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ABSTRACT

An interactive program, dotplot, has been developed for
browsing millions of lines of text and source code, using an
approach borrowed from biology for studying homology
(self-similarity) in DNA sequences. With conventional
browsing tools such as a screen editor, it is difficult to iden-
tify structures that are too big to fit on the screen. In con-
trast, with dotplots we find that many of these structures
show up as diagonals, squares, textures and other visually
recognizable features, as will be illustrated in examples
selected from biology and two new application domains:
text (AP news, Canadian Hansards) and source code
(5ESS ). In an attempt to isolate the mechanisms that pro-
duce these features, we have synthesized similar features in
dotplots of artificial sequences. We also introduce an
approximation that makes the calculation of dotplots practi-
cal for use in an interactive browser.
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Fig. 1. Dotplot Browser

1. Introduction

We describe a graphical tool for browsing millions of lines
of text and source code. It is hard to use a screen editor to
conceptualize input that is much larger than the size of a
screen. Following Eick (1992), who advocates the use of
interactive graphical tools to help understand large software
systems, we have developed a browser that can display mil-
lions of lines of input using a dotplot, a plot very much like
those used in molecular biology for studying homology.
Dotplots (not to be confused with Tukey’s ‘‘dot plot’’
(1977, p.50) ) are constructed by first tokenizing a sequence
(i.e. splitting it into lines, words, characters, etc.) and then
placing a dot in position i, j if the i th input token is the same
as the j th . We believe the dotplot browser may be useful for
discovering large-scale structures that may be hard to spot
with conventional tools such as a screen editor: conventional
tools may be too myopic to show the big picture.

Fig. 1 shows the browser in action. Three views of a source
code file are presented: a) a global overview of the file in
the upper right, b) a magnified view of a small portion of the
file in the upper left, and c) a text view along the bottom.
The views are linked together so that clicking and scrolling
in one view updates the others appropriately.

Notice the fascinating diagonals, squares, and textures in
Fig. 1. The texture labeled D will be discussed in more
detail in Section 4.2. What mechanisms could be responsi-
ble for these features? What do the features tell us about the
input sequence? This paper uses two approaches to investi-
gate such questions. In addition to the browser, which
allows us to analyze naturally occurring sequences, we also
synthesize artificial sequences in an attempt to replicate
features found with the browser. Both methods, analysis
and synthesis, are used to study the mechanisms that might
be responsible for the features.

Fig. 2 shows several synthesized dotplots. Fig. 2a, for
example, was generated from the artificial sequence:
‘‘zyxwvutsrqponmlkji’’. In this case, dots appear along the
main diagonal and nowhere else, because all of the input
tokens are distinct. In contrast with Fig. 2a, there are two
interesting diagonals in Fig. 2b, indicating that the subse-
quence ‘‘abcdefghi’’ is repeated. We have found that



diagonals, and other features, are often symptomatic of cer-
tain potentially important patterns in the input sequence.
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b. Diagonals
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c. Broken Diagonals
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d. Squares
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e. Diagonal Texture
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f. Square Texture
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Fig. 2. Features in Synthesized Dotplots

A number of conventions will be used throughout this
paper. Underlining (as in Fig. 2b) is used to emphasize
tokens that repeat; raising the baseline (as in Fig. 2c) is used
to emphasize tokens that do not repeat. In general, letters
from the beginning of the alphabet are used to denote
repeating tokens, and letters from the end of the alphabet are
used to denote non-repeating tokens. Labels along the left
margin are often omitted. Finally, the somewhat unusual
convention of placing the origin in the upper left corner was
chosen in order to conform with the fact that English text is
read left to right and top to bottom. The interaction of the
text views and dotplot views is more natural when the loca-
tion of the origin is consistent.

2. Dotplots of DNA Sequences

The features in Figs. 2b-f can also be found in dotplots of
real sequences. For example, diagonals are found in Fig. 3, a
dotplot of two concatenated DNA sequences: (A) the
plasmid pBR322 (Balbas et al. 1986), and (B), the plasmid
pUC19 (Yanisch-Perron et. al. 1985). Dotplots are a well-
known technique in biology for studying homology (e.g.,
Maizel & Lenk 1981, Pustell & Kafatos 1982). Biologists
are very interested in diagonals which indicate, in this case,
that both pBR322 and pUC19 carry the β-lactamase gene
that confers ampicillin resistance. Biologists have also used
dotplots to look at how sequences fold into three-
dimensional structures (e.g., Quax-Jeuken et al. 1983, Blun-
dell et al. 1987, Carrington & Morris 1987), and to investi-
gate evolutionary questions (e.g., Laver et al. 1980, Doolit-
tle 1981, Lake et al. 1988). A brief description of the value
of this approach can be found in Argos (1987). See Vingron
(1991) for a recent thesis on genetic sequence alignment.

A B

A

B

Fig. 3. Dotplot of Two DNA Sequences (7000 Nucleotides)

A few additional conventions are introduced in Fig. 3. Grid
lines are used to indicate the boundaries between sequence
A and sequence B. In addition, the grid box in the upper left
corner is called ‘‘AA,’’ the grid box in the upper right is
called ‘‘AB,’’ and so on. Grid box AA compares sequence
A with itself, while grid box AB compares sequence A with
sequence B. In general, the grid boxes along the main diag-
onal compare two identical sequences, while the other grid
boxes compare two different sequences.

Note that the diagonals are broken. What does this mean?
Fig. 2c (above) shows, by synthesis, that broken diagonals
are caused by the insertion of non-repeating tokens (zy) into
an otherwise matching subsequence (abcdefgh). In Fig. 3,



the breaks probably indicate that some non-repeating
nucleotides have been inserted near the beginning of B,
interrupting the match between the second half of A and
most of B.

3. Dotplots of Text

3.1 AP News: Broken Diagonals in Text

Broken diagonals can also be found in dotplots of text, as
illustrated in Fig. 4, a dotplot of four Associated Press (AP)
news stories, labeled A-D. The four stories, about Ryan
White’s death from AIDS, were sent over the AP wire
within a few days of each other in early April of 1990. For
text applications, we usually choose to tokenize the input
into words.

Date Time Lead Title_ ________________________________________________
A
B
C
D

040390
040990
040390
040390

19:54
02:47
14:03
04:18

RyanWhite-Chro
White-Chronolo
RyanWhite
RyanWhiteChron

White’s Struggle Wi...
Ryan White, AIDS Be...








A B C D

A

B

C

D

Fig. 4. Four AP News Stories (3000 Words)

What do the broken diagonals tell us about these AP news
stories? We suspect that the diagonals are broken when a
news story is updated with a few additional facts. Stories A,
B, and D appear to be related in this way, as evidenced by
the broken diagonals in grid boxes AB, BA, AD, DA, BD,
DB. In contrast, story C is probably not a rewrite of the oth-
ers, as evidenced by the absence of the broken diagonals in
AC, CA, BC, CB, DC, CD.

Dotplots may have practical ramifications for Information

Retrieval (IR) (Salton 1989). There are a number of IR sys-
tems that provide rapid access to documents in large elec-
tronic libraries. Experience with such systems has shown
that users find it difficult to construct queries that cover
most of the documents of interest and not too many others.
This problem could be alleviated, in part, if document
retrieval systems had a more effective way of handling
rewrites. In particular, the user is probably only interested
in one of the rewrites, e.g. story D. To date, most retrieval
systems consider each document one at a time, and conse-
quently, they would usually return either all of the rewrites
or none of them. There is generally no easy way to retrieve
just one of the rewrites, along with an indication that there
are a few more that are nearly the same.

Thus far we have seen two examples of broken diagonals.
The next section shows how diagonals can be combined
with squares.

3.2 Hansards: Combinations of Sparse Features

Fig. 5 is a dotplot of 37 million words of Canadian Han-
sards, parliamentary debates, which are available in both
English and French. The input is constructed by concatenat-
ing 3 years of debates in English (37/2 million words) fol-
lowed by the French equivalent (the remaining 37/2 million
words). Consequently, there is a lag of approximately 37/2
million words between an English sentence and its French
translation. 37 million is such a large amount of data that
the dots in Fig. 5 represent the relative number of matches
per pixel, rather than the existence or non-existence of a par-
ticular match.

Note the diagonals and large dark squares in Fig. 5. We
have seen examples of these features in isolation, but what
mechanism could explain the combination? Figs. 6 and 7
present a two step solution: first, sparse versions of the diag-
onals and squares are synthesized, as illustrated in Figs. 6b
and 6d, and then the interesting halves of Figs. 6b and 6d are
interleaved to produced the desired combination in Fig. 7.

How does the synthetic sequence in Fig. 7 relate to the Han-
sards? Let the a’s denote English words, e.g. government,
the b’s denote French words, e.g. gouvernement, and the c-
k’s denote words that are the same in both English and
French, e.g. proper nouns, dates, times, numbers, etc. We
hypothesize that the square in the upper left is formed
because there are many a’s matching a’s or English words
matching English words. Similarly, the square in the lower
right is probably formed because there are many b’s match-
ing b’s or French words matching French words. The diag-
onals indicate how the English text should be aligned with
the French. There is a good chance of a dot contributing to
the diagonal when the two texts are so aligned because there
are a fair number of proper nouns, dates, times, numbers,
etc. that will match when text is compared with its



translation.

English French

Fig. 5 Three Years of Hansards (37 Million Words)
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b. Sparse Diagonals
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c. Dense Squares
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d. Sparse Squares
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Fig. 6. Dense vs. Sparse Features
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Fig. 7. Combination of Diagonals and Squares

Fig. 8 Six Chapters of Microsoft Manuals in Seven Languages
(3.3 Million Words) with Colormap

The combination of diagonals and squares is also apparent
in Fig. 8, a dotplot used by translators at AT&T Language
Line Services to help maintain six Chapters of Microsoft
manuals in seven languages (Dutch, French, German,
Italian, Spanish, Swedish). When a file is compared with its
translation, there is a good chance of finding a diagonal,
whereas when a file is compared with another file in the
same language, there is a good chance of finding a dark
square.



With seven languages instead of just two, there is an oppor-
tunity to see matches between similar languages. Color
makes it easier to see these matches. The relative number of
matches per pixel is assigned to a cell in a colormap using a
histogram equalization technique described in Section 5.3.
Fig. 8 uses a colormap (shown immediately below Fig. 8) in
which groups of consecutive color cells all map to the same
color (e.g. cells 1-16 are yellow, 17-32 light green, 33-48
blue, 49-64 medium blue, 65-80 purple, 81-96 dark red, and
the rest black). Matches between two files in the same
language show up in dark red (a relatively high level),
matches between two files in very different languages (e.g.,
Spanish and German) show up in yellow (a relatively low
level), and matches between two files in similar languages
(e.g., Spanish and Italian) show up in an intermediate color
between yellow and dark red (e.g., medium-blue, purple).
Note that the ninth and eleventh files are copies of the eighth
and tenth as shown by dark red boxes with black diagonals.

Of all the dotplots in this paper, Fig. 5 has the highest data-
ink ratio. (Tufte 1983, p.93). 37 million words is at least
four orders of magnitude more than could be seen with a
conventional text editor. The tremendous compression fac-
tor of Fig. 5 increases the apparent density of features that
are actually quite sparse.

To summarize, we have seen three examples of text dot-
plots, AP news, Hansards, and Microsoft Manuals, and two
types of features, diagonals and squares. Diagonals indicate
regions of ordered similarity (e.g. matches, alignments, and
translations), while squares indicate regions of unordered
similarity (e.g. documents in similar languages). We have
also seen how features can be preserved despite changes in
density, and how this property allows us to interleave com-
binations of sparse features. These ideas will be further
developed in the next section which introduces the source
code application.

4. Dotplots of Source Code

4.1 Diagonals in Source Code

The source code examples in this paper are taken from the
5ESS switch, a large program that handles much of the
world’s long distance telephone service. For source code
applications, we usually choose to tokenize the input into
lines of code.

Fig. 9 shows a dotplot of eight source code files labeled A-
H. Two features are of interest: (1) a long broken diagonal
starting at AE and extending down to DH (and, by sym-
metry, another long broken diagonal starting at EA and
extending down to HD), and (2) 56 short diagonals, each
starting in the upper left corner of a different grid box.

A B C D E F G H
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H

Fig. 9. 3000 Lines of Code

What could cause these features? The first feature, the long
broken diagonals, indicates that files A, B, C, and D are
similar to files E, F, G, and H, respectively. This observa-
tion is further supported by the striking pattern in the names
of the files, as shown below. Perhaps these files were
copied to maintain a parallel version of the software.

First 4 Files Second 4 Files_ ______________________________________________
A
B
C
D

P.ISqf3.c
P.ISqf3_hold.c
P.ISqf3_hr.c
P.ISqf3_rr.c

E
F
G
H

P.ISqf4.c
P.ISqf4_hold.c
P.ISqf4_hr.c
P.ISqf4_rr.c






The second feature, the 56 short diagonals, has a different
explanation. Each of the eight files starts with a highly
structured comment of the form:

/*
* File:
*
* Data:
*
* Name:

...

...

...

The comments also include a number of additional fields:
Abstract, Loadable Package, Usage, Parame-
ters, Externals, etc. The 56 short diagonals are caused
by similarities in the eight comments.

4.2 Textures in Source Code

A relatively small number of comments in Fig. 9 generate a
relatively large number of diagonals. In general, n copies of
a subsequence generate n(n −1 ) diagonals. Consequently,



even a relatively small number of copies will generate such
a large number of diagonals that they form a texture. A
good example can be found in Fig. 1a (near the label D),
shown in more detail in Fig. 10.

This texture consists of a large number of diagonals of vary-
ing lengths. Consider the upper left corner where diagonals
are shrinking. Fig. 11 shows, by synthesis, that diagonals
shrink as a repeating subsequence is diluted with increasing
numbers of non-repeating tokens.

Fig. 10. 600 Lines of Code (Detail of Fig. 1)
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Fig. 11. Shrinking Diagonals

How does the artificial sequence in Fig. 11 relate to the
actual input sequence for Fig. 10? The texture in Fig. 10 is
generated by two clauses of an if statement. Each clause

consists of 16 groups of 18 lines of code. The first group
initializes all but the first field of a structure to 0; the second
initializes all but the first two fields to 0; the third initializes
all but the first three fields to 0; etc. The repeating sequence
of initializations to 0 is diluted with increasing numbers of
non-zero initializations resulting in the ‘‘shrinking diago-
nals’’ texture. There is also another pattern in the code that
causes diagonals to grow longer toward the lower right
corner of the texture.

This example shows that dotplots highlight a level of struc-
ture that would have been very difficult to discover using
traditional tools, such as a screen editor, because the pattern
extends over several hundred lines of code, much more than
could possibly fit on a screen. In addition, this structure
would also be difficult to appreciate with a dynamic pro-
gramming approach such as the UNIXTM diff program.
Such programs attempt to find a single match, and are there-
fore unable, in principle, to find the rich texture of multiple
overlapping matches. In addition, the diff program would
have trouble in this case because many of the matches aren’t
exact. To handle cases like this, Baker (1992) introduced an
inexact matching criterion, parameterized match, which
overcomes this difficulty by equating two lines that are the
same up to the names of the parameters and the values of the
constants. But unfortunately this equivalence relation
would also miss the pattern of ‘‘shrinking diagonals,’’
because it depends crucially on the names of the parameters
and the values of the constants.

However, in other cases, equivalence relations have proved
to be extremely powerful. Consider, Fig. 12, for example,
where it appears that several large sections of code were
copied verbatim (white space and all), as evidenced by the
long diagonals. Suppose we wanted to understand more
about the copied code: Who copied it? When? Why?

4.3 Attributes

Author Attributes_ _________________________________________
Author Code_ _________________________________________
carlson
carlson

kedzierski
veach

martin
martin
ahmad

/*
* Name: RTgeninit
*

#feature ( 5E2_2G )
* Module: RTmain
*

#endfeature ( 5E2_2G )







One approach to answering these kinds of questions makes
use of an equivalence relation we call attributes. Large
software development projects typically maintain a database
that associates each line of code with various attributes such
as the author’s name, modification dates, etc. The table
above illustrates the author attributes for the first few lines
of code that were used to generate Fig. 12.



Fig. 12. 3400 Lines of Code

Fig. 13. 3400 Author Attributes

A dotplot can be generated from any input. Fig. 13, for
example, is just like Fig. 12 except that it uses the author
attributes (column 1) as input instead of the code (column
2). It is interesting to compare Figs. 12 and 13 in order to
see if there might be a pattern between the code and the
authors. In this case, at least, it appears that many of the
diagonals in Fig. 12 coincide with squares in Fig. 13.
Why? We suspect that the copies were created by the same
author, at the same time, and for the same reason. This con-
jecture can be further tested by looking at a dotplot of
modification dates, and seeing if the features in that dotplot

line up with those in Figs. 12 and 13.

4.4 Summary

In summary, we have explored the properties of a variety of
features, primarily diagonals, but also squares and textures
(Fig. 2). We have seen that features can appear in many
variations: they can be broken (Fig. 2c), dense or sparse
(Fig. 6), and they can appear in various combinations (Fig.
7). We have also seen applications of dotplots in biology
(Fig. 3), as well as the two new applications: text (Fig. 4-8)
and source code (Fig. 9-13). Both analysis and synthesis
have been used to learn more about the relationship between
features and corresponding patterns in input sequences.

Dotplots may have a number of practical ramifications for
source code applications. First, dotplots might be useful for
identifying large structures in a program, especially during
discovery, the process of reading code for the first time.
Secondly, dotplots might help developers find undesirable
duplication so that it can be removed. In some cases, for
example, it is possible to replace multiple copies with a sin-
gle subroutine, as suggested in Baker (1992). In other cases,
the ability to identify multiple copies can be useful for
maintenance. In particular, if a bug is found in one of the
copies, then there is a good chance that the others might
require attention, as well. Thus, dotplots appear to be useful
for identifying large structures, removing undesirable dupli-
cation when possible, and coping more effectively with
duplication that cannot be removed.

Some users might believe that redundancy is always indica-
tive of a weakness of some kind. For example, one user has
started using the browser to identify C constructions, such
as switch statements, which are often associated with a
texture generated by repeated break statements. In this
way, dotplots have been used to help design a new program-
ming language that avoids many of these ‘‘wordy’’ con-
structions.

Should redundancy be considered ‘‘harmful’’? Following a
policy like Dijkstra’s stand on gotos, one might suggest
that redundancy should be eliminated, whenever possible
(Dijkstra 1968). Unfortunately, such a policy would also
remove a number of very useful structures such as the struc-
tured comments in Fig. 9. Carried to its logical extreme,
such a policy would reduce a structured program to a ran-
dom string, a string whose shortest description is itself. As
in good writing, repetition can be a powerful rhetorical
device for conveying emphasis, parallelism, etc. It would be
a mistake to discourage such practices in a futile attempt to
eliminate ‘‘wordiness’’ and other forms of ‘‘bad’’ writing.



5. Software Design

The next three subsections describe the implementation of
the browser. First, the input data is tokenized into a
sequence of N tokens. Secondly, this sequence is used to
construct the f-image, an array of floating point values.
Finally, these values are quantized into the q-image, an
array which is suitable for displaying on a color or grey-
scale monitor.

tokens → f-image → q-image

5.1 Tokenization

The program begins by tokenizing the input and applying
the appropriate equivalence relations, if any. Equivalence
relations were discussed briefly in sections 4.2 and 4.3; they
can be used to remove white space, simulate a parameter-
ized match, replace a token with one of its attributes, etc.
The details of the tokenizer depend on the particular applica-
tion. In the text application, for example, we have tended to
tokenize the input text into words, whereas in the source
code application, we have tended to tokenize the input code
into lines.

Before discussing the next topic, the calculation of the f-
image, it might be worthwhile to clarify a potential source
of confusion between the terms type and token. Consider,
for example, the English phrase, ‘‘to be or not to be,’’ which
contains 6 words, but only 4 of them are distinct. We say
that the sentence contains 6 tokens, but only 4 types. By
convention, we denote the number of tokens in the input
data with the variable N, and we denote the number of types
in the input data with the variable V (for ‘‘vocabulary
size’’).

One might normally choose to represent types as strings.
That is, it would be natural to represent the word, to, as the
string "to", and the line of code, ‘‘for(i=1; i<N;
i++)’’, as the string "for(i=1; i<N; i++)". For computa-
tional convenience, we have decided not to represent types
as strings, but rather as contiguous integers in the range of 0
to V −1. The strings are converted to numbers using stan-
dard hashing techniques. Representing tokens as integers
has several advantages. In particular, it makes it easy to test
whether or not the type of the i th token is the same as the
type of the j th token: if(tokens[i] ==
tokens[j]). If we had used strings instead of integers,
then we would have had to use strcmp instead of ==,
which would have been much less efficient.

5.2 Computing the F-image

After the input data has been parsed into a sequence of
tokens, the token are then converted into a floating point
image, the f-image. In the simplest case, this is

accomplished by placing a dot in fimage[i][j] if the
type of the i th token is the same as the type of the j th token.
In other words:

float fimage[N][N];

for(i=0; i<N; i++)
for(j=0; j<N; j++)
if(tokens[i] == tokens[j])
fimage[i][j] = 1;

else fimage[i][j] = 0;

This N 2 algorithm can be improved by making use of three
observations: (1) tokens should be weighted to adjust for the
fact that some matches are more surprising than others, (2)
dotplots with large values of N may consume too much
space, and (3) dotplots with large values of N may also con-
sume too much time. We address these issues in the follow-
ing three subsections: (1) Weighting, (2) Compression, and
(3) Approximation.

5.2.1 Weighting

The N 2 algorithm can be improved by replacing
‘‘fimage[i][j] = 1;’’ with ‘‘fimage[i][j] =
weight(tokens[i]);’’, where the function weight
returns a value between 0 and 1, depending on how surpris-
ing it is to find that tokens[i] == tokens[j]. There
are quite a number of reasonable functions to use for
weight. The weighting concept is illustrated below, using
the natural suggestion of weighting each match inversely by
the frequency of the type. In this way, frequent types (e.g.,
the English word the or the line of C-code ‘‘}’’) do not con-
tribute very much to the f-image because matches among
such frequent types are not very surprising.

/* Initialize freq */
float freq[V] = {0};
for(i=0; i<N; i++)
freq[tokens[i]]++;

for(i=0; i<N; i++)
for(j=0; j<N; j++)
if(tokens[i] == tokens[j])
fimage[i][j] = 1/freq[tokens[i]];

else fimage[i][j] = 0;

5.2.2 Compression

If N is large, it becomes impractical to allocate N 2 storage,
and therefore it becomes necessary to compress the image in
some way. Suppose that we wanted to compress the f-
image from N by N, down to n by n, for some n << N.
Then we could simply aggregate values that fall into the
same n by n cell as shown below. Of course, it is recom-
mended that the signal be filtered appropriately before



compression in order to avoid aliasing (Gonzalez & Wintz
1987, p.94). Filtering may also be useful if there are too
many dots in the f-image as is well known in the biology
application (Maizel & Lenk 1981, Pustell & Kafatos 1982).
In general, various well-known signal processing techniques
might be useful for enhancing features of interest.

/* Initialize f-image */
float fimage[n][n] = {0};
/* Map x from token coordinates

into f-image coordinates */
#define CELL(x) (((x) * n) / N)

for(i=0; i<N; i++)
for(j=0; j<N; j++)

if(tokens[i] == tokens[j])
fimage[CELL(i)][CELL(j)] +=

weight(tokens[i]);

5.2.3 Approximation

In practice, if N is very large, it becomes impractical to per-
form the N 2 comparisons and it is therefore useful to intro-
duce an approximation. Recall the dotplot of the Canadian
Hansards shown in Fig. 5. If we had tried to compute this
figure with the N 2 algorithm, the calculation would have
required 37 , 000 , 0002 steps, which is utterly impractical.
Even if each step took only a micro-second, the N 2 algo-
rithm would require more than 40 years.

Before presenting the approximation, it is convenient to
introduce the concept of a posting, a precomputed data
structure that indicates where a particular type can be found
in the input sequence. Thus, for the input sequence, ‘‘to be
or not to be,’’ there are two postings for the type ‘‘to’’: one
at position 0 and the other at position 4. One can compute
the dots for the type ‘‘to’’ in this example by placing a dot
in positions: (0, 0), (0, 4), (4, 0), and (4, 4). In general, for a
word with frequency f, there are f 2 combinations of postings
that need to be considered. The algorithm below simply
iterates through all f 2 combinations for each of the V types
in the vocabulary.

for(type=0; type<V; type++) {
w = weight(type);
f = freq[type];
postings = get_postings(type);
for(p1=0; p1 < f; p1++) {

i = postings[p1];
for(p2=0; p2 < f; p2++) {

j = postings[p2];
fimage[CELL(i)][CELL(j)] += w;}}}

We now come to the key approximation. If we assume that
types with large frequencies (f ≥ T, for some threshold T)
have vanishingly small weights, then we don’t need to

iterate over their postings. This approximation produces
significant savings since it allows us to ignore just those
types with large numbers of postings. In fact, the resulting
computation takes less than V T 2 iterations.

for(type=0; type<V; type++) {
w = weight(type);
f = freq[type];
/* the key approximation */
if(f < T) {
postings = get_postings(type);
for(p1=0; p1 < f; p1++) {
i = postings[p1];
for(p2=0; p2 < f; p2++) {
j = postings[p2];
fimage[CELL(i)][CELL(j)] += w;}}}}

In practice, we have found that T can often be set quite
small. The Hansard dotplot shown in Fig. 5, for example,
was computed with T = 20, so that the entire calculation
took less than 400V ∼∼ 52 , 000 , 000 steps and completed in
only 25 seconds of real time on a Silicon Graphics Personal
Iris workstation 4D/35.
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Fig. 14. Computing Hansard Plot with Different Values of T

How much does the choice of T affect the calculation time?
Fig. 14 attempts to address this question for the Hansard
data by plotting elapsed time as a function of T. Each point
in Fig. 14 shows a mean of 10 trials for each value of T.
The line shows a lowess smooth (Cleveland 1979) of the
plotted points. Over this range, it appears that increasing the
threshold by 1 increases the computation time by less than a
second; dotplots with T’s up to a few hundred can be com-
puted in a few minutes of real time.



5.3 Computing the Q-image

After computing the f-image, the floating point values are
quantized to conform to the available display hardware.
Suppose, for example, that the hardware is designed to han-
dle at most C colors, where C ∼∼ 256. An obvious quantiza-
tion technique is linear interpolation. Unfortunately, we
have found that the values in the f-image often belong to an
extremely skewed distribution, as shown in Fig. 15. Using
linear interpolation on such a highly skewed distribution
would introduce serious quantization errors.
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Fig. 15. Histogram of Values in Fig. 9’s F-image

We have had more success with a non-parametric approach:
histogram equalization (Gonzalez & Wintz 1987, pp. 146-
152), which quantizes the values in the f-image into C quan-
tiles, one for each color. Unfortunately, even histogram
equalization has difficulties when the input is highly quan-
tized. We have found empirically that many of the f-image
values are small integers and ratios of small integers. This
might be expected in the text application where Zipf’s Law
would predict most word frequencies to be small integers; it
also appears to hold in the other applications, as well. In
order to avoid assigning multiple colors to the same integer,
we have found it useful to remove duplicate values before
applying histogram equalization.

5.4 User Interface

Finally, the q-image is converted into an image suitable for
displaying in a window as a component of the interactive
dotplot browser (see Fig. 1). In a color X Windows imple-
mentation (Scheifler & Gettys 1986), this final step estab-
lishes a mapping from values in the q-image to cells in the
X server’s default colormap. We use a separate program
that maintains these color cells and allows switching
between various, pre-defined colormaps. The colormap typ-
ically used for black and white dotplots is binary: color 0 is
white (indicating relatively few matches), while all other
colors are black (otherwise).

Alternatively, grey-scale colormaps that vary smoothly (i.e.
with perceptually even differences) from white to black,
indicate the total number of weighted matches per pixel.
Darker pixels indicate the locations of more interesting
matches, while lighter pixels indicate less interesting
matches. Grey-scale is particularly useful for very dense
dotplots, which may appear completely black with a binary
colormap.

One problem with grey-scale is that it is difficult to distin-
guish between adjacent values in the colormap. We have
found that by carefully adding color to grey-scale colormaps
(e.g. a range from white, through yellow and orange, to dark
red), we can enhance the contrast between adjacent cells.
This makes it easier to assess the relative number of
weighted matches at different locations within a dotplot.
We have also found that this effect is enhanced by limiting
the number of colors (see Fig. 8).

In a monochrome implementation, the q-image step is
unnecessary since the f-image can be converted directly into
black and white using various standard techniques such as
thresholding, dithering, error diffusion, etc.

In addition to the dotplot views discussed thus far, there are
also text views, as shown in Fig. 1c. A text view consists of
two panes so that two subsequences of the input can be
presented side-by-side. The text view is linked to a dotplot
view, so that clicking the mouse on a point in the dotplot
corresponding to the pair of tokens x,y causes the left pane
to be centered around x and the right pane to be centered
around y.

6. Conclusion

Dotplots, which have been used to study homology in biol-
ogy, are also useful for discovering potentially important
patterns in text and source code. In the software application,
for example, we have seen that dotplots can be used to dis-
cover large-scale structures, remove undesirable duplication
when possible, and cope more effectively with duplications
that cannot be removed. Similarly, there are also a number
of practical ramifications of these patterns in the text appli-
cation.

We have seen that many of these potentially important pat-
terns are often associated with certain features in the dot-
plot: diagonals, squares, textures and combinations thereof.
There was a considerable discussion of a number of
mechanisms that explain some of these associations. Much
of the discussion used the browser to analyze a feature in a
real sequence, and then tried to replicate the feature in a syn-
thesized dotplot. For example, the browser was used to find
broken diagonals in AP stories (Fig. 4), a combination of
squares and diagonals in the Hansards (Fig. 5), and ‘‘shrink-
ing diagonals’’ in a large program (Fig. 10). Each of these



features were replicated in a synthesized dotplot: broken
diagonals in Fig. 2c, the combination of squares and diago-
nals in Figs. 6 and 7, and ‘‘shrinking diagonals’’ in Fig. 11.
The discussion then concluded with a speculation of the
underlying mechanism. In the AP news, for example, the
diagonals were probably broken by the insertion of a few
extra facts into a rewrite. Similarly, the shrinking diagonals
in the software example were probably caused by a repeat-
ing sequence of initializations to 0 being diluted with
increasing numbers of non-zero initializations.

In many cases, the patterns are much easier to find with a
dotplot than with an alternative such as a text editor or the
UNIX diff program. A text editor, for example, is ill-
suited for identifying structures that extend well beyond the
size of the screen. Similarly, the diff program is ill-suited
for identifying a texture such as the ‘‘shrinking diagonals’’
pattern discussed in Section 4.2, because the diff program
attempts to find a single alignment path and therefore can’t
deal effectively with the rich structure of multiple overlap-
ping matches.

The final section of the paper described the implementation
of dotplots, with an emphasis on weighting, compression
and approximation. These steps make it possible compute
dotplots quickly enough for use in an interactive browser.
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