

BJT Transistor Modeling A model is an equivalent circuit that represents the AC characteristics of the transistor. - A model uses circuit elements that approximate the behavior of the transisto \qquad nalysis of a transis r_{e} model

The Hybrid Equivalent Model

The following hybrid parameters are developed and used for modeling the transistor. These parameters can be found on the specification sheet for a transistor.

- $h_{r_{r}}=$ reverse transfer voltage ratio $\left(\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{o}}\right) \cong 0$
- $\mathbf{h}_{\mathrm{f}}=$ forward transfer current ratio $\left(\mathbf{I}_{o} / \mathrm{I}_{\mathrm{i}}\right)$
- $\mathbf{h}_{0}=$ output conductance

Impedance Calculations

$$
\begin{aligned}
& \quad \text { Input imped } \\
& \mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{B}} \| \mathbf{Z}_{\mathrm{b}} \\
& \mathbf{Z}_{\mathrm{b}}=\boldsymbol{\beta} \mathrm{r}_{\mathrm{e}}+(\boldsymbol{\beta}+\mathbf{1}) \mathbf{R}_{\mathrm{E}} \\
& \mathbf{Z}_{\mathrm{b}} \cong \boldsymbol{\beta}\left(\mathbf{r}_{\mathrm{e}}+\mathbf{R}_{\mathrm{E}}\right) \\
& \mathbf{Z}_{\mathrm{b}} \cong \boldsymbol{\beta} \mathbf{R}_{\mathbf{E}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Output impedance: } \\
& \mathbf{Z}_{\mathbf{o}}=\mathbf{R}_{\mathbf{C}}
\end{aligned}
$$

Calculations

This approach:
Tovides a "Thévenin look" at the output termi

- Provides a Thevenir terminals
- Makes it easier to determine the effects of a changing load

$$
\text { With } V_{i} \text { set to } 0 \mathrm{~V} \text { : }
$$

$$
\mathbf{Z}_{\mathrm{Th}}=\mathbf{Z}_{\mathbf{o}}=\mathbf{R}_{\mathbf{o}}
$$

The voltage across
the open terminals is:
$\mathrm{E}_{\mathrm{Th}}=\mathrm{A}_{\mathrm{vNL}} \mathrm{V}_{\mathbf{i}}$
where A_{vNL} is the
no-load voltage
gain.

Effect of Load Impedance on Gain

Combined Effects of \mathbf{R}_{S} and R_{L} on Voltage Gain

Effects of R_{L} :
$A_{v}=\frac{V_{0}}{V_{i}}=\frac{R_{L} A_{v N L}}{R_{L}+R_{0}}$
$A_{i}=-A_{v} \frac{R_{i}}{R_{L}}$

Effects of R_{L} and R_{S} :
$A_{v s}=\frac{V_{0}}{V_{s}}=\frac{R_{i}}{R_{i}+R_{s}} \frac{R_{L}}{R_{L}+R_{0}} A_{v N L}$
$A_{i s}=-A_{v s} \frac{R_{s}+R_{i}}{R_{L}}$

Cascaded Systems

- The output of one amplifier is the input to the next amplifier
- The overall voltage gain is determined by the product of gains of the
individual stages
- The DC bias circuits are isolated from each other by the coupling
- The DC calc
- The AC calculations for gain and impedance are interdependent

Cascode Connection

This example is a CE-CB combination. This arrangement provides high input impedance but a low voltage gain.

The low voltage gain of the input stage reduces the Miller input capacitance, making this combination suitable for high
frequency applications.

Darlington Connection

The Darlington circuit provides a very high
current gain-the product of the individual
current gains
$\beta_{\mathrm{D}}=\beta_{1} \beta_{2}$
The practical significance is that the circuit
provides a very high input impedance.

Feedback Pair

This is a two-transistor circuit that operates like a
Darlington pair, but it is not a Darlington pair.
It has similar characteristics:

- High current gain
- Voltage gain near unity
- Low output impedance
- High input impedance

The difference is that a Darlington
uses a pair of like transistors,
whereas the feedback-pair
configuration uses complementary
transistors.

Fixed-Bias Configuration
Input impedance:
$\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathrm{B}} \| \mathbf{h}_{\text {ie }}$
Output impedance:
$\mathrm{Z}_{\mathrm{o}}=\mathrm{R}_{\mathrm{C}} \| \mathbf{1 /} \mathrm{h}_{\mathrm{oe}}$
Voltage gain:
$A_{v}=\frac{V_{0}}{V_{i}}=-\frac{h_{f e}\left(\mathbf{R}_{C} \| 1 / h_{0} e\right)}{h_{\text {ie }}}$
Current gain:
$A_{i}=\frac{I_{0}}{I_{i}} \cong h_{\text {fe }}$

\(\left.\begin{array}{c}Troubleshooting

Check the DC bias voltages

\checkmark If not correct, check power supply, resistors, transistor.

Also check the coupling capacitor between amplifier

stages.\end{array}\right\}\)| Check the AC voltages |
| :---: |
| loading effect of the next stage. |

