
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 13, Number 3, 2006
© Mary Ann Liebert, Inc.
Pp. 668–685

Optimal Sum-of-Pairs Multiple Sequence Alignment
Using Incremental Carrillo and Lipman Bounds

ARUN S. KONAGURTHU1,2 and PETER J. STUCKEY1,3

ABSTRACT

Alignment of sequences is an important routine in various areas of science, notably molecular
biology. Multiple sequence alignment is a computationally hard optimization problem which
involves the consideration of different possible alignments in order to find an optimal one,
given a measure of goodness of alignments. Dynamic programming algorithms are generally
well suited for the search of optimal alignments, but are constrained by unwieldy space
requirements for large numbers of sequences. Carrillo and Lipman devised a method that
helps to reduce the search space for an optimal alignment under a sum-of-pairs measure
using bounds on the scores of its pairwise projections. In this paper, we generalize Carrillo
and Lipman bounds and demonstrate a novel approach for finding optimal sum-of-pairs
multiple alignments that allows incremental pruning of the optimal alignment search space.
This approach can result in a drastic pruning of the final search space polytope (where we
search for the optimal alignment) when compared to Carrillo and Lipman’s approach and
hence allows many runs that are not feasible with the original method.

Key words: multiple sequence alignment, dynamic programming, sum-of-pairs alignment.

1. INTRODUCTION

Simultaneous alignment of multiple sequences is a difficult problem of great importance in com-
putational molecular biology. Multiple alignments are used in various application areas that include

molecular modeling, protein structure-function analysis, sequence fragment assembly, evolutionary phylo-
genetic study, database search, and primer design amongst others (Needleman and Wunsch, 1970; Murata
et al., 1985; Thompson et al., 1994). With these motivations, automated multiple alignment tools have
long been a topic of elaborate research.

Dynamic programming has been widely used to solve the optimization problem of aligning sequences
(Needleman and Wunsch, 1970; Murata et al., 1985). However, dynamic programming’s asymptotic com-
plexity increases exponentially with the dimension (O(n22nln) for the sequence alignment problem, where

1Department of Computer Science and Software Engineering, The University of Melbourne, Victoria, 3010, Aus-
tralia.

2Victorian Bioinformatics Consortium, Department of Biochemistry and Molecular Biology, Monash University,
Victoria, 3800, Australia.

3NICTA Victoria Laboratory, The University of Melbourne, Victoria, 3010, Australia.

668

MULTIPLE SEQUENCE ALIGNMENT 669

l is the mean length of n sequences to be compared under a sum-of-pairs measure). The multiple sequence
alignment problem using various criteria of optimality has been shown to be NP-hard (Wang and Jiang,
1994; Just, 2001). As a result, many tools and methods use approximate algorithms that trade off optimality
for speed (Thompson et al., 1994; Notredame et al., 2000; Hughey and Krogh, 1996).

There are few tools and methods that construct an optimal alignment using sum-of-pairs cost criterion
(Lipman et al., 1989; Gupta et al., 1995; Kececioglu, 1993; Stoye et al., 1997; Reinert et al., 1997, 2000;
Althaus et al., 2002). Most of these tools implement a method similar to the one designed by Carrillo
and Lipman that considerably restricts the size of exploration space in which the optimal solution can be
searched (Carrillo and Lipman, 1988). The central idea of the Carrillo and Lipman approach is that every
multiple alignment imposes a pairwise alignment on any sequence pair. While treating the alignment of
n sequences as a path in an n-dimensional lattice, this imposed alignment on each pair can be viewed as
a projected path in two-dimensional space. It is then possible to find bounds on the cost of projection of
the optimal path. In practice, however, it has been observed that these bounds are overestimated. Hence,
tools such as MSA (Lipman et al., 1989) implement a heuristic variant of Carrillo and Lipman’s algorithm,
using tighter bounds than the guaranteed ones, that does not ensure a mathematical optimum (Notredame,
2002).

Major advances in the the search for optimal alignments and the reduction of the exploration space
include the following: Altschul and Lipman (1989) propose a different cost model (alignments scored as
the cost of an evolutionary tree) instead of the standard sum-of-pairs cost scheme. Gupta et al. (1995) show
an efficient implementation of lattice exploration using a variant of Dijkstra’s single-source shortest paths.
Gusfield (1993) gives a bounded-error approximation method for sum-of-pairs sequence alignment which
can be used as an alternative lower bound on the cost of an optimal alignment. Stoye et al. (1997) and
Stoye (1998) show a divide and conquer algorithm (DCA) which slices the input sequences into subsets
of segments small enough to enable a massive speed-up on the regular approaches using heuristic bounds.
Lermen and Reinert (2000) implement the A∗ algorithm (goal-directed unidirectional search) that speeds
up the shortest path computation by transforming the edge weights without losing the optimality of the
shortest path. Reinert et al. (2000) combine the divide-and-conquer technique (Stoye et al., 1997) with the
efficient bounding strategies in Lermen and Reinert (2000). Kececioglu (1993) introduces the maximum
weight trace problem (which contains as a special case the minimum sum-of-pairs alignment problem)
and proposes a branch and bound algorithm for it. Reinert et al. (1997) show a branch-and-cut algorithm
for an integer linear programming (ILP) formulation of the maximum weight trace problem. Althaus et al.
(2002) propose a general ILP formulation of the multiple sequence alignment problem using arbitrary gap
costs and describe a branch-and-cut method to find optimal alignments.

A severe constraint in the implementation of Carrillo and Lipman’s approach is the space usage which
is the result of the exaggerated nature of the bounds (Gupta et al., 1995). The core of this paper is a novel
method that successfully reduces the space usage when compared to Carrillo and Lipman’s method. We
formulate the sequence alignment problem as one which maximizes the score of an alignment under a
sum-of-pairs measure. In our approach, the improvement in space usage is derived from the generalization
of constraints on the score of projections of optimal multiple alignments of n sequences into some k-space,
k < n. We show in this paper a novel method for constructing optimal multiple alignments through the
incremental use of these generalized Carrillo and Lipman constraints. The results show a drastic pruning of
the search space for optimal alignments. This space reduction that we have achieved allows the calculation
of optimal alignments for datasets that were previously infeasible with the original Carrillo and Lipman
method.

The outline of this paper is as follows. Section 2 describes the basic notations used in this paper and
defines the problem of sequence comparison. Section 3 provides a brief review of Carrillo and Lipman’s
approach to constrain the search space of an optimal multiple alignment based on the scores of its pairwise
projections. Section 4 generalizes Carrillo and Lipman’s method for any k-space projections. Section 5
establishes the mathematical basis of space improvements of our incremental method and describes with
an example the construction of optimal alignment using our approach. Section 6 explains various materials
and methods used to undertake this work. Section 7 gives the experimental results of various comparisons
between our incremental approach and Carrillo and Lipman’s method on real datasets of protein sequences
from HOMSTRAD and BALIBASE. We conclude this paper with a short discussion.

670 KONAGURTHU AND STUCKEY

2. BASIC DEFINITIONS AND THE PROBLEM OF SEQUENCE COMPARISON

Suppose that the alphabet ℵ is a finite set of t symbols (20 amino acid single letter codes in case of
protein sequences), ℵ = {α1, . . . , αt }.

A sequence of length k is a set of symbols of the form

S = (αn1 , . . . , αnk
)

where for each j = 1, . . . , k, nj is a natural number such that αnj
is a symbol from ℵ.

An alignment of a set of sequences S1, . . . , Sn is another set of sequences, S′1, . . . , S′n, such that each
sequence S′i is obtained from Si by inserting gap symbols (-) in positions where some of the other sequences
have nongap symbols that satisfies the following conditions:

1. If the lengths of S1, . . . , Sn are k1, . . . , kn respectively, each sequence in the set S′1, . . . , S′n has the
same length, l, such that max(k1, . . . , kn)≤ l ≤ k1 + · · · + kn.

2. Ignoring the gap symbols, every S′i is precisely the string Si .

An illustration of a possible alignment of three sequences S1 = CYRWT, S2 = ECHYR, and S3 = YRIW
is shown in Fig. 1, where the symbols of these sequences follow the single letter code convention for
representing amino acid residues.

Given a scoring function f : ℵ×ℵ → � and gap penalty function G, the problem of sequence comparison
is to find an optimal way to align a set of sequences such that the total measure of score of the alignment
(sum of scoring function over the aligned pairs of symbols from ℵ, minus the sum of the penalties for
gaps given by the gap penalty function) is maximized. In this work, we use the linear gap penalty function
G = λg in a sum-of-pairs measure where λ is the gap length and g is the per-symbol gap cost.

Any given set of n sequences S1, . . . , Sn having lengths k1, . . . , kn respectively can be associated with
a lattice, L(S1, . . . , Sn) in n-dimensional space (from here on, referred as to n-space). This lattice consists
of k1× · · ·× kn n-space cells. Each cell corresponds to a group of n symbols, where each symbol belongs
to a different sequence. The cell corresponding to the first symbol of each of the sequences is called the
source and the cell corresponding to the last symbol of the sequences is called the sink. Both source and
sink together are referred to in this paper as end corners.

The alignment of a set of sequences S1, . . . , Sn can be associated with a path γ (S1, . . . , Sn) from source
to sink in the lattice, L(S1, . . . , Sn). (See Fig. 1.)

For the alignment shown in Fig. 1, the path encoded using the cell indices with source 〈0, 0, 0〉 and sink
〈5, 5, 4〉 is defined by the trace left by the traversal through the following edges: 〈0, 0, 0〉 → 〈0, 1, 0〉 →
〈1, 2, 0〉 → 〈1, 3, 0〉 → 〈2, 4, 1〉 → 〈3, 5, 2〉 → 〈3, 5, 3〉 → 〈4, 5, 4〉 → 〈5, 5, 4〉.

Let the measure of the score of any given path γ be denoted by ζ(γ). There exists at least one optimal
path, γ o(S1, . . . , Sn), such that the measure ζ attains the maximum value for γ o.

FIG. 1. A path in three-dimensional space corresponding to an alignment of three sequences.

MULTIPLE SEQUENCE ALIGNMENT 671

Dynamic programming is popularly used to find the optimal paths (Needleman and Wunsch, 1970;
Murata et al., 1985). Each cell in the dynamic programming lattice L(S1, . . . , Sn) has an associated score
which indicates the best path from that cell to the source. The score to each cell is derived from its
immediately preceding cells in its neighborhood. The central idea of this method is to recursively find
all optimal paths to the source for all these cells in L. The lattice can be filled from source to sink in
row-major, column-major, or anti-diagonal way. Each cell also holds a pointer to mark the preceding cell
that contributed to its optimal path to enable a trace back of the optimal path from sink to source through
these pointers. The computations in this standard dynamic programming model for calculation of γ o takes
O(

∏n
i=1 ki) steps each of which involves O(2n) operations.

The projection of a n-space path γ in the lattice L(S1, . . . , Sn) into any subspace L′i1,...,ik = L(Si1 , . . . ,

Sik), for each i1 < · · · < ik | {i1, . . . , ik} ⊆ {1, . . . , n}, is defined as the path associated with the imposed
alignment of γ in the subspace, L′i1,...,ik . The projected path is denoted by ←−γ i1,...,ik . Figure 2 shows the
projections (and the imposed alignments) of the path shown in Fig. 1 into subspaces associated with each
of its sequence pair.

Sum-of-pairs alignment (SP-alignment) is a multiple alignment in which the measure of the score of a
path is equal to the sum of scores of all its projected pairwise paths:

ζ(γ) =
∑

∀1≤i<j≤n

ζ(←−γ ij).

The score of any pairwise path γij corresponding to the some alignment of the sequences Si and Sj is
calculated as follows:

ζ(γij) =
|γij |∑
k=0

⎧⎪⎪⎨
⎪⎪⎩

f (S′i (k), S′j (k)) S′i (k) and S′j (k) ∈ ℵ
g S′i (k) or S′j (k) ∈ {−}
0 S′i (k) and S′j (k) ∈ {−}

where |γij | is the length of the path γij , and S′i , S′j are aligned sequences corresponding to that path with

S′i (k) and S′j (k) representing the kth column of the alignment.

FIG. 2. The projection of the path shown in Fig. 1 into planes associated with its sequence pairs.

672 KONAGURTHU AND STUCKEY

3. REVIEW OF CARRILLO AND LIPMAN’S ALGORITHM

In the context of SP-alignments, Carrillo and Lipman designed a method for determining the optimal
path γ o(S1, . . . , Sn) for n > 2 with significantly fewer computations (Carrillo and Lipman, 1988). Carrillo
and Lipman’s method is based on a basic observation that the score of projection of an optimal multiple
alignment into any of its sequence pairs must be at most as great as the score of pairwise alignment
between those two sequences (Altschul and Lipman, 1989).

Let γ h(S1, . . . , Sn) be a known heuristic path in n-space and πo
ij be the optimal alignment of any pair

of sequences Si and Sj , ∀ 1 ≤ i < j ≤ n. Carrillo and Lipman showed that

∑
∀1≤i<j≤n

ζ(←−γ h
ij)−

∑
∀1≤i<j≤n,

(i,j) =(k,l)

ζ(πo
ij)

︸ ︷︷ ︸
Carrillo−Lipman bound.

≤ ζ(←−γ o
kl).

Rearranging terms, we get

L− U + ζ(πo
kl) ≤ ζ(←−γ o

kl) (1)

where L = ∑
1≤i<j≤n ζ(←−γ h

ij) is the sum of the scores of all projected heuristic alignments, and U =∑
1≤i<j≤n ζ(πo

ij) is the sum of all pairwise optimal alignments.

Observation 3.1. Suppose, ∀ i < j | i, j ∈ (1, . . . , n), Xij are paths in lattice L(S1, . . . , Sn) whose
scores of projection into any pair of sequences Si and Sj is at least L− U + ζ(πo

ij). Then, ∃ an n-space
polytope, Xcl ⊆ L, where

Xcl =
⋂

∀1≤i<j≤n

Xij

such that only the paths in Xcl are possible candidates to be an optimal path, γ o.

Observation 3.2. Let, ∀ i < j | i, j ∈ (1, . . . , n), Yij be set of cells in the square L′ij = L(Si, Sj)

whose end corners (source and sink) are traversed by some path of score at least L − U + ζ(πo
ij). Let

−→
Y ij be set of points x ∈ L(S1, . . . , Sn) such that ←−x ij ∈ Yij , where ←−x ij is the projection into L′ij . The

set
−→
Y ij contains all paths in Xij and the set

Ycl =
⋂

∀1≤i<j≤n

−→
Y ij

contains all paths in Xcl.

To determine the region Yij ⊂ L′ij , we need to find the best path through each of the cells in L′ij . To
enable this computation, a dynamic programming algorithm is applied in both source-to-sink and sink-
to-source directions. Given both these computations, for any cell C, we now have the optimal path from
C-to-source (due to source-to-sink computations) and the optimal path from C-to-sink (due to sink-to-
source computations). Therefore, this enables us to compute the score of the optimal path through each
of the cells in L′ij . Region Yij is computed in O(

∑n
i<j kikj) steps where k1, . . . , kn are lengths of the

sequences S1, . . . , Sn (Carrillo and Lipman, 1988). As an illustration of the notion of bounded space Yij ,
we present an example. Consider the following three sequences: S1 = PCVCGGQ, S2 = MPRVCVCGQ,
and S3 = DVCVC. Figure 3 shows the matrices associated with each sequence pair ({S1, S2}, {S1, S3},
and {S2, S3}). The value in each cell of the matrices represents the score of the optimal path between
the end corners passing through that cell. The shaded areas (Y12, Y13, and Y12, respectively) guarantee to
contain the respective projections of optimal path, γ o(S1, S2, S3).

MULTIPLE SEQUENCE ALIGNMENT 673

FIG. 3. An illustration of constraints on multiple alignment using bounds on its pairwise projections. The matrices
correspond to the each pair of the sequences: S1 = PCVCGGQ, S2 = MPRVCVCGQ, and S3 = DVCVC; (a) is S1
versus S2, (b) is S1 versus S3, and (c) is S2 versus S3. The score in each cell of the matrices denotes the optimal
path between the end corners through that cell. For this example, L−U was computed to be −7. The shaded regions
denote Y12, Y13, and Y23, respectively.

Using the above reasoning, Carrillo and Lipman proved that it suffices to consider only a subspace
Ycl (a n-space polytope) to restrict the search for the optimal path and hence it is unnecessary to apply
the dynamic programming method on the whole lattice L(S1, . . . , Sn). The computational requirement of
Carrillo and Lipman’s algorithm is a function of the size of the subspace Ycl in the lattice L(S1, . . . , Sn)

plus the number of computations necessary to generate it (Carrillo and Lipman, 1988). Note that the
Carrillo–Lipman bound is tightest when γ h = γ o.

Carrillo and Lipman’s algorithm for finding SP-alignments can be broadly summarized as follows:

1. Find bounds on the score of projection of optimal alignment onto each of its sequence pairs.
2. Use these constraints to restrict the size of the dynamic programming lattice.
3. Find the optimal alignment in the restricted space

4. THE GENERALIZATION OF CARRILLO AND LIPMAN CONSTRAINTS ON
MULTIPLE ALIGNMENTS

Carrillo and Lipman’s approach can be generalized to find the constraints on optimal multiple alignment
using bounds on the scores of its projections into any k-space (2 ≤ k < n).

Theorem 4.1. The search for an n-space optimal path can be constrained using the scores of its
k-space projections for any 2 ≤ k < n.

Proof. By the definition of optimality, ζ(γ h)− ζ(γ o) ≤ 0. Let←−γ i1,...,ik be the projection of any path,
γ (S1, . . . , Sn) into a k-space corresponding to the sequences Si1 , . . . , Sik . Then

∑
∀1≤i1<···<ik≤n

ζ(←−γ i1,...,ik) = n−2Ck−2ζ(γ).

Hence
∑

∀1≤i1<···<ik≤n

(
ζ(←−γ h

i1,...,ik
)− ζ(←−γ o

i1,...,ik
)
)
≤ 0.

674 KONAGURTHU AND STUCKEY

Let πo
i1,...,ik

denote an optimal path in a k-space lattice determined by the sequences Si1 , . . . , Sik ,
L(Si1 , . . . , Sik). Since ζ(πo

i1,...,ik
) ≥ ζ(←−γ o

i1,...,ik
), we get

∑
cond1

ζ(←−γ h
i1,...,ik

)−
∑
cond2

ζ(πo
i1,...,ik

) ≤ ζ(←−γ o
j1,...,jk

)

where cond1 ≡ ∀1 ≤ i1 < · · · < ik ≤ n and cond2 ≡ ∀1 ≤ i1 < · · · < ik ≤ n, (i1, . . . , ik) = (j1, . . . , jk).
Rearranging terms in the above inequality, we get

Lk − Uk + ζ(πo
j1,...,jk

) ≤ ζ(←−γ o
j1,...,jk

) (2)

where Lk =∑
∀1≤i1<···<ik≤n ζ(←−γ h

i1,...,ik
) and Uk =∑

∀1≤i1<···<ik≤n ζ(πo
i1,...,ik

).

Observation 4.1. Suppose, ∀ i1 < · · · < ik | {i1, . . . , ik} ⊆ {1, . . . , n}, Xi1,...,ik are paths in lattice
L(S1, . . . , Sn) whose scores of projection into k sequences Si1 , . . . , Sik is at least Lk − Uk + ζ(πo

i1,...,ik
).

Then ∃ a n-space polytope Xgcl ⊆ L, where,

Xgcl =
⋂

∀1≤i1<···<ik≤n

Xi1,...,ik

such that only the paths in Xgcl are possible candidates to be an optimal path, γ o.

Observation 4.2. For all i1 < · · · < ik | {i1, . . . , ik} ⊆ {1, . . . , n}, let Yi1,...,ik be the set of cells in the
k-space lattice L′i1,...,ik = L(Si1 , . . . , Sik) whose end corners are traversed by some path of score at least

Lk − Uk + ζ(πo
i1,...,ik

). Let
−→
Y i1,...,ik be the set of points x ∈ L(S1, . . . , Sn) such that ←−x i1,...,ik ∈ Yi1,...,ik ,

where ←−x i1,...,ik is the projection into L′i1,...,ik . The set
−→
Y i1,...,ik contains all paths in Xi1,...,ik and the set

Ygcl =
⋂

∀1≤i1<···<ik≤n

−→
Y i1,...,ik (3)

contains all paths in Xgcl.

For any k > 2, the direct computation of πo
i1,...,ik

is highly expensive. In the next section, we demonstrate
a method in which this optimal path can be calculated in the restricted space given by earlier projections.

5. THE INCREMENTAL APPROACH

The key idea of our approach is to incrementally compute optimal sequences πo
i1,...,ik

for each dimension
k from 2 to n and apply the generalized Carrillo and Lipman pruning outlined in Observation 4.2 at each
dimension. By computing only within the intersections of the previously pruned spaces, this approach
reduces the time and space requirements significantly. See Fig. 4.

The algorithm works as follows. We first compute πo
i1i2

and Yi1i2 for 1 ≤ i1 < i2 ≤ n as usual. Let
�i1i2 = Yi1i2 for 1 ≤ i1 < i2 ≤ n.

Now we iterate k from 2 to n. In the kth iteration, for each 1 ≤ j1 < · · · < jk+1 ≤ n we calculate

�j1,...,jk+1 =
⋂

cond3

−→
�

j1,...,jk+1
i1,...,ik

where cond3 ≡ ∀1 ≤ i1 < · · · < ik ≤ n, {i1, . . . , ik} ⊆ {j1, . . . , jk+1} and
−→
�

j1,...,jk+1
i1,...,ik

is the reverse
projection of �i1,...,ik onto the space L(Sj1 , . . . Sjk+1), and �j1,...,jk+1 is the intersection of all of the pruned
spaces for k dimensions applicable to the given k + 1 dimensions. We then calculate πo

j1,...,jk+1
in this

restricted space �j1,...,jk+1 .

MULTIPLE SEQUENCE ALIGNMENT 675

FIG. 4. The basic architecture of the incremental approach.

Once we have calculated πo
j1,...,jk+1

for all 1 ≤ j1 < · · · < jk+1 ≤ n, we can calculate Uk+1 and then
calculate Yj1,...,jk+1 (the application of generalized Carrillo and Lipman pruning from Observation 4.2).

For each 1 ≤ j1 < · · · < jk+1 ≤ n, we calculate

�j1,...,jk+1 = �j1,...,jk+1 ∩ Yj1,...,jk+1 .

The process continues until we calculate πo
1,...,n.

In the conventional Carrillo and Lipman’s algorithm the multiple alignment is constrained based on the
score of pairwise projections. In our approach, however, the pruning is done gradually on each increasing
dimension from pairwise to triplets to quads to quints, and so on. For example, let S1, S2, S3, S4, S5 be
any five sequences whose optimal alignment is to be determined. We begin our approach by finding
the bounds on projections of the optimal alignment into all of its 5C2 pairs of sequences, {(S1, S2),
(S1, S3), (S1, S4), (S1, S5), (S2, S3), (S2, S4), (S2, S5), (S3, S4), (S3, S5), (S4, S5)}, using the constraint
L− U + ζ(πo

i1i2
) ≤ ζ(←−γ o

i1i2
).

The original Carrillo–Lipman method proceeds from here to find a polytope of paths in 5-space con-
strained by the above pairwise bounds. Instead, the incremental approach explores the regions in the next
dimension (3-space) such that all paths in it satisfy the constraints on their corresponding pairwise projec-
tions. We find 5C3 such regions associated with each of the triplets: {(S1, S2, S3), (S1, S2, S4), (S1, S2, S5),
(S1, S3, S4), (S1, S3, S5), (S1, S4, S5), (S2, S3, S4), (S2, S3, S5), (S2, S4, S5), (S3, S4, S5)}.

In the context of a particular three-dimensional region L′123 = L(S1, S2, S3), we obtain the 3-space
polytope �123 ⊂ L′123 as the intersection of Y12, Y13, and Y23 (appropriately reverse projected). This
polytope �123 will contain the projection of the optimal path γ o(S1, S2, S3, S4, S5) into (S1, S2, S3),←−γ o

123, and �123 also contains paths that are possible candidates for the optimal path in (S1, S2, S3), πo
123

(see Lemma 5.1 below).
The optimal paths of all possible triplets are explored using this method. For each i1 < i2 < i3 | i1, i2, i3 ∈
{1, 2, 3, 4, 5}, �i1i2i3 is then further pruned (see Theorem 5.1 below) by eliminating any path in this space
which is less than L3 − U3 + ζ(πo

i1i2i3
), where L3 and U3 are defined as in Theorem 4.1 above. This

gives �i1i2i3 . This results in the bounds on projection of optimal alignment γ o(S1, S2, S3, S4, S5) on all its
triplets.

676 KONAGURTHU AND STUCKEY

Using these triplet bounds we obtain the 4-space regions associated with the quadruplets: {(S1, S2, S3, S4),
(S1, S2, S3, S5), (S1, S2, S4, S5), (S1, S3, S4, S5), (S2, S3, S4S5)}. For each i1 < i2 < i3 < i4 | i1, i2, i3, i4 ∈
{1, 2, 3, 4, 5}, we find the 4-space polytopes �i1i2i3i4 in the same manner as in the case of triplets. We
then explore this space and calculate the optimal quadruple paths, πo

i1i2i3i4
. Using the scores of optimal

quadruple paths, we prune every �i1i2i3i4 by eliminating those paths that are less than L4−U4+ζ(πo
i1i2i3i4

)

to give �i1i2i3i4 .
These quadruplet spaces �i1i2i3i4 are then finally used to find the 5-space polytope, �12345 ⊂ L(S1, S2, S3,

S4, S5) which contains all paths that are possible candidates for the optimal path, γ o(S1, S2, S3, S4, S5).
The exploration will lead to the calculation of optimal multiple alignment of S1, S2, S3, S4, S5.

The correctness of the approach follows from the results below. We show that the pruning that is done
at lower dimensions never removes an optimal sequence for any higher dimensions. We then show by
induction that an optimal path (for any set of dimensions) is never pruned.

Lemma 5.1. For each 2 ≤ k ≤ l and 1 ≤ h1 < · · · < hl ≤ n and 1 ≤ i1 < · · · < ik ≤ n where
{i1, . . . , ik} ⊆ {h1, . . . , hl}, we have that the optimal path πo

h1,...,hl
is in the reverse projection of Yi1,...,ik

to the space L(Sh1 , . . . , Shl
).

Proof. We make use of the generalized Carrillo and Lipman bounds pruning, assuming that h1, . . . , hl

are the only dimensions in the problem, and show that the pruning with more dimensions is weaker. Define
L

h1,...,hl

k and U
h1,...,hl

k as follows.

L
h1,...,hl

k =
∑

∀1≤i1<···<ik≤n,{i1,...,ik}⊆{h1,...,hl}
ζ(←−γ h

i1,...,ik
)

U
h1,...,hl

k =
∑

∀1≤i1<···<ik≤n,{i1,...,ik}⊆{h1,...,hl}
ζ(πo

i1,...,ik
).

Now Yi1,...,ik is the space that contains only paths at least of score Lk − Uk + ζ(πo
i1,...,ik

).
If the only dimensions in the original problem were h1, . . . , hl , then we could apply generalized Carrillo

and Lipman pruning (Observation 4.2) to create a space Y ′i1,...,ik with paths at least of score L
h1,...,hl

k −
U

h1,...,hl

k + ζ(πo
i1,...,ik

) and be guaranteed that πo
h1,...,hl

appeared in the reverse projection of this space. We

show that Yi1,...,ik ⊇ Y ′i1,...,ik since Lk − Uk ≤ L
h1,...,hl

k − U
h1,...,hl

k .
By definition

Lk = L
h1,...,hl

k +
∑

∀1≤i1<···<ik≤n,{i1,...,ik}⊆{h1,...,hl}
ζ(←−γ h

i1,...,ik
)

and

Uk = U
h1,...,hl

k +
∑

∀1≤i1<···<ik≤n,{i1,...,ik}⊆{h1,...,hl}
ζ(πo

i1,...,ik
).

Hence we need to prove that
∑

∀1≤i1<···<ik≤n,{i1,...,ik}⊆{h1,...,hl}
ζ(←−γ h

i1,...,ik
)− ζ(πo

i1,...,ik
) < 0.

But by the definition of optimality of πo
i1,...,ik

ζ(πo
i1,...,ik

) > ζ(←−γ h
i1,...,ik

), and hence the result holds.

Theorem 5.1. For each 2 ≤ k ≤ l and 1 ≤ h1 < · · · < hl ≤ n and 1 ≤ i1 < · · · < ik ≤ n where
{i1, . . . , ik} ⊆ {h1, . . . , hl}, we have that the optimal path πo

h1,...,hl
is in the reverse projection of �i1,...,ik

to the space L(Sh1 , . . . , Shl
).

Proof. The proof is by induction on k. The base case when k = 2 follows directly from Lemma 5.1
since �i1i2 = Yi1i2 .

MULTIPLE SEQUENCE ALIGNMENT 677

Let us consider the case when k = k′ + 1 > 2. By induction, for each 1 ≤ j1 < · · · < j ′k ≤
n, {j1, . . . jk′ } ⊆ {i1, . . . , ik}, we have that πo

h1,...,hl
appears in each space

−→
�

h1,...,hl

j1,...,jk′ , and hence clearly it

also appears in
−→
�

h1,...,hl

i1,...,ik
by definition.

Now, by Lemma 5.1, πo
h1,...,hl

also appears in
−→
Y

h1,...,hl

i1,...,ik
and hence it appears in

−→
�

h1,...,hl

i1,...,ik
by defi-

nition.

By simply applying the above theorem when l = n we have the following corollary.

Corollary 5.1. The incremental Carrillo and Lipman approach correctly calculates πo
1,...,n ≡ γ o

1,...,n.

6. MATERIALS AND METHODS

All the programs developed for this work were implemented using standard C. Separate programs were
developed to implement both Carrillo and Lipman’s approach and the incremental approach. To construct
fast heuristic alignments, a program was developed that implements the progressive pairwise approach for
constructing multiple sequence alignments using unweighted pair group with arithmetic mean (UPGMA)
clustering (Sneath and Sokal, 1973) to build a guide tree along which the final heuristic alignment is
forced. While developing the programs, we ensured the use of similar data structures and programming
logic so that comparisons between Carrillo and Lipman’s method and the Incremental method have merit.
The source code of our implemention can be obtained from www.cs.mu.oz.au/∼arun/msa-incr.html.

Real sequence datasets were used to compare the performance of both the methods. The short amino acid
sequences were extracted from HOMSTRAD (Mizuguchi et al., 1998), the database of protein structure
alignments for homologous families. Also, the entire reference 1 set from BALIBASE (Thompson et al.,
1999) is used in this work.

The Blosum62 (Henikoff and Henikoff, 1992) substitution scoring matrix and a gap penalty of −5 are
used as alignment parameters for results in Tables 1–4. To show the variability of space and time usages of
both the approaches as a function of alignment parameters, an in-house substitution matrix (created from
400 families of HOMSTRAD structural alignments) with a gap penalty of −9 was used to align the same
datasets used in Tables 1–3 of this paper. Details of the substitution matrix and its synthesis can be found
at www.cs.mu.oz.au/∼arun/INCR_APPROACH/submat.pdf.

The programs were executed on an INTEL Pentium 4 PC with a 1.3 GHz processor and 256 Mbytes of
primary memory running on Redhat’s Fedora Core 1 Linux operating system.

7. EXPERIMENTAL RESULTS

In this section, we undertake various comparisons of the performance of Carrillo and Lipman’s approach
with our incremental approach. The comparisons between these approaches were made using the follows
metrics:

• Peak Space Usage (PSU): In both these approaches, the maximum space requirement is a linear func-
tion of the number of cells that are needed to be held in the program’s data structures to enable an
exploration. Also, the data structures used in both these programs are linearly related to the dimension
of an exploration. Therefore, for Carrillo and Lipman’s approach peak space usage is calculated as

Peak Space Usage = |Ycl| × n.

In the incremental approach, the explorations are done repeatedly within every level of the increment.
Hence the peak space usage is measured as

Peak Space Usage = maxJ⊆{1,...,n}|�J | × |J |
that is the maximum size of � for some index set J multiplied by the dimension |J | of that index set.

678 KONAGURTHU AND STUCKEY

• Total Operations (TOps): The execution time is dominated by the calculation of optimal paths C-to-sink
and C-to-source to enable pruning. We use this to define the “total operations” measure of computational
complexity. For Carrillo and Lipman’s approach the estimate of total operations is measured as Total
Operations = |Ycl| × (2n − 1). For the incremental approach this is measured as Total Operations =∑

J⊆{1,...,n} |�J | × (2|J | − 1). Note that neither measures the operations for the original Carrillo and
Lipman pruning.
• Time: This metric measures the wall clock time of executions for both the methods in seconds.
• Accuracy(Acc): This measure gives the relatedness of the alignments with respect to the database

alignment. The overall accuracy of a multiple alignment is calculated as the mean of accuracy of all
possible nonredundant sequence pairs in a multiple alignment. The pairwise accuracy is the percentage
of correctly aligned residues with respect to the a database alignment. Note that the two methods always
calculate the same accuracy. They are actually not guaranteed to give the same alignment since there
may be more than one optimal, but this never occurs in our experiments.

Table 1 shows the comparisons of peak space usage, total operations, time, and accuracy metrics between
Carrillo and Lipman’s approach and incremental approach for datasets from HOMSTRAD. The datasets
follow the HOMSTRAD nomenclature. We also show the number of sequences in each dataset in paren-
theses. Note that the same alignment parameters (Blosum62 substitution matrix with gap penalty of −5)
and heuristic alignment were used for all experiments. Results in Table 1 clearly show an approximately

Table 1. Comparisons between Carrillo and Lipman’s Approach and
Incremental Approach over HOMSTRAD Datasetsa

Carrillo and Lipman Incremental

Dataset PSU TOps Time Acc PSU TOps Time Acc

bowman (5) 2.546e+07 1.578e+08 1704 s 76.0% 3.323e+06 4.563e+07 420 s 76.0%
CBS (4) 6.258e+06 2.347e+07 199 s 44.8% 3.635e+06 1.518e+07 82 s 44.8%
ccH (4) 1.449e+05 5.434e+05 4 s 94.8% 4.512e+04 2.951e+05 2 s 94.8%
ChtBD (5) 6.910e+03 4.284e+04 1 s 95.8% 6.600e+02 2.637e+04 2 s 95.8%
cytb (4) 2.785e+05 1.044e+06 9 s 80.6% 5.212e+04 4.259e+05 3 s 80.6%
dhfr (4) 2.001e+07 7.505e+07 606 s 81.2% 8.570e+06 3.755e+07 220 s 81.2%
GLA (4) 9.753e+04 3.657e+05 3 s 97.1% 2.446e+04 1.900e+05 2 s 97.1%
Glyco_hydro_18_D2 (4) 1.643e+07 6.160e+07 544 s 64.9% 7.277e+06 3.063e+07 183 s 64.9%
hpr (5) 6.227e+05 3.861e+06 26 s 97.4% 8.253e+04 2.152e+06 21 s 97.4%
hr (5) 1.821e+06 1.129e+07 76 s 97.0% 1.664e+05 4.232e+06 43 s 97.0%
HTH_AraC (4) 4.095e+06 1.536e+07 132 s 29.3% 2.533e+06 1.080e+07 62 s 29.3%
LDLa (4) 4.545e+04 1.704e+05 1 s 89.9% 1.830e+04 1.169e+05 <1 s 89.9%
LIM (5) 5.453e+06 3.381e+07 220 s 90.4% 4.427e+05 1.122e+07 110 s 90.4%
myb_DNA-binding (5) 2.280e+06 1.414e+07 98 s 93.6% 1.949e+05 4.621e+06 46 s 93.6%
parv (7) 6.898e+06 1.252e+08 860 s 97.9% 2.643e+05 4.760e+07 696 s 97.9%
plantltp (5) 3.208e+05 1.989e+06 12 s 79.6% 2.302e+04 6.228e+05 7 s 79.6%
Propep_M14 (4) 3.246e+04 1.217e+05 1 s 93.5% 7.041e+03 8.038e+04 1 s 93.5%
protg (4) 7.756e+05 2.909e+06 23 s 48.2% 2.183e+05 1.292e+06 7 s 48.2%
rep (4) 1.100e+06 4.126e+06 35 s 79.2% 1.098e+05 9.985e+05 7 s 79.2%
rub (5) 1.688e+04 1.046e+05 1 s 93.5% 4.128e+03 1.136e+05 2 s 93.5%
seatoxin (5) 1.378e+07 8.543e+07 743 s 67.5% 8.993e+05 2.026e+07 191 s 67.5%
squash (4) 8.488e+03 3.183e+04 1 s 91.1% 2.004e+03 2.422e+04 <1 s 91.1%
tbpc (4) 1.436e+06 5.386e+06 45 s 94.0% 6.347e+05 3.285e+06 24 s 94.0%
tgfb (5) 4.910e+06 3.044e+07 191 s 89.6% 4.444e+05 1.174e+07 125 s 89.6%
TIG (6) 3.658e+07 3.841e+08 4222 s 97.1% 1.951e+06 8.927e+07 1426 s 97.1%
TIL (4) 2.071e+06 7.765e+06 60 s 75.1% 4.066e+05 2.366e+06 15 s 75.1%
WW (4) 2.132e+06 7.997e+06 65 s 61.6% 1.254e+06 5.390e+06 29 s 61.6%

Mean 9.757e+05 4.855e+06 41.8 81.5% 1.744e+05 2.220e+06 21.9 81.5%

aPSU, TOps, Time, and Acc represent peak space usage, total operations, time, and accuracy, respectively. The definitions of these
metrics can be found in Section 7. (For the last row, the entries corresponding to the PSU, TOps, and Time columns indicate their
respective geometric means while the entry corresponding to Acc indicates its arithmetic mean.)

MULTIPLE SEQUENCE ALIGNMENT 679

4× reduction in the peak space usage using the incremental approach and an approximately 2× reduction
in the total operations and total execution time.

Both the original Carrillo and Lipman method and our incremental approach are improved if a better
heuristic is used. In the next experiment, we use the optimal answer as the heuristic input to the algorithms.
The results are shown in Table 2. In these experiments, sometimes Carrillo and Lipman’s approach ran out
of memory in the construction of Ycl, and hence we cannot get an accurate gauge of peak space usage
and total operations, so all the entries are marked as —. From the results, it is clear that the incremental
approach gains even more benefit from a better heuristic, with an order of magnitude reduction in space
requirements, approximately 3× reduction in operations time and approximately 2× reduction in execution
time. Here the improvement in execution time is less than that for total operations as input/output becomes
a significant proportion of the execution time. We shall see in the next experiment how we can generate a
very good heuristic answer rapidly for use by our incremental approach.

In practice, to be able to achieve simultaneous alignment of many sequences, Carrillo and Lipman’s
approach is used with bounds tighter than the guaranteed ones (Lipman et al., 1989; Gupta et al., 1995).
We can apply the same idea to the incremental approach, using bounds tighter than the guaranteed ones

Table 2. Comparisons between Carrillo and Lipman’s Approach and Incremental Approach
Both Using the Optimal as Heuristic over HOMSTRAD Datasetsa

Carrillo and Lipman Incremental

Dataset PSU TOps Time Acc PSU TOps Time Acc

bowman (5) 9.314e+06 5.775e+07 216 s 76.0% 6.410e+05 1.028e+07 96 s 76.0%
CBS (4) 1.662e+06 6.231e+06 16 s 44.8% 2.056e+05 1.423e+06 8 s 44.8%
ccH (4) 3.098e+04 1.162e+05 2 s 94.8% 5.226e+03 6.119e+04 1 s 94.8%
ChtBD (5) 6.645e+03 4.120e+04 1 s 95.8% 5.940e+02 2.089e+04 <1 s 95.8%
cyt5 (6) 4.377e+07 4.596e+08 3199 s 72.9% 2.936e+05 1.736e+07 181 s 72.9%
cytb (4) 1.400e+05 5.251e+05 1 s 80.6% 1.928e+04 1.841e+05 1 s 80.6%
dhfr (4) 1.024e+06 3.842e+06 12 s 81.2% 8.793e+04 1.121e+06 10 s 81.2%
GLA (4) 2.608e+04 9.780e+04 1 s 97.1% 5.994e+03 4.061e+04 1 s 97.1%
Glyco_hydro_18_D2 (4) 2.574e+06 9.651e+06 25 s 64.9% 1.361e+05 1.385e+06 9 s 64.9%
hpr (5) 1.722e+04 1.068e+05 1 s 97.4% 1.722e+03 3.894e+04 1 s 97.4%
hr (5) 2.560e+05 1.587e+06 5 s 97.0% 1.416e+04 4.242e+05 5 s 97.0%
HTH_AraC (4) 4.265e+05 1.599e+06 5 s 29.3% 3.832e+04 4.716e+05 3 s 29.3%
kazal (6) 1.188e+07 1.247e+08 691 s 88.3% 1.089e+05 6.258e+06 62 s 88.3%
LDLa (4) 3.996e+03 1.498e+04 1 s 89.9% 9.120e+02 9.374e+03 <1 s 89.9%
LIM (5) 7.697e+05 4.772e+06 14 s 90.4% 6.217e+04 1.365e+06 13 s 90.4%
myb_DNA-binding (5) 2.330e+05 1.445e+06 4 s 93.6% 7.995e+03 3.023e+05 3 s 93.6%
parv (7) 1.907e+06 3.459e+07 133 s 97.9% 4.564e+04 8.317e+06 93 s 97.9%
plantltp (5) 9.758e+04 6.050e+05 2 s 79.6% 6.477e+03 1.421e+05 2 s 79.6%
Propep_M14 (4) 8.912e+03 3.342e+04 1 s 93.5% 2.055e+03 1.619e+04 <1 s 93.5%
protg (4) 1.817e+05 6.815e+05 2 s 48.2% 2.437e+04 2.166e+05 2 s 48.2%
rep (4) 7.486e+05 2.807e+06 7 s 79.2% 6.365e+04 6.442e+05 4 s 79.2%
rnasemam (6) — — — — 6.023e+06 3.582e+08 5230 s 87.4%
rub (5) 1.076e+04 6.674e+04 1 s 93.5% 8.460e+02 2.467e+04 <1 s 93.5%
seatoxin (5) 2.328e+06 1.444e+07 48 s 67.5% 1.053e+05 2.054e+06 18 s 67.5%
squash (4) 2.320e+03 8.700e+03 1 s 91.1% 6.240e+02 5.125e+03 <1 s 91.1%
tbpc (4) 3.086e+04 1.157e+05 2 s 94.0% 8.190e+03 6.797e+04 2 s 94.0%
tgfb (5) 2.994e+05 1.856e+06 6 s 89.6% 2.134e+04 5.749e+05 4 s 89.6%
TIG (6) 9.682e+06 1.017e+08 457 s 97.1% 1.602e+05 1.426e+07 159 s 97.1%
TIL (4) 3.667e+05 1.375e+06 4 s 75.1% 3.628e+04 2.812e+05 2 s 75.1%
WW (4) 2.125e+05 7.969e+05 2 s 61.6% 2.062e+04 2.326e+05 1 s 61.6%

Mean 2.451e+05 1.284e+06 7.6 81.4% 1.876e+04 3.357e+05 4.6 81.4%

aPSU, TOps, Time, and Acc represent peak space usage, total operations, time, and accuracy, respectively. The definitions of these
metrics can be found in Section 7. (For the last row, the entries corresponding to the PSU, TOps, and Time columns indicate their
respective geometric means while the entry corresponding to Acc indicates its arithmetic mean. For judicious comparisons of these
central trends for each column across both the methods, the missing entries (—) in a column corresponding to the Carrillo and
Lipman approach and the equivalent entries from a column in the incremental approach are both excluded from the calculations.)

680 KONAGURTHU AND STUCKEY

at each step. In the following experiment, we used both methods with a bound Lk − Uk defined as
−50 − 10 × (k − 2) rather than using the calculated values. This bound is generous in the sense that the
value calculated is optimal for all datasets where we know the optimal value (those in Table 2). However,
it should be noted that the choice of such a definition for the heuristic bound for very divergent sequences
can result in the method missing the optimal alignment. Precalculated heuristic bounds based on sequence
divergence, composition, and dimension of alignment could be used to serve as a good definition. Table 3
shows the comparisons between the heuristic implementations of both the approaches. In this experiment,
sometimes Carrillo and Lipman’s approach could construct Ycl but ran out of memory for the calculation of
the optimal alignment, in which case the Time and Acc extries are shown as —. The heuristic incremental
approach clearly allowed simultaneous alignment of datasets with many sequences while the heuristic
Carrillo and Lipman’s approach failed on most larger datasets. The incremental method requires an order
of magnitude less memory, approximately 6× less operations, and one quarter of the time.

Although the heuristic incremental approach is not guaranteed to find the optimal solution, we are
unaware of any cases where it failed to find the optimal. We can combine the heuristic incremental approach
with the complete incremental approach by using the answer from the heuristic incremental approach as
the heuristic input to the complete incremental approach. For example, we can prove the optimal answer to
bowman using 16 seconds to generate the optimal using the heuristic incremental approach, plus 96 seconds
to prove its optimality using the complete incremental approach.

We also ran the heuristic versions of both the Carrillo and Lipman and the incremental approach on
BALIBASE reference 1 benchmarks consisting of 81 datasets that are known to contain alignments of
divergent sequences. Table 4 shows these results. The gain using the incremental approach is clearly
apparent from these results, more than an order of magnitude improvement in space requirements and
significant gains in execution time.

The space and time usages of both approaches is largely dependent on the scoring function. To demon-
strate this variability of space and time usages, we compared the approaches using an in-house scoring
matrix. The results are available at: www.cs.mu.oz.au/∼arun/INCR_APPROACH/tables_5_6_7.pdf. Chang-
ing the scoring function resulted in the runs of many datasets to fail using Carrillo and Lipman’s method
while the incremental approach performed better across all the comparisons.

8. DISCUSSION

In this paper, we demonstrate an approach for calculating optimal SP-alignments using linear gap
penalties, where for any pair of sequences a fixed penalty is applied whenever a gap symbol in one
sequence is aligned with a nongap symbol in another. In general, affine gap penalties have been shown to
be more accurate than linear gap penalties (Altschul and Erickson, 1986). In the affine gap scheme, for any
pair of sequences, gaps are variably penalized proportional to the length of continuous runs of gap symbols
in one sequence aligned to nongap symbols in another. For any such continuous run of gap symbols, the
penalty is of the form G : go + λg, where λ is the gap length, go is the penalty for initiating a gap, and g

is the regular per-symbol penalty. However, implementing a dynamic programming algorithm using affine
gap penalties is more memory intensive than that using linear gaps. Due to the nonadditive nature of affine
gap alignments and the impracticality of implementing them using a single dynamic programming lattice
(where at every cell in the lattice all possible gap lengths should be exhaustively tried), a common practice
is to use multiple help-lattices. Each help-lattice corresponds to a particular type of alignment column
and has its corresponding update rules (Gusfield, 1997). The help-lattices can then be used additively to
determine the optimal alignment using affine gaps. See Gusfield (1997) for details.

In theory, both Carrillo and Lipman’s method as well as the incremental algorithm discussed in this
paper can be extended to affine gap penalties in a sum-of-pairs measure. However, in practice there are
a few problems in this extension. First, the number of help-lattices grows exponentially with the number
of sequences as O(2n), and hence the demand for space quickly becomes unacceptable. Even if this is
overlooked, under a sum-of-pairs scoring function, it is not possible to determine whether a column of
alignment in its pairwise (and hence subsequent) projections initiates a gap without probing the information
of an arbitrary number of previous columns. The later problem is common also to the natural gap penalties
discussed in Altschul (1989) where, for a pairwise alignment, the natural gap penalty is calculated by

MULTIPLE SEQUENCE ALIGNMENT 681

Table 3. Comparisons between Heuristic Carrillo and Lipman’s Approach and
Heuristic Incremental Approach over HOMSTRAD Datasetsa

Carrillo and Lipman Incremental

Dataset PSU TOps Time Acc PSU TOps Time Acc

bowman (5) 2.023e+06 1.254e+07 80 s 76.0% 7.354e+04 2.017e+06 16 s 76.0%
CBM_20 (8) — — — — 4.608e+04 3.004e+07 315 s 80.9%
CBS (4) 4.548e+05 1.705e+06 14 s 44.8% 8.539e+04 6.026e+05 5 s 44.8%
ccH (4) 9.272e+04 3.477e+05 3 s 94.8% 1.552e+04 1.513e+05 1 s 94.8%
ChtBD (5) 6.910e+03 4.284e+04 1 s 95.8% 6.600e+02 2.637e+04 1 s 95.8%
cryst (7) 8.089e+07 1.468e+09 — — 9.001e+04 1.985e+07 228 s 85.7%
cyclo (6) 2.319e+07 2.435e+08 1598 s 77.3% 2.818e+05 1.745e+07 216 s 77.3%
cyt5 (6) 5.348e+06 5.616e+07 353 s 72.9% 3.056e+04 3.138e+06 32 s 72.9%
cytb (4) 1.789e+05 6.707e+05 6 s 80.6% 3.272e+04 2.940e+05 2 s 80.6%
dhfr (4) 3.903e+05 1.464e+06 13 s 81.2% 6.948e+04 6.292e+05 6 s 81.2%
flav (6) 3.574e+07 3.752e+08 2561 s 80.0% 1.976e+05 1.883e+07 220 s 80.0%
ghf11 (5) 1.731e+06 1.073e+07 73 s 91.9% 4.998e+04 1.872e+06 21 s 91.9%
ghf22 (12) — — — — 8.118e+04 4.817e+08 4091 s 96.4%
GLA (4) 9.753e+04 3.657e+05 3 s 97.1% 1.487e+04 1.690e+05 1 s 97.1%
Glyco_hydro_18_D2 (4) 5.675e+05 2.128e+06 17 s 64.9% 1.349e+05 8.603e+05 6 s 64.9%
hpr (5) 6.227e+05 3.861e+06 23 s 97.4% 1.376e+04 6.652e+05 7 s 97.4%
hr (5) 5.189e+05 3.217e+06 19 s 97.0% 2.428e+04 6.775e+05 6 s 97.0%
HTH_AraC (4) 2.488e+05 9.328e+05 8 s 29.3% 6.595e+04 4.650e+05 3 s 29.3%
igC1 (5) 7.994e+05 4.957e+06 30 s 82.9% 1.798e+04 8.128e+05 8 s 82.9%
il8 (11) — — — — 4.635e+04 6.125e+08 6389 s 81.7%
kazal (6) 3.490e+06 3.664e+07 260 s 88.3% 2.906e+04 2.544e+06 26 s 88.3%
kringle (9) — — — — 6.326e+04 1.098e+08 1228 s 94.7%
kunitz (10) — — — — 1.666e+04 1.518e+08 1600 s 94.0%
LDLa (4) 4.545e+04 1.704e+05 2 s 89.9% 1.061e+04 8.811e+04 1 s 89.9%
LIM (5) 8.261e+05 5.122e+06 29 s 90.4% 4.932e+04 1.098e+06 10 s 90.4%
MHC_II_C (8) — — — — 3.261e+04 2.719e+07 289 s 98.1%
mmp (6) 7.422e+06 7.793e+07 462 s 95.6% 2.951e+04 4.762e+06 54 s 95.6%
myb_DNA-binding (5) 5.027e+05 3.116e+06 18 s 93.6% 1.530e+04 5.744e+05 5 s 93.6%
parv (7) 6.898e+06 1.252e+08 897 s 97.9% 1.733e+04 5.843e+06 66 s 97.9%
plantltp (5) 3.208e+05 1.989e+06 12 s 79.6% 2.302e+04 6.228e+05 7 s 79.6%
profilin (5) 1.743e+06 1.080e+07 65 s 93.7% 4.786e+04 1.586e+06 18 s 93.7%
Propep_M14 (4) 3.246e+04 1.217e+05 2 s 93.5% 7.041e+03 8.038e+04 1 s 93.5%
protg (4) 2.079e+05 7.796e+05 6 s 48.2% 2.632e+04 2.864e+05 2 s 48.2%
rep (4) 3.900e+05 1.463e+06 12 s 79.2% 4.154e+04 4.848e+05 3 s 79.2%
rnasemam (6) 9.238e+06 9.700e+07 600 s 87.4% 5.233e+04 5.635e+06 60 s 87.4%
rub (5) 1.688e+04 1.046e+05 1 s 93.5% 4.128e+03 1.136e+05 1 s 93.5%
RuBisCO_large_N (6) 1.986e+07 2.085e+08 1416 s 82.5% 1.019e+05 9.173e+06 98 s 82.5%
scorptoxin (8) 1.368e+08 6.485e+07 — — 3.258e+04 2.648e+07 268 s 88.1%
seatoxin (5) 5.524e+05 3.425e+06 20 s 67.5% 1.932e+04 6.151e+05 5 s 67.5%
serbact (5) 2.045e+06 1.268e+07 85 s 89.5% 5.896e+04 1.996e+06 22 s 89.5%
slectin (5) 1.782e+06 1.105e+07 71 s 92.5% 4.792e+04 1.722e+06 17 s 92.5%
sodcu (7) 9.748e+07 1.769e+09 — — 1.078e+05 2.883e+07 347 s 85.0%
squash (4) 8.488e+03 3.183e+04 <1 s 91.1% 2.004e+03 2.422e+04 <1 s 91.1%
sti (5) 3.723e+06 2.308e+07 153 s 77.9% 9.487e+04 3.096e+06 33 s 77.9%
tbpc (4) 2.260e+05 8.475e+05 8 s 94.0% 2.965e+04 3.684e+05 5 s 94.0%
tgfb (5) 8.438e+05 5.232e+06 31 s 89.6% 2.957e+04 1.034e+06 10 s 89.6%
TIG (6) 2.812e+06 2.952e+07 179 s 97.1% 1.574e+04 2.046e+06 21 s 97.1%
TIL (4) 2.499e+05 9.372e+05 8 s 75.1% 2.809e+04 3.362e+05 3 s 75.1%
uce (6) 1.349e+07 1.417e+08 965 s 92.4% 6.006e+04 6.989e+06 75 s 92.4%
WW (4) 1.982e+05 7.431e+05 6 s 61.6% 3.969e+04 2.957e+05 2 s 61.6%

Mean 9.807e+05 5.790e+06 32.1 83.0% 3.133e+04 1.062e+06 8.5 83.0%

aPSU, TOps, Time, and Acc represents peak space usage, total operations, time, and accuracy, respectively. The definitions of these
metrics can be found in Section 7. (For the last row, the entries corresponding to the PSU, TOps, and Time columns indicate their
respective geometric means while the entry corresponding to Acc indicates its arithmetic mean. For judicious comparisons of these
central trends for each column across both methods, the missing entries (—) in a column corresponding to the Carrillo and Lipman
approach and the equivalent entries from a column in the incremental approach are both excluded from the calculations.)

682 KONAGURTHU AND STUCKEY

Table 4. Comparisons between Heuristic Carrillo and Lipman’s Approach and Heuristic Incremental
Approach Using BALIBASE Reference 1 Datasetsa

Carrillo and Lipman Incremental

Dataset PSU TOps Time Acc PSU TOps Time Acc

Test1 dataset
1aab.msf.ali (4) 2.857e+05 1.072e+06 9 s 72.6% 5.808e+04 4.387e+05 3 s 72.6%
1aboA.msf.ali (5) 8.636e+06 5.354e+07 372 s 38.9% 2.858e+05 6.461e+06 54 s 38.9%
1aho.msf.ali (5) 8.600e+05 5.332e+06 32 s 88.3% 3.814e+04 9.721e+05 10 s 88.3%
1csp.msf.ali (5) 4.555e+05 2.824e+06 16 s 93.2% 1.424e+04 5.706e+05 6 s 93.2%
1csy.msf.ali (5) 2.020e+06 1.252e+07 78 s 79.4% 5.909e+04 1.873e+06 18 s 79.4%
1dox.msf.ali (4) 1.094e+05 4.101e+05 4 s 93.1% 1.647e+04 1.781e+05 2 s 93.1%
1fjlA.msf.ali (6) 9.681e+06 1.016e+08 659 s 93.3% 8.095e+04 5.116e+06 51 s 93.3%
1fkj.msf.ali (5) 1.344e+06 8.330e+06 53 s 90.0% 3.748e+04 1.254e+06 12 s 90.0%
1fmb.msf.ali (4) 2.649e+04 9.934e+04 2 s 86.0% 5.958e+03 6.700e+04 1 s 86.0%
1hfh.msf.ali (5) 2.823e+06 1.750e+07 113 s 84.3% 6.723e+04 2.233e+06 22 s 84.3%
1hpi.msf.ali (4) 1.699e+05 6.371e+05 6 s 76.1% 3.581e+04 2.890e+05 2 s 76.1%
1idy.msf.ali (5) 5.117e+06 3.173e+07 247 s 53.5% 2.311e+05 3.958e+06 33 s 53.5%
1krn.msf.ali (5) 1.045e+06 6.479e+06 41 s 94.6% 5.739e+04 1.304e+06 11 s 94.6%
1pfc.msf.ali (5) 1.918e+06 1.189e+07 85 s 79.5% 7.806e+04 1.919e+06 18 s 79.5%
1plc.msf.ali (5) 1.220e+06 7.561e+06 49 s 88.8% 3.782e+04 1.174e+06 10 s 88.8%
1r69.msf.ali (4) 7.085e+05 2.657e+06 20 s 20.8% 1.218e+05 8.311e+05 6 s 20.8%
1tgxA.msf.ali (4) 1.612e+05 6.044e+05 5 s 72.3% 2.983e+04 2.496e+05 2 s 72.3%
1tvxA.msf.ali (4) 5.973e+05 2.240e+06 17 s 33.7% 1.952e+05 1.083e+06 6 s 33.7%
1ubi.msf.ali (4) 1.063e+06 3.985e+06 33 s 20.2% 2.445e+05 1.488e+06 9 s 20.2%
1wit.msf.ali (5) 5.752e+06 3.566e+07 239 s 63.4% 1.962e+05 3.903e+06 35 s 63.4%
1ycc.msf.ali (4) 5.071e+05 1.902e+06 15 s 69.0% 8.638e+04 7.318e+05 5 s 69.0%
2fxb.msf.ali (5) 2.896e+04 1.796e+05 1 s 97.1% 6.116e+03 1.606e+05 2 s 97.1%
2mhr.msf.ali (5) 1.191e+06 7.383e+06 47 s 96.9% 3.427e+04 1.242e+06 13 s 96.9%
2trx.msf.ali (4) 7.223e+05 2.709e+06 21 s 67.3% 1.137e+05 8.724e+05 6 s 67.3%
3cyr.msf.ali (4) 2.692e+05 1.010e+06 9 s 70.7% 6.026e+04 4.575e+05 4 s 70.7%
451c.msf.ali (5) 3.559e+06 2.206e+07 142 s 61.3% 1.381e+05 3.066e+06 26 s 61.3%
9rnt.msf.ali (5) 9.193e+05 5.700e+06 36 s 95.0% 2.094e+04 9.397e+05 9 s 95.0%

Test2 dataset
1ad2.msf.ali (4) 5.421e+05 2.033e+06 18 s 87.4% 1.063e+05 8.760e+05 9 s 87.4%
1amk.msf.ali (5) 2.126e+06 1.318e+07 82 s 97.9% 4.202e+04 2.124e+06 29 s 97.9%
1ar5A.msf.ali (4) 3.190e+05 1.196e+06 11 s 87.7% 6.170e+04 5.451e+05 7 s 87.7%
1aym3.msf.ali (4) 6.050e+05 2.269e+06 20 s 86.5% 1.258e+05 1.005e+06 11 s 86.5%
1bbt3.msf.ali (5) 5.068e+07 3.142e+08 — — 1.232e+06 2.412e+07 251 s 38.2%
1ezm.msf.ali (5) 2.299e+06 1.425e+07 93 s 95.5% 5.212e+04 2.578e+06 38 s 95.5%
1gdoA.msf.ali (4) 1.043e+06 3.911e+06 32 s 78.4% 2.146e+05 1.582e+06 18 s 78.4%
1havA.msf.ali (5) — — — — 2.329e+06 3.984e+07 447 s 20.5%
1ldg.msf.ali (4) 9.241e+05 3.465e+06 37 s 92.1% 1.532e+05 1.341e+06 17 s 92.1%
1led.msf.ali (4) 4.155e+05 1.558e+06 15 s 46.1% 8.343e+04 7.163e+05 9 s 46.1%
1mrj.msf.ali (4) 6.045e+05 2.267e+06 21 s 88.8% 1.124e+05 9.605e+05 12 s 88.8%
1pgtA.msf.ali (4) 6.720e+05 2.520e+06 20 s 83.6% 8.219e+04 9.807e+05 10 s 83.6%
1pii.msf.ali (4) 1.076e+06 4.034e+06 34 s 79.7% 1.899e+05 1.536e+06 15 s 79.7%
1ppn.msf.ali (5) 1.748e+06 1.084e+07 69 s 62.1% 5.105e+04 1.988e+06 26 s 62.1%
1pysA.msf.ali (4) 5.001e+05 1.875e+06 17 s 91.5% 9.470e+04 8.382e+05 10 s 91.5%
1sbp.msf.ali (5) 5.622e+07 3.485e+08 — — 3.777e+06 6.602e+07 712 s 51.1%
1thm.msf.ali (4) 3.981e+05 1.493e+06 15 s 89.8% 5.278e+04 6.734e+05 10 s 89.8%
1tis.msf.ali (5) 4.477e+06 2.776e+07 178 s 94.2% 1.470e+05 4.557e+06 56 s 94.2%
1ton.msf.ali (5) 1.079e+07 6.688e+07 451 s 76.8% 3.672e+05 8.285e+06 100 s 76.8%
1uky.msf.ali (4) 2.863e+06 1.074e+07 83 s 25.5% 3.617e+05 2.819e+06 22 s 25.5%
1zin.msf.ali (4) 3.197e+05 1.199e+06 10 s 91.1% 5.846e+04 5.421e+05 7 s 91.1%
2cba.msf.ali (5) 1.967e+07 1.220e+08 — — 6.781e+05 1.445e+07 170 s 62.2%
2hsdA.msf.ali (4) 3.186e+06 1.195e+07 100 s 53.9% 5.493e+05 3.843e+06 36 s 53.9%
2pia.msf.ali (4) 4.180e+06 1.567e+07 126 s 54.5% 5.522e+05 4.233e+06 37 s 54.5%
3grs.msf.ali (4) 4.158e+06 1.559e+07 118 s 31.5% 5.899e+05 4.249e+06 34 s 31.5%
5ptp.msf.ali (5) 3.910e+06 2.424e+07 151 s 82.3% 9.144e+04 3.274e+06 42 s 82.3%
kinase.msf.ali (5) 2.180e+07 1.352e+08 982 s 56.0% 6.593e+05 1.339e+07 150 s 56.0%

(continued)

MULTIPLE SEQUENCE ALIGNMENT 683

Table 4. (Continued)

Carrillo and Lipman Incremental

Dataset PSU TOps Time Acc PSU TOps Time Acc

Test3 dataset
1ac5.msf.ali (4) 3.869e+06 1.451e+07 141 s 71.8% 3.803e+05 4.090e+06 51 s 71.8%
1ad3.msf.ali (4) 6.387e+05 2.395e+06 27 s 94.9% 1.171e+05 1.091e+06 22 s 94.9%
1adj.msf.ali (4) 8.992e+05 3.372e+06 33 s 94.4% 9.403e+04 1.278e+06 25 s 94.4%
1ajsA.msf.ali (4) 5.709e+06 2.141e+07 174 s 31.2% 4.826e+05 5.281e+06 54 s 31.2%
1cpt.msf.ali (4) 2.942e+06 1.103e+07 103 s 72.0% 5.132e+05 3.785e+06 43 s 72.0%
1dlc.msf.ali (4) — — — — 4.372e+05 3.473e+06 57 s 79.9%
1eft.msf.ali (4) 1.566e+06 5.871e+06 55 s 81.2% 2.883e+05 2.302e+06 28 s 81.2%
1fieA.msf.ali (4) 1.394e+06 5.226e+06 67 s 91.6% 2.251e+05 2.078e+06 54 s 91.6%
1gowA.msf.ali (4) 5.217e+06 1.956e+07 171 s 61.2% 5.559e+05 4.577e+06 63 s 61.2%
1gpb.msf.ali (5) 7.963e+06 4.937e+07 428 s 95.9% 2.126e+05 7.938e+06 226 s 95.9%
1gtr.msf.ali (5) 5.924e+06 3.673e+07 271 s 94.0% 1.534e+05 5.605e+06 99 s 94.0%
1lcf.msf.ali (6) 5.629e+07 5.910e+08 — — 6.604e+05 3.935e+07 1120 s 90.7%
1lvl.msf.ali (4) 4.465e+06 1.675e+07 170 s 32.5% 7.320e+05 7.945e+06 86 s 32.5%
1ped.msf.ali (3) 2.604e+05 6.076e+05 10 s 59.6% 2.097e+05 4.894e+05 5 s 59.6%
1pkm.msf.ali (4) 1.320e+06 4.948e+06 47 s 83.5% 2.239e+05 1.898e+06 31 s 83.5%
1rthA.msf.ali (5) 6.312e+06 3.913e+07 286 s 92.0% 1.523e+05 5.488e+06 118 s 92.0%
1sesA.msf.ali (5) 9.923e+06 6.152e+07 424 s 90.1% 1.932e+05 7.006e+06 108 s 90.1%
1taq.msf.ali (5) — — — — 2.508e+06 4.349e+07 945 s 84.5%
2ack.msf.ali (5) 4.276e+07 2.651e+08 — — 1.238e+06 2.446e+07 356 s 74.8%
2myr.msf.ali (4) 3.577e+07 1.341e+08 — — 4.450e+06 2.781e+07 242 s 27.4%
3lad.msf.ali (4) 1.446e+06 5.424e+06 54 s 86.7% 2.447e+05 2.128e+06 33 s 86.7%
3pmg.msf.ali (4) 9.325e+05 3.497e+06 42 s 93.5% 1.807e+05 1.582e+06 35 s 93.5%
4enl.msf.ali (3) 5.686e+05 1.327e+06 20 s 41.3% 5.184e+05 1.210e+06 8 s 41.3%
actin.msf.ali (5) 3.765e+06 2.334e+07 164 s 93.6% 1.157e+05 4.091e+06 66 s 93.6%
arp.msf.ali (5) 1.750e+07 1.085e+08 753 s 80.2% 8.815e+05 1.700e+07 226 s 80.2%
gal4.msf.ali (5) — — — — 2.835e+06 5.879e+07 738 s 36.4%
glg.msf.ali (5) 2.791e+07 1.730e+08 1248 s 76.3% 4.495e+05 1.447e+07 221 s 76.3%

Mean 1.831e+06 8.644e+06 52.8 75.1% 1.469e+05 2.145e+06 19.2 75.1%

aPSU, TOps, Time, and Acc represent peak space usage, total operations, time, and accuracy, respectively. The definitions of these
metrics can be found in Section 7. (For the last row, the entries corresponding to the PSU and TOps columns indicate their respective
geometric means while the entry corresponding to Acc indicates its arithmetic mean. For judicious comparisons of these central trends
for each column across both methods, the missing entries (—) in a column corresponding to the Carrillo and Lipman approach and
the equivalent entries from a column in the incremental approach are both excluded from the calculations.)

charging a constant penalty for every continuous run of gap symbols in one sequence aligned to nongap
symbols in another. Altschul (1989) overcomes the problem of natural gap penalties by compromising with
a slightly altered definition which he calls quasi-natural gap penalties where only the preceding column
completely determines the number of gaps the current column of alignment introduces. The implementation
of MSA (Gupta et al., 1995) with space–time improvements and accommodating affine gap penalties also
compromises in the same way by relying on the previous column to completely determine the gap initiation
structure of any given column of alignment. Let us call these quasi-affine gap penalties. Following the
proof sketch of Theorem 4.1, we can show that

Lk − Uk + ζq(πo
j1,...,jk

) ≤ ζq(←−γ o
j1,...,jk

) (4)

where ζq is the scoring function using quasi-affine gap penalties in a sum-of-pairs measure, Lk =∑
∀1≤i1<···<ik≤n ζq(←−γ h

i1,...,ik
) and Uk =∑

∀1≤i1<···<ik≤n ζq(πo
i1,...,ik

).
Hence, it is possible to prove optimality using quasi-affine gap penalties for both Carrillo and Lipman’s

method and the incremental approach.
There are a number of subtleties and problems in actually extending the implementation to use quasi-

affine penalties. First, the projection used in such an approach cannot remove all gap columns since this

684 KONAGURTHU AND STUCKEY

changes the quasi-affine penalty function and the theoretical results will fail to hold. For example, the three
pairwise projections of the alignment shown in Fig. 1 would be

- C - Y R - W T - C - Y R - W T E C H Y R - - -
E C H Y R - - - - - - Y R I W - - - - Y R I W -

as opposed to those shown in Fig. 2. With linear (and affine and natural) gap penalties, the gap–gap align-
ments have no score, this is no longer the case with quasi-affine (or quasi-natural) gap penalties. Second,
the calculation of the shadows Yij (and their multidimensional counterparts �i1...ik) is more complicated
since the optimal path through each cell C is not simply determined by summing the optimal C-to-source
path with an optimal C-to-sink path. Third, the calculation of optimal solutions using quasi-affine penalties
is expensive, and so in practice an approximation is used. If we do not require provably optimal alignments,
then we can ignore the above problems. In practice, we would expect that the overly generous nature of
the generalized Carrillo and Lipman bound would still lead to optimal alignments being found.

9. CONCLUSIONS

We present an approach for calculating optimal sum-of-pairs multiple alignments using incremental
Carrillo–Lipman bounds. Our experimental results demonstrate a drastic reduction in the exploration space
for optimal alignments compared to the conventional approach. This improvement allows many runs that
were unsuccessful using the original method. The incremental method can also be used heuristically by
tightening the bounds artificially on every increment. This heuristic method is faster and more space
efficient than using a heuristic version of Carrillo and Lipman bounds, an approach used for example in
tools such as MSA (Lipman et al., 1989).

The architecture of the incremental approach lends itself to straightforward parallelization over symmetric
multiprocessors using shared memory. At every different level, the nodes shown in Fig. 4 are independent
and hence can be calculated in parallel. This could further substantially reduce the total time of execution.
We have also discussed extension of the gap scoring scheme from linear to quasi-affine. Future directions for
investigation include the use of a tree model for scoring multiple alignments, use of sequence weighting,
and enabling quasi-affine gap penalties to increase the accuracy of this approach while combining it
with a divide-and-conquer technique to enable the simultaneous alignments of large protein sequences in
reasonably fast time.

ACKNOWLEDGMENT

A.S.K. thanks Jun Liu for his suggestions that aided debugging.

REFERENCES

Althaus, E., Caprara, A., Lenhof, H.-P., and Reinert, K. 2002. Multiple sequence alignment with arbitrary gap costs:
Computing an optimal solution using polyhedral combinatorics. Bioinformatics 18(Suppl. S), S4–S16.

Altschul, S.F. 1989. Gap costs for multiple sequence alignment. J. Theor. Biol. 138, 297–309.
Altschul, S.F., and Erickson, B.W. 1986. Optimal sequence alignment using affine gap costs. Bull. Math. Biol. 48,

603–616.
Altschul, S.F. and Lipman, D.J. 1989. Trees, stars, and multiple biological sequence alignment. SIAM J. Appl. Math.

49, 197–209.
Carrillo, H., and Lipman, D. 1988. The multiple sequence alignment problem in biology. SIAM J. Appl. Math. 48(5),

1073–1082.
Gupta, S.K., Kececioglu, J.D., and Schaffer, A. 1995. Improving the practical space and time efficiency of the shortest-

paths approach to sum-of-pairs multiple sequence alignments. J. Comp. Biol. 2(3), 459–472.
Gusfield, D. 1993. Efficient methods for multiple sequence alignment with guaranteed error bounds. Bull. Math. Biol.

55(1), 141–154.

MULTIPLE SEQUENCE ALIGNMENT 685

Gusfield, D. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology,
chap. 11, Cambridge University Press, London.

Henikoff, S., and Henikoff, J.G. 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci.
USA 89(22), 10915–10919.

Hughey, R., and Krogh, A. 1996. Hidden Markov models for sequence analysis: Extension and analysis of basic
method. Comp. Appl. Biosci. 12, 95–107.

Just, W. 2001. Computational complexity of multiple sequence alignment with SP-score. J. Comp. Biol. 8(6), 615–623.
Kececioglu, J.D. 1993. The maximum weight trace problem in multiple sequence alignment. Proc. 4th Ann. Symp. on

Combinatorial Pattern Matching, 106–119.
Lermen, M., and Reinert, K. 2000. The practical use of the A∗ algorithm for exact multiple sequence alignment.

J. Comp. Biol. 7, 655–671.
Lipman, D.J., Altschul, S.F., and Kececioglu, J.D. 1989. A tool for multiple sequence alignment. Proc. Natl. Acad.

Sci. USA 86, 4412–4415.
Mizuguchi, K., Deane, C.M., Blundell, T.L., and Overington, J.P. 1998. HOMSTRAD: A database of protein structure

alignments for homologous families. Protein Sci. 7, 2469–2471.
Murata, M., Richardson, J., and Sussman, J. 1985. Simultaneous comparison of three protein sequences. Proc. Natl.

Acad. Sci. USA 82, 3073–3077.
Needleman, S.B., and Wunsch, C.D. 1970. A general method applicable to the search for similarities in amino acid

sequence of two proteins. J. Mol. Biol. 48, 443–453.
Notredame, C. 2002. Recent progress in multiple sequence alignments: A survey. Pharmacogenomics 3, 1–14.
Notredame, C., Higgins, D., and Heringa, J. 2000. T-Coffee: A novel method for multiple sequence alignments. J. Mol.

Biol. 302, 205–217.
Reinert, K., Lenhof, H.-P., Mutzel, P., Mehlhorn, K., and Kececioglu, J. 1997. A branch-and-cut algorithm for multiple

sequence alignment. Proc. 1st Ann. Int. Conf. on Computational Molecular Biology (RECOMB 97), 241–249.
Reinert, K., Stoye, J., and Will, T. 2000. An iterative method for faster sum-of-pairs multiple sequence alignment.

Bioinformatics 16, 808–814.
Sneath, P.H.A., and Sokal, R.R. 1973. Numerical Taxonomy, W. H. Freeman, San Fransisco.
Stoye, J. 1998. Multiple sequence alignment with the divide-and-conquer method. Gene 211, GC45–GC56.
Stoye, J., Moulton, V., and Dress, A.W. 1997. DCA: An efficient implementation of divide and conquer approach to

simultaneous multiple sequence alignment. Comput. Appl. Biosci. 13(6), 625–626.
Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple

alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res.
22, 4673–4680.

Thompson, J.D., Plewniak, F., and Poch, O. 1999. BALIBASE: A benchmark alignment database for the evaluation
of multiple sequence alignment programs. Bioinformatics 15, 87–88.

Wang, L., and Jiang, T. 1994. On the complexity of multiple sequence alignment. J. Comp. Biol. 1, 337–348.

Address correspondence to:
Peter J. Stuckey

Dept. of Computer Science and Software Engineering
The University of Melbourne

Victoria, 3010, Australia

E-mail: pjs@cs.mu.oz.au

