacing lengths closely resembled those 
from previous alignments. which did utilize initia- 
tion site information (Harley & Reynolds. 1987). 
Including the informat,ion that a weakly c~onservrd 
pat t,errr exist’s, with variable spacing. downstream 
from the - IO region improved the prediction accu- 
racy to 91(),,. Also. the variability in the probabili- 
ties assigned to promoter sites by the EM algorithm, 
and the result that slightly different alignments are 
equally good st.atisticatty. illustrate the favt that 
the prc&e tocation of some of the promot)ers are not, 
known with absolute certainty. 

[‘sing the maximum likelihood basis of the EM 
met hod. WP caonducted statistical tests of possible 

differences in promoter base composition that may 
be associated with different spacing lengths between 
conserved prot’ein-binding regions. Our findings of 
consensus similarities between promot)ers having 16, 
I7 or 18 bases in the spacer region support’ t,he 
conclusions of Harley $ Reynolds (1987) in analysis 
of this data set, but differ somewhat’ from those 
reported more recently. O’Keilf (1989a.6,r) has 
examined small subsets of the E. CYA compilat’ion 
and found differences between spacing (Ltasses for 
the positional base frequencies. However, these 
tindings were based on very smatl sample sizes, 
approximately one-fifth of that presently examined, 
and were caoncerned additionally with base positions 
extending far up&earn from the - 35 contact 
region and downstream from the - 10 s&e. 
Although our findings strongly suggest similarity of 
prot)ein-hinding sites and intervening spacer regions 
(p > 0.95). t,hey also identified at least one posit,ion 
upst)ream from the -35 region t>hat differs as a 
function of spacing length. Thus. the extended posi- 
tions may conf(Jr t’he spacing class specGficit,y not’ed 
b)- O‘Neilt. 

Our assessments of positional importance within 
the spacing region indicated t,hat) as many as eight 
posit8ions may contribute to promoter specificity. 
Base frequencies for spacer regions typically have 
been ignored, because t’he level of conservation is 
much fess than that of the protein contact sites. 
However. there is increasing evidence suggest.ing 
that the residues in spacer regions play a role in 
binding sites even if there are not specific contacats 
(Koudelka rt al., 19X7). The results of the present 
application Iend further support. for such effect,s. 

The present application of EM to /2. &i 
promoters has been facilitated somewhat by avail- 
able information concerning promot,er length and its 
variation. but the EM method is not restricted t,o 
these types of well-defined problem. The present 
algorithm may be very useful for situations in which 
little is known about protein-binding regions, since 
t#hr maximum likelihood procedure allows for a 
large number of different hypotheses t.o be tested for 
consistency wit)h the data. Thus, the EM technique 
seems promising for tocatting new- protein-binding 
sites and describing their essential features, as well 
as for adding information about known binding 
sites. I 

L2:e recognize that, in addition to sequence com- 
position and spacer length. other features of DNA 
fragments may he irnportant for promoter speci- 
ficaity. Our findings suggest that inclusion of tran- 
sc,riptional start) site information enhances promoter 
site identification. It is possible that) multiple inter- 
acat ions of residues in adjacent and non-adjacent 
sequence positions may also caontribut,e t#o promoter 
uniqueness. I,awrence & Reitlv (1990b) have 
presented some preliminary work ‘in this area using 
an alternative extension of the original KM 
procedure. 

The EM algorithm presented here expands the 
range of problems and hypotheses in f);“\‘A binding 
specificity that may be investigated using non- 



biochemical methodology. Questions concerning 
prot’ein-binding mot’ifs, sequence simila~rity. and 
promotrr specificit,y as a function of base cwnserva- 
tion and segment structure may IF studied a-ith 
IitG expense of time and effort. The method also is 
applicable to examining prot~ein srquenws t)cj 
drt.erminr the wmmon motifs associated with prti- 
cular functions. As the amount) of sequence data 
increases, methods such as the RR1 approach ma! 
twcwme increasingly useful for description and 
c~hara~ter.ization of important’ srquence regions. 
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