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The assembly of a multiple sequence alignment (MSA) has become one of the most 
common tasks when dealing with sequence analysis. Unfortunately, the wide range of 
available methods and the differences in the results given by these methods makes it hard 
for a non-specialist to decide which program is best suited for a given purpose. In this 
review we briefly describe existing techniques and expose the potential strengths and 
weaknesses of the most widely used multiple alignment packages.
Sequence alignment is by far the most common
task in bioinformatics. Procedures relying on
sequence comparison are diverse and range from
database searches [1] to secondary structure predic-
tion [2]. Sequences can be compared two by two to
scour databases for homologues, or they can be
multiply aligned to visualize the effect of evolu-
tion across a whole protein family. In this study
we will focus on the later methods, dedicated to
the global simultaneous comparison of more than
two sequences. Special emphasis will be given to
the most recently described techniques.

The many uses of MSAs
Multiple alignments constitute an extremely pow-
erful means of revealing the constraints imposed
by structure and function on the evolution of a
protein family. They make it possible to ask a wide
range of important biological questions and they
will each be discussed in turn.

Phylogenetic analyses
Phylogenetic trees are instrumental in elucidating
the evolutionary relationships that exist among
various organisms. Nowadays, highly accurate
phylogenetic trees rely on molecular data. Their
computation typically involves four steps: 

• collection of a set of orthologous sequences in
a database

• multiple alignment of the sequences 
• measure of pair-wise phylogenetic distances

on the multiple alignment and computation
of a distance matrix

• computation of the tree by applying a cluster-
ing algorithm [3] to the distance matrix

As an alternative to the last two bullets the tree
may also be computed using maximum likeli-
hood [4]. In both cases, the role of multiple align-
ment is to provide a very accurate estimation of

pair-wise distances and to make it possible to
estimate the reliability of each branch by boot-
strapping [5].

Identification of conserved motifs and domains
MSAs make it possible to identify motifs pre-
served by evolution that play an important role in
the structure and function of a group of related
proteins. Within a multiple alignment, these ele-
ments often appear as columns with a lower level
of variation than their surroundings. When cou-
pled with experimental data, these motifs consti-
tute a very powerful means of characterizing
sequences of unknown function. Important data-
bases like PROSITE [6] or PRINTS [7] rely on this
principle. When a motif is too subtle to be
defined with a standard pattern, one may use
another type of descriptor known as a profile [8] or
a hidden Markov model (HMM) [9]. These are
meant to exhaustively summarize (column by col-
umn) the properties of a protein family or a
domain. Profiles and HMMs make it possible to
identify very distant members of a protein family
when searching a database. Their sensitivity and
specificity is much higher than that provided by a
single sequence or a pattern. In practice, one can
derive their own profile from multiple alignments
using packages such as: the PFTOOLS [10], pre-
established collections like Pfam [11], or compute
the profiles on the fly with PSI-BLAST [12] the
position specific version of BLAST. The specifi-
city and sensitivity of a profile are tightly corre-
lated to the biological quality of the multiple
alignment it was derived from.

Structure prediction
Structure prediction is another important use
of multiple alignments. Secondary and tertiary
structure prediction aim at predicting the role a
residue plays in a protein structure (buried or
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exposed, helix or strand etc.). Secondary struc-
ture predictions based on a single sequence
yield a low accuracy (in the order of 60%) [13],

while predictions based on a MSA go much
higher (in the order of 75%) [2,14,15]. The
rationale behind such improvements is that the
pattern of substitutions observed in a column
directly reflects the type of constraints imposed
on that position in the course of evolution. In
the context of tertiary structure determination
or when predicting non-local contacts, multiple
alignments can also help to identify correlated
mutations. This approach has only given lim-
ited results when applied to proteins [16], it has
been much more successful in RNA analysis
where it allows highly accurate predictions [17]

well confirmed by structural analysis.
Altogether, these very important applications

explain the amount of attention dedicated to the
MSA problem and any biologist should be aware
that very few bioinformatics protocols bypass the
multiple alignment stage. Unfortunately, availa-
ble tools are only heuristics providing an approx-
imate solution to a problem that remains largely
open. These many heuristics are based on differ-
ent paradigms, each well suited to a limited
range of situations.

A complicated problem
MSA is a complicated problem. It stands at the-
cross road of three distinct technical difficulties: 

• the choice of the sequences
• the choice of an objective function (OF), i.e.,

a comparison model 
• the optimization of that function 

Altogether, properly solving these three problems
would require an understanding of statistics,
biology and computer science that lies far
beyond our grasp.

The choice of the sequences
The methods reviewed here (i.e., global MSA
methods) only make sense if they are assumed to
be dealing with a set of homologous sequences
i.e., sequences sharing a common ancestor. Fur-
thermore, with the exception of DiAlign [18],
global methods require the sequences to be
related over their whole length (or at least most
of it). When that condition is not met, one
should consider the use of local MSA methods
such as the Gibbs sampler [19], Match-Box [20] or
MACAW [21]. In any case, one should always be
aware that given inappropriate sequences, most
multiple alignment routines will nonetheless

produce an alignment. It will be the responsibil-
ity of the biologist to realize that this alignment
is meaningless. This is not an easy task, and a few
years ago Henikoff reviewed a series of problems
that can occur when one forces multiple align-
ments with unrelated sequences [22]. In order to
recruit a set of homologous sequences, it is com-
mon practice to use one of the BLAST programs
(WU-BLAST, PSI-BLAST, GAPPED BLAST
etc.) [12], for searching within a database all the
sequences similar to some query sequence.
When doing so, an observed similarity is consid-
ered good when it is unlikely to arise by chance
(given the database and the amino-acid frequen-
cies). To make this estimation, BLAST uses pow-
erful statistical models developed by Altschul
and Karlin [23]. Of course, these statistical mod-
els merely approximate the biological reality, and
homology may be misrepresented by similarity,
leading to the incorporation of improper
sequences within a multiple alignment.

The choice of an objective function
This is purely a biological problem that lies in
the definition of correctness. What should a bio-
logically correct alignment look like? Can we
define its expected properties and will we recog-
nize it when we see it? These intricate questions
can only be answered by means of a mathemati-
cal function able to measure an alignment bio-
logical quality. We name this function an OF
because it defines the mathematical objective of
the search. Given a perfect function, the mathe-
matically optimal alignment will also be biologi-
cally optimal. Yet this is rarely the case, and while
the function defines a mathematical optimum,
we rarely have an argument that this optimum
will also be biologically optimal.

Defining a proper objective function is a
highly non-trivial task and an active research
field of its own right. In theory, an OF should
incorporate everything that is known about the
sequences, including their structure, function
and evolutionary history. This information is
rarely at hand and is hard to use, so it is usually
replaced with sequence similarity. Thus, a very
simple general function is often used: the
weighted sums-of-pairs with affine gap penal-
ties [24]. Under this model, each sequence
receives a weight proportional to the amount
of independent information it contains [25] and
the cost of the multiple alignment is equal to
the sum of the cost of all the weighted pair-
wise substitutions. The substitution costs are
evaluated using a pre-defined evolutionary
Pharmacogenomics (2002)  3 (1)
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model known as a substitution matrix [26], in
which a score is assigned to every possible sub-
stitution or conservation according to its bio-
logical likeliness (i.e., rarely observed
mutations receive a negative score while muta-
tions observed more often than would be
expected by chance to receive a positive score).
Insertions or deletions are scored using affine
gap penalties that penalize a gap once for open-
ing and then proportionally to its length. This
penalty scheme is a major source of concern
because it requires two parameters: i) the gap
opening and ii) the gap extension penalty,
whose adequate values can only be set empiri-
cally and may vary from one set of sequences to
the next [27]. Although this function is clearly
wrong from an evolutionary point of view [24],

because it assumes every sequence within the
set to be an ancestor of every other sequence,
the ease of its implementation has made it pop-
ular with the most widely used MSA packages
[28-30]. This validation was recently confirmed
by a more thorough benchmarking [31] indicat-
ing that packages that rely on the sums-of-pairs
are reasonable performers as judged by the bio-
logical quality of the alignments they produce.
Very recently, a new variant of the sum-of-pairs
function has been introduced that seems less
likely to over-estimate evolutionary events [32].

In recent years, new OFs have been
described that seem to be less sensitive to gap
penalty estimation thanks to the incorporation
of local information. These include the seg-
ment-based evaluation of DiAlign [33] and the
consistency objective function of T-Coffee [34].
HMMs [9,35] constitute another line of thought
recently explored. HMMs describe the multi-
ple alignment in a statistical context, using a
Bayesian approach. Although from a formal
point of view they provide us with the most
attractive solution, their performances for ab
initio alignments have so far been disappoint-
ing and recent work shows that carefully tuned
HMM packages barely outperform ClustalW
[36]. Other statistically-based methods that
attempt to associate a P-value to the multiple
alignment have been described [19,37]. Unfortu-
nately, these measures are restricted to
ungapped MSAs.

All things considered, one should be well
aware that there is no such thing as the ideal OF
and every available scheme suffers from major
drawbacks. In an ideal world, a perfect OF
would be available for every situation. In prac-
tice, this is not the case and the user is always left

to make a decision when choosing the method
that is most suitable to the problem.

Computation
The third problem associated with MSAs is com-
putational. Assuming we have at our disposal an
adequate set of sequences and a biologically per-
fect objective function, the computation of a
mathematically optimal alignment is too com-
plex a task for an exact method to be used [38].
Even if the function we are interested in was as
simple as a maximization of the number of per-
fect identities within each column, the problem
would already be out of reach for more than
three sequences. This is why all the current
implementations of multiple alignment algo-
rithms are heuristics and that none of them guar-
antee a full optimization. Considering their most
obvious properties, it is convenient to classify
existing algorithms in three main categories:
exact, progressive and iterative. 

Exact algorithms are high quality heuristics
that deliver an alignment usually very close to
optimality [28,39], sometimes but not always
within well-defined boundaries. They can only
handle a small number of sequences (< 20) and
are limited to the sums-of-pairs objective func-
tion. 

Progressive alignments are by far the most
widely used [34,40,41]. They depend on a progres-
sive assembly of the multiple alignment [42-44]

where sequences or alignments are added one by
one so that never more than two sequences (or
multiple alignments) are simultaneously aligned
using dynamic programming [45]. This approach
has the great advantage of speed and simplicity
combined with reasonable sensitivity, even if it is
by nature a heuristic that does not guarantee any
level of optimization. Other progressive align-
ment methods exist such as DiAlign [18] or
Match-Box [20], which assemble the alignment in
a sequence-independent manner by combining
segment pairs in an order dictated by their score,
until every residue of every sequence has been
incorporated in the multiple alignment. 

Iterative alignment methods depend on algo-
rithms able to produce an alignment and to
refine it through a series of cycles (iterations)
until no more improvements can be made. Itera-
tive methods can be deterministic or stochastic,
depending on the strategy used to improve the
alignment. The simplest iterative strategies are
deterministic. They involve extracting sequences
one by one from a multiple alignment and rea-
ligning them to the remaining sequences [46,47],
133
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some of these methods can even be a mixture of
progressive and iterative strategies [48]. The pro-
cedure is terminated when no more improve-
ment can be made (convergence). Stochastic
iterative methods include HMM training [49]

and simulated annealing or genetic algorithms
[50-56]. The main advantage is to allow for a good
conceptual separation between optimization
processes and OF. Recent examples of algorithms
belonging to these three categories are reviewed
in the next section.

Review
The number of available MSA methods has
steadily increased over the last 20 years. Being
exhaustive on these will not be possible within
the scope of this work, and this review should be
seen as complementary with another recent
review [57]. Furthermore, it should be pointed
out that only a minority of the methods
described in the literature have found their way
towards regular usage. There are many reasons
for failure, but the main one stems from a simple
fact: there is no satisfactory theoretical frame-
work in sequence analysis, in this context an
algorithm is only as good as it is useful. Improve-
ments are driven by results and not theory, so
that programs with badly designed interfaces or
poor portability have been disgarded by natural
selection, leaving their algorithms to be re-
invented by later generations.

Over the last few years, the field of MSA has
undergone drastic evolutionary changes with the
introduction of several new algorithms and new
evaluation methods. Some of the methods used
for mutiple sequence alignments are listed in
Table 1. Among all this, two new trends have
emerged: 

• the increasing use of iterative optimisation
strategies (stochastic or non-stochastic) 

• the use of consistency-based scoring schemes 

In this section, we review some of these new
algorithms, their main characteristics and poten-
tial shortcomings. Another major trend, that will
not be extensively covered here, has been the
introduction of HMMs methods [9,35]. A very
detailed account on HMM-based methods for
MSAs may be found in [58].

The progressive algorithms
Progressive alignment constitutes one of the sim-
plest and most effective ways of multiply align-
ing a set of sequences in little time and with little
memory. This algorithm was initially described

by Hogeweg [42] and later re-invented by Feng
[43] and Taylor [44]. The most widely used MSA
packages are based on an implementation of this
algorithm, which include: Pileup, a part of the
GCG package [59], MultAlign [41] and ClustalW
[29] that has become the standard method for
multiple alignments.

ClustalW is a non-iterative, deterministic
algorithm that attempts to optimize the
weighted sums-of-pairs with affine gap penalties.
It is a straightforward progressive alignment
strategy where sequences are added one by one to
the multiple alignment according to the order
indicated by a pre-computed dendrogram.
Sequence addition is made using a pair-wise
sequence alignment algorithm [45]. The main
shortcoming of this strategy is that once a
sequence has been aligned, that alignment will
never be modified even if it conflicts with
sequences added later in the process (as shown in
Figure 1). ClustalW also includes many highly
specialized heuristics meant to maximally exploit
sequence information: 

• local gap penalties 
• automatic substitution matrix choice
• automatic gap penalty adjustment
• the delaying of the alignment of distantly

related sequences 

Benchmarking tests, carried out on BAliBASE
[31], a database of reference structural alignments,
shows that, in general, ClustalW performs better
when the phylogenetic tree is relatively dense
without any obvious outlier. It does not matter
how widely the sequences are spread just as long
as every sequence remains close enough (a bit
like crossing a river stepping from stone to
stone). Long insertions or deletions also cause
trouble, due to the intrinsic limitation of the aff-
ine penalty scheme used by ClustalW.

The latest improvement to the progressive
alignment algorithm is T-Coffee, a novel strategy
where sequences are aligned in a progressive man-
ner but using a consistency-based objective func-
tion that makes it possible to minimize potential
errors, especially in the early stages of the align-
ment assembly. T-Coffee is reviewed in more
detail in the consistency-based algorithm section.

Exact algorithms
As mentioned earlier, progressive alignment is
only an approximate solution. In order to use
the signal contained in the sequences properly,
one would like to simultaneously align them,
rather than adding them one by one to a mul-
Pharmacogenomics (2002)  3 (1)
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Table 1. Some recen

Name

MSA

DCA

OMA

ClustalW, ClustalX

MultAlign

DiAlign

ComAlign

T-Coffee

Praline

IterAlign

Prrp

SAM

HMMER 

SAGA

GA 
tiple alignment. This would be especially use-
ful when dealing with sets of extremly
divergent sequences whose pair-wise align-
ments are all likely to be incorrect. Unfortu-
nately, to align several sequences, one would
need to generalize the Needlman and Wunsch
algorithm [45] to a multi-dimensional space
and for practical reasons (time and memory)
this is only possible for a maximum of three
sequences. That limit can be pushed a bit fur-
ther if one finds a way to identify in advance
the portion of the hyperspace that does not
contribute to the solution and exclude it from
computation. This is achieved in the MSA
program, an implementation of the Carrillo
and Lipman algorithm [60] that makes it possi-
ble to align up to ten closely related sequences
[28]. It should be stressed here that, contrary to
a widespread belief, the MSA program is only a
heuristic implementation of the Carillo and
Lipman algorithm, that is not guaranteed to
reach the mathematical optimum. MSA  uses
lower and upper bounds tighter than the guar-
anteed ones (Altschul, personal communica-
tion). Even so, the high memory requirement,
the lengthy computational time and the limi-
tation on the number of sequences explain
why the MSA program quickly gave way to
ClustalW. Yet, MSA met again with popularity
when Stoye described a new divide and con-
quer algorithm DCA [39] that sits on the top of
MSA and extends its capabilities. The DCA

algorithm cuts the sequences in subsets of seg-
ments that are small enough to be fed to MSA.
The sub-alignments are later reassembled by
DCA. The trick is to cut the sequences at the
right points so that the produced alignment
remains as close as possible to optimality. The
way it is done in DCA is slightly heuristic
albeit fairly accurate. Benchmarking on BAli-
BASE indicated that the DCA strategy does
slightly better that ClustalW, even if the four
largest BAliBASE test sets could not be com-
puted with DCA (Notredame, unpublished
results). Even when MSA is coupled to DCA,
strong limitations remain on the number of
sequences that can be handled (20–30) and on
their phylogenetic spread. Recently, an itera-
tive implementation of DCA [61], optimal mul-
tiple alignment (OMA) was described that is
meant to speed up the DCA strategy and
decreases its memory requirements.

Iterative algorithms
Iterative algorithms are based on the idea that the
solution to a given problem can be computed by
modifying an already existing sub-optimal solu-
tion. Each ‘modification’ step is an iteration. In
the examples considered here, modifications can
be made using dynamic programming or various
random protocols. While the dynamic program-
ming-based protocols can also include elements
of randomization, we distinguish them from
more traditional stochastic iterative methods

t and less recent available methods for MSAs.

Algorithm URL Ref.

Exact http://www.ibc.wustl.edu/ibc/msa.html [28]

Exact (requires MSA) http://bibiserv.techfak.uni-biefield.de/dca [39]

Iterative DCA http://bibiserv.techfak.uni-biefield.de/oma [61]

Progressive ftp://ftp-igbmc.u-strasbg.fr/pub/clustalW or clustalX [29]

Progressive http://www.toulouse.inra.fr/multalin.html [41]

Consistency-based http://www.gsf.de/biodv/dialign.html [18]

Consistency-based http://www.daimi.au.df/~ocaprani [75]

Consistency-based/progressive http://igs-server.cnrs-mrs.fr/~cnotred [66]

Iterative/progressive jhering@nimr.mrc.ac.uk [48]

Iterative http://giotto.Stanford.edu/~luciano/iteralign.html [70]

Iterative/Stochastic ftp://ftp.genome.ad.jp/pub/genome/saitama-cc/ [47]

Iterative/Stochastic/HMM rph@cse.ucsc.edu [84]

Iterative/Stochastic/HMM http://hmmer.wustl.edu/ [68]

Iterative/Stochastic/GA http://igs-server.cnrs-mrs.fr/~cnotred [51]

Iterative/Stochastic/GA czhang@watnow.uwaterloo.ca [52]
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Figure 1. Limits of t

This example shows how
choice between aligning 
Since terminal gaps are m
sequence is added, it turn
multiple alignment.

THE FAT CAT GA
such as simulated annealing (SA) [62] or genetic
algorithms (GA) [63].

Stochastic iterative algorithms
SA was the first stochastic iterative method
described for simultaneously aligning a set of
sequences. Various schemes have been published
[50,64], which all involve the same chain of proc-
esses: an alignment is randomly modified, its
score assessed, it is kept or discarded according to
an acceptance function that gets more stringent
while the iteration number increases (by analogy
with a decreasing temperature during crystalliza-
tion), the process goes on until a finishing crite-
ria such as convergence is met. In practice,
despite being intellectually very attractive, SA is
too slow for making ab initio alignment and it
can only be used as an alignment improver. GAs
constitute an interesting alternative to SA as
shown in SAGA [51], a GA dedicated to MSA.
Like SA, SAGA is an optimization black box in
which any OF invented can be tested. The prin-
ciple of SAGA is very straightforward and fol-
lows closely the ‘simple GA’ [65]: randomly

generated multiple alignments of a given set of
sequences evolve under some selection pressure.

These alignments are in competition with each
other for survival (survival of the fittest) and repro-
duction. Within SAGA, fitness depends on the
score measured by the objective function (the bet-
ter the score, the fitter the multiple alignment).
Over a series of cycles known as generations, align-
ments will die or survive, depending on their fit-
ness. They can also improve and reproduce
through some stochastic modifications known as
mutations and crossovers. Mutations randomly
insert or shift gaps while crossovers combine the
content of two alignments (Figure 2). Overall, 20
operators co-exist in SAGA and compete for usage.
The program does not guarantee optimality but
has been shown to equal or outperform MSA from
a mathematical point of view on 13 test sets (using
exactly the same OF in both programs). The com-
plete disconnection between the operators and the
original OF made it possible to seamlessly modify
the original OF in order to test SAGA with a new
OF named COFFEE (Consistency Objective
Function For alignmEnt Evaluation) [66]. This

he progressive strategy.

 a progressive alignment strategy can be misled. In the initial alignment of sequences 1 and 2, ClustalW has a 
CAT with CAT and making an internal gap or making a mismatch between C and F and having a terminal gap. 
uch cheaper than internals, the ClustalW scoring schemes prefers the former. In the next stage, when the extra 
s out that properly aligning the two CATs in the previous stage would have led to a better scoring sum s-of-pairs 

GARFIELD THE LAST FAT CAT GARFIELD THE FAST CAT 

GARFIELD THE LAST FAT CAT

GARFIELD THE FAST CAT ---

 

RFIELD THE VERY FAST CAT 

GARFIELD THE LAST FA-T CAT

GARFIELD THE FAST CA-T ---

GARFIELD THE VERY FAST CAT

 

GARFIELD THE LAST FA-T CAT

GARFIELD THE FAST CA-T ---

GARFIELD THE VERY FAST CAT

-------- THE ---- FA-T CAT

 

Pharmacogenomics (2002)  3 (1)



http://www.ashley-pub.com

TECHNOLOGY REPORT

Figure 2. One point
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Parent alignment 1

N---VDEVGGEA
NEEE---VGGEA
G--AHAGEYGAE
GGHA--GEYGAE

W G KV
W D KV
W G KV
W S KV

W G KV
W D KV
W G KV
W S KV

--NVDEVG-G E
--NEEEVG-G E
GA-HAGEYGA E
GGHAGEY-GA E

Child alignment 1
series of studies revealed the suitability of GAs to
become investigation tools but also made it clear
that GAs were too slow a strategy for large-scale
projects or everyday use. 

Another similar MSA GA was later introduced
by Zhang and Wong [52]. The authors report a
very high efficiency for their GA but these results
must be considered with care since their strategy
(especially the mutations) is driven by the pres-
ence of completely conserved segments that guide
the assembly of the alignments. The assumption
that such segments will always exist when align-
ing proteins is not realistic. This method appears
to be appropriate when comparing very long
highly similar sequences (such as portions of
genomes). SAGA was later parallelized by two
independent groups [67,53], in order to improve its
efficiency. The model described in SAGA has
been met with considerable interest in the evolu-
tionary programming community and, in recent
years, at least three algorithms based on the
SAGA principle have been published [54-56].

The Gibbs sampler is another interesting sto-
chastic iterative strategy [19]. It is a local multiple

alignment method that finds ungapped motifs
among a set of unaligned sequences. From a
multiple alignment perspective, the most inter-
esting feature of the Gibbs sampler is its OF. The
algorithm aims to build an alignment with a
good P-value (i.e., a low probability of having
been generated by chance). At each iteration,
segments are removed or added according to the
probability that the current model (the rest of
the alignment) could have generated them. If
that probability is high enough, the model is
then updated with the new segments and the
algorithm proceeds toward the next iteration.
The overall result is an alignment that has a good
P-value and maximizes the probability of the
data it contains (i.e., each sequence fits well
within the alignment). This Bayesian idea of
simultaneously maximizing the data and the
model is also central to HMMs [9,35], thus it is
not surprising to find that HMMs can also be
trained by expected maximization [49,68]. How-
ever, like GAs, HMMs proved rather disappoint-
ing when it came to ab initio alignments. Today,
HMMs such as those found in Pfam [11] are no
longer generated from unaligned sequences.
State of the art protocols are much more inclined
toward turning a pre-computed alignment into
an HMM and further refining it using HMMER
[49] or SAM [68].

Non-stochastic iterative algorithms
The first non-stochastic iterative algorithms date
back to the origins of MSAs [46]. The idea is sim-
ple and attractive: since mistakes may arise in the
early stages of a progressive alignment, why not
correct them later by re-aligning each sequence
in turn to the multiple alignment using standard
dynamic programming algorithms [45]. The pro-
cedure terminates when iterations consistently
fail to improve the alignment. This very simple
algorithm constitutes most of the iterative strate-
gies described in the early 1990s. The main
scope for variation is the way sequences are
divided into two groups before being re-aligned.
In AMPS [46], sequences are chosen according to
their input order and re-aligned one by one. In
the algorithm of Berger and Munsen [69], the
choice is made in a random manner and
sequences are divided into two groups that can
contain more than one sequence. The element of
randomization makes the algorithm more robust
and improves its accuracy. Few of these early iter-
ative methods have been properly bench-
marked, making it hard to estimate their true
biological significance.

 crossover in SAGA.

manner in which two alignments are combined into 
lgorithm that evolves a population of alignments 
inciple is to cut straight one of the alignments and to 
at compatible ends are generated.

Parent alignment 2

--WGKV
WD--KV
WGKV
WSKV

  NVDEVG-G EAL
  NEEEVG-G EAL
GA-HAGEYGA EAL
GGHAGEY-GA EAL

L-
L-
AL
AL

AL
AL
AL
AL

N---VDEVGGEAL-
NEEE---VGGEAL-
G--AHAGEYGAEAL
GGHA--GEYGAEAL

--WGKV
WD--KV
WGKV--
WSKV--

Child alignment 2

W G KV
W D KV
W G KV
W S KV

--NVDEVG-G EAL
--NEEEVG-G EAL
GA-HAGEYGA EAL
GGHAGEY-GA EAL

Chosen child alignment
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The most sophisticated DP-based iterative
algorithm available was recently described by
Gotoh [47]. It is a double nested iterative strat-
egy with randomization that optimizes the
weighted sums-of-pairs with affine gap penal-
ties (Figure 3). The originality of this algorithm
is that the weights and the alignment are simul-
taneously optimised. The inner iteration opti-
mizes the weighted sums of pairs while the
outer iteration optimizes the weights that are
calculated on a phylogenetic tree estimated
from the current alignment [25]. The algorithm
terminates when the weights have converged.
Prrp was the first multiple alignment program
to be extensively benchmarked, using JOY, a
database of structural alignments. The results
were confirmed on BAliBASE [31,34]. Prrp sig-
nificantly out-performs most of the traditional
progressive methods as well as some of the most
recent iterative strategies (Table 2).

Two other iterative alignment methods were
recently described: Praline [48] and IterAlign [70].
These two methods share very similar protocols.
They both start with a preprocessing of the
sequences to align. In IterAlign, sequences are
‘ameliorated’(sic), this means that each sequence
is locally compared to others and that every seg-
ment that shows high similarity with other pro-
teins is replaced by a consensus. One round of
‘amelioration’ constitutes one iteration. Other
iterations are run on the new set of ‘ameliorated’
sequences, until the collection of consensus con-
verges. Consistent blocks are then extracted from
the consensus collection and these blocks are
chained in order to produce the final alignment.
Praline uses a very similar protocol: sequences
are replaced with a complete profile made from a
multiple alignment that only includes their clos-
est relatives. That profile step is iterated until the
collection of profiles converges. This collection
of profiles is conceptually similar to the ‘amelio-
rated’ set of sequences used by IterAlign. The
multiple alignment is then assembled by using a
straightforward progressive algorithm where
sequences are replaced with profiles. One of the
most interesting consequences of the protocol
used in Praline is the possibility of measuring the
consistency between the final alignment and the
collection of profiles used for its assembly. There
may be some correlation between this measure
and the true accuracy of the alignment.

Regardless of the potential performances of
these two methods (neither have been properly
bench marked), some emphasis should be given
to the novel concepts they incorporate: 

• the first one is the use of local information in
IterAlign, in order to decrease sensitivity to
the gap penalty parameterization

• the second key concept is consistency 

Sequences are preprocessed so that the regions
consistently conserved across the family see their
signal enhanced and become more likely to drive
the alignment. This search for consistency has
been one of the strongest trend in recent devel-
opments of MSA. It is also central to the non-
iterative methods.

Consistency-based algorithm
The first consistency-based MSA method was
described by Kececioglu in the 1980s [71]. Given
a set of sequences, the optimal MSA is defined as
the one that agrees the most with all the possible
optimal pair-wise alignments. Computing that
alignment is an NP complete problem that can
only be solved for a small number of related
sequences, using an MSA-like algorithm. None-
theless, there are at least three good reasons that
make consistency-based OFs very attractive: 

• Firstly, they do not depend on a specific sub-
stitution matrix but rather on any method or
collection of methods able to align two
sequences at a time.

• Secondly, the consistency-based scheme is
position dependant, given the collection of
pair-wise alignments. This means that the
score associated with the alignment of two res-
idues depends on their indexes (position
within the protein sequence) rather than their
individual nature.

• The third reason is more general and has to do
with consistency. Experience shows that given
a set of independent observations, the most
consistent are often closer to the truth.

This principle generally holds well in biology
and can be loosely connected to the observation
that, given a series of measurements, noise
spreads while signal accumulates.

Although the first consistency-based OF was
described in 1983, it took several more years to
develop heuristic algorithms able to deal with
optimization and it is only recently that a GA,
(SAGA [51]) was used to show the biological
advantages of such a function, COFFEE [66],

which emulates the maximum weight trace prob-
lem. In SAGA-COFFEE, the collection of
weighted pair-wise alignments is named a library
and SAGA is used to compute the alignment that
has the highest level of consistency with the
Pharmacogenomics (2002)  3 (1)
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Table 2. Some eleme

Method Ref1

DiAlign 71.0

ClustalW 78.5

Prrp 78.6

T-Coffee 80.7

Each method in the Metho
BAliBASE. The alignments 
alignment using aln_comp
Results obtained in each ca
statistically significant, as a
contains a homogenous se
sequences and an outlayer
Ref4 contains sequences th
ref5 contains sequences th
is the average of ref1–5.
library. In practice, the library may contain more
than one alignment for each pair of sequences, the
information it contains may be redundant, con-
flicting and may originate from sources as various
as one wishes (structure analysis, sequence com-
parison, database search, experimental knowledge
etc.). Although SAGA-COFFEE yielded interest-
ing results, the GA was too slow for everyday use.
This prompted the development of a new heuris-
tic algorithm to optimize the COFFEE function
in a time efficient manner: T-Coffee (Figure 4). In
T-Coffee, the COFFEE library is turned into a so

called ‘extended library’, a position-specific substi-
tution matrix where the score associated with each
pair of residues depends on the compatibility of
that pair with the rest of the library. T-Coffee uses
a procedure reminiscent of Vingron’s Dot matrix
multiplication [72] and Morgenstern overlapping
weights [73]. The multiple alignment is assembled
using a progressive alignment algorithm similar to
the one used in ClustalW [3]: 

• pair-wise distances are computed
• a neighbour joining tree is estimated 

• the sequences are aligned one by one following
the topology of the tree

The main difference between T-Coffee and
ClustalW is that in T-Coffee, the extended
library replaces a substitution matrix. Another
important characteristic of T-Coffee is that its
primary library is made of a mixture of global
alignments (produced with ClustalW) and local
alignments (produced with Lalign [74]). The
bench-marking carried out on BAliBASE shows
that this combination of local and global infor-
mation makes the T-Coffee implementation able
to outperform Prrp, ClustalW and DiAlign on
the five categories of test-sets contained in this
reference database [34]. These results were
obtained without tuning, since T-Coffee does
not have any parameters of its own. Due to the

Figure 3. Layout of Prrp.

This figure shows the layout of Prrp, a double-nested strategy for optimizing multiple alignments. When the 
inner iteration has converged, new sequence weights are estimated. The convergence of these weights is the 
criteria for the outer iteration to stop.

Initial alignment

Tree and weights computation

Alignment converged

End

Realign two sub-groups

Weights converged

Outer iteration

Yes

No

Yes No

Inner iteration

nts of validation on BAliBASE.

Ref2 Ref3 Ref4 Ref5 Total

25.2 35.1 74.7 80.4 57.3

32.2 42.5 65.7 74.3 58.7

32.5 50.2 51.1 82.7 59.0

37.3 52.9 83.2 88.7 68.7

d column was used to align the 141 test-sets contained in 
were then compared with the reference BAliBASE 
are [34]. Ref1–5 indicates the five BAliBASE categories. 
tegory were averaged. All the observed differences are 
ssessed by the Wilcoxon rank-based test [34,47]. Ref1 
t of sequences, ref2 contains a homogenous group of 
, ref3 contains two distantly related groups of sequences. 
at require long internal gaps to be properly aligned and 
at require long-terminal gaps to be properly aligned. Total 
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library extension, T-Coffee does more than sim-
ply compute a consensus alignment. Nonethe-
less, given a collection of multiple alignments, it
can be interesting to combine them into a single
consensus multiple alignment. This is what the
ComAlign program does [75] by combining sev-
eral multiple alignments into a single, often
improved, multiple alignment.

Although the details differ, T-Coffee bears
some similarity to DiAlign [73], another consist-
ency-based algorithm that attempts to use local
information in order to guide a global multiple
alignment. DiAlign starts with an identification
of highly homologous segment-pairs. The
weight of each of these pairs is defined by a P-
value comparable to the P-values used in BLAST.
Each of these segment-pairs receives another
score proportional to its compatibility with the
complete set of segment-pairs. This score is
named an overlapping weight and segment-pairs
weighted this way are very reminiscent of the
extended library. The multiple alignment is then
progressively assembled by adding the pairs of
segments according to their weight. Assembly is
made in a sequence independent order, as
opposed to the ClustalW-style progressive align-
ment strategy. Non-compatible segment-pairs
are discarded, hence the importance of the order
induced by the weights. According to the
authors, DiAlign is especially good at properly
aligning sequences where local homology is the
driving signal. This has been confirmed by BAli-
BASE benchmarking [31,34]. Overall, DiAlign is
not as accurate as ClustalW or Prrp but it does
very well in categories 4 and 5 of BAliBASE,
which require very long insertions to be properly
aligned. Over the past few years, the DiAlign
algorithm has been modified on numerous occa-
sions for improved efficiency [76].

Conclusion and expert opinion
Ten years ago, when schemes such as MSA were
developed, there was very little data available and
the main problem was to use every bit of availa-
ble information properly. Today the situation has
dramatically changed. We are overwhelmed by
‘relevant’ information and in fact there is so
much of it that by choosing the data, one can
suit the needs of almost any method (progres-
sive, iterative etc.). Ironically, one could be
tempted to say that data has improved faster
than mutiple aligment methods.

As a consequence, the real challenge is not so
much the multiple alignment itself but rather the
choice of a subset of sequences that will yield the

most biologically correct and informative align-
ment, given one method or another. There are
two good reasons for not using all the available
sequences:

• Alignments with a large number of sequences
are slow to compute and hard to analyze.
Whenever possible, an alignment should fit
on a single sheet of A4 paper.

• Limitations of existing programs. Although
they all use weighting schemes meant to mini-
mize the effect of similar or highly correlated
sequences, none of these schemes are entirely
satisfactory, and over-represented sub-groups
always end up dominating the alignment or
the profile.

This can prevent the proper alignment of less well
represented sequence sub-groups that may be just
as important. Careful user’s trimming is still the
best available way around that effect. Unfortu-
nately, the increased sensitivity of database search
tools coupled with the increase in database size
has rendered this process very tedious.

The second major change that has occurred
over the last years is the increasing number of
available 3D structures. Although the proportion
of protein sequences with a known 3D structure
is getting smaller and smaller, the situation is very
different from a protein family perspective and
the proportion of protein families where at least
one member has a known 3D structure increases
regularly. This means that in most cases, multiple
alignment modelling could benefit from the
incorporation of 3D structural information, in
order to enhance very remote homologies, or to
guide the choice of local penalties [77]. Very few of
the packages avaliable are able to mix structure
and sequences within a multiple alignment.
While ClustalW is able to use SwissProt second-
ary structure information for gap penalty estima-
tion, a proper tool is still lacking for the
simultaneous alignment of sequences and struc-
tures. Two of the methods introduced here are
good candidates for such a combination. The
consistency-based algorithms have the advantage
of having few requirements on the origin of their
libraries. For instance, DALI, the database of
structural multiple alignments [78] relies on T-
Coffee to assemble the collection of pair-wise
alignments produced by the DALI algorithm into
a multiple alignment. The double dynamic pro-
gramming algorithm introduced by Taylor [79] is
also a good candidate for that purpose. While it
has been shown that this algorithm is suitable for
structure-to-structure alignments [80], recent
Pharmacogenomics (2002)  3 (1)
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Figure 4. Layout of
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results indicate that it could also be used in the
context of MSA and possibly as a means to mix
sequences and structures [81].

The third major obstacle on the road that
leads toward an informative multiple alignment
is the processing of repeats. Repeated sequences
(in tandem or not) are renowned for confusing
all the existing MSA methods. When dealing
with sequences that contain such repeats, the
only solution is to pre-process the sequences,
extract the repeats and only align homologous
regions. This extraction can be made using any
local multiple alignment tool such as the Gibbs
sampler [19], Mocca [82] or Repro [83]. Unfortu-
nately, none of these tools are well integrated
within a global multiple alignment procedure.
The Gibbs sampler and Mocca have the advan-
tage of providing the user with some estimation
of the biological relevance of their output.

The fourth point that needs to be raised here is
computation. While elegant solutions have been
found to parallelize database searches, the paral-
lelization of a MSA algorithm remains a difficult
task. The operations involved in the implementa-
tion of these algorithms require complex schemes

of memory sharing that are not suitable to Linux-
farms and other clusters. When dealing with large
sets of data of long sequences, super-computers
are still required for multiple alignment programs.

The last important point is the estimation of
local accuracy. The common property of all the
methods introduced here is that no one in partic-
ular is the best. They may all be out-performed by
the others on one protein family or another. For
that reason, we feel that it is more important to be
able to assess the exact level of accuracy of an
alignment, rather than improving the average per-
formances of each method. To our knowledge,
only four packages, incorporate an estimation of
the alignment local quality: ClustalX (the X-Win-
dow interface of ClustalW), Praline [48], T-Coffee
[34] and Match-Box [20]. None of these methods
for estimating local accuracy have been thor-
oughly benchmarked and properly validated for
estimation.

To conclude, a multiple alignment is merely a
very constrained model. It is a powerful way to
spot inconsistencies amongst a data set and to
visualize relationships that may exist among
seemingly independent pieces of information.

 T-Coffee.

layout of T-Coffee. Local and global pairwise alignments are first computed and then combined into a primary 
n order to be used for computing the multiple sequence alignment in a progressive manner.

Users library

Primary library

Extension

Progressive alignment

Extended library

cal alignments

A
B
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ble source of information for instance structure,
sequence, experimental knowledge and so on.

Outlook
Are multiple sequence alignments here to stay?
The answer is yes, without any doubt. While we
enter the area of comparative genomics, the
simultaneous comparison of a large number of
homologous biological objects will become more
and more important in our understanding of
biology and there is no doubt than in 5–10
years, multiple alignments will be as central to
the biological analysis as they are now. There is
no doubt in my mind that MSA will remain cen-
tral to sequence-based biology.

This being said, MSA methods will also need to
evolve. They will need to integrate heterogeneous
information such as structures, results of database
searches, experimental data and in general, any-
thing that may come from expression data and
proteomic analysis, including regulatory informa-
tion. Integrating such heterogeneous information
is a complex task. When the data is heterogene-
ous, knowing who is right and who is wrong
becomes an art. Addressing that type of questions
will be difficult and essential. The appropriate
method will have to do this in a transparent way,
letting the user control every bit of extra informa-
tion that goes into his alignment. This ideal
method should also allow the user to inject into
his model some of his own knowledge. Doing so
should be made an easy task. These ideas have
been central to development of the underlying
philosophy in the T-Coffee package [34]. 

In any case, these future methods are bound
to be memory and CPU hungry. Compared with
database searches, multiple sequence alignment
protocols are hard to optimize. Special hardware
may need to be adapted and the code may have
to be redesigned. Several computer manufactur-
ers are currently looking at this problem. One
can easily imagine that a powerful multiple
sequence alignment server will soon be a feature
of most laboratories, just like PCR machines
made their appearance in the 1990s.
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