

Load-Line Analysis

The load line plots all possible combinations of diode current $\left(I_{D}\right)$ and voltage (V_{D}) for a given circuit. The maximum I_{D} equals E / R, and the maximum V_{D} equals E.

The point where the load line and the characteristic curve intersect is
 the Q-point, which identifies I_{D} and
V_{D} for a particular diode in a given circuit.

Series Diode Configurations

Reverse Bias
Diodes ideally behave as open circuits
Analysis

- $V_{D}=E$
- $V_{R}=0 \mathrm{~V}$
- $I_{D}=0 \mathrm{~A}$

Half-Wave Rectification

The diode only
conducts when it is
forward biased,
therefore only hal
of the AC cycle
passes through the
diode to the
output.

The DC output voltage is $0.318 V_{m}$, where $V_{m}=$ the peak AC voltage.

PIV (PRV)

Because the diode is only forward biased for one-half of the AC cycle, it is also reverse biased for one-half cycle.

It is important that the reverse breakdown voltage rating of the diode be
high enough to withstand the peak, reverse-biasing AC voltage.

$$
\operatorname{PIV}(\text { or PRV })>V_{m}
$$

- PIV = Peak inverse voltage
- $\operatorname{PRV}=$ Peak reverse voltag
- $V_{m}=$ Peak AC voltage

Summary of Rectifier Circuits

Rectifier	Ideal V_{DC}	Realistic V_{DC}
Half Wave Rectifier	$V_{\mathrm{DC}}=0.318 V_{m}$	$V_{\mathrm{DC}}=0.318 V_{m}-0.7$
Bridge Rectifier	$V_{\mathrm{DC}}=0.636 V_{m}$	$V_{\mathrm{DC}}=0.636 V_{m}-\mathbf{2 (0 . 7 ~ V)}$
Center-Tapped Transformer Rectifier	$V_{\mathrm{DC}}=0.636 V_{m}$	$V_{\mathrm{DC}}=0.636 V_{m}-0.7 \mathrm{~V}$

$V_{m}=$ peak of the AC voltage.
In the center tapped transformer rectifier circuit, the peak AC voltage is the transformer secondary voltage to the tap.

Full-Wave Rectification

The rectification process can be improved by using a full-wave rectifier circuit.

Full-wave rectification produces a greater DC output

- Half-wave: $\boldsymbol{V}_{\mathrm{dc}}=\mathbf{0 . 3 1 8} \mathrm{V}_{\mathrm{m}}$
- Full-wave: $\boldsymbol{V}_{\mathrm{dc}}=\mathbf{0 . 6 3 6} V_{m}$

Summary of Clipper Circuits

Summary of Clamper Circuits

Zener Diodes

The Zener is a diode operated
in reverse bias at the Zener
Voltage (V_{z}),

When $V_{i} \geq V_{Z}$
The Zener is on

- Voltage across the Zener is V_{Z}
- Zener current: $I_{Z}=I_{R}-I_{R L}$

The Zener Power: $P_{Z}=V_{Z} I_{Z}$

- When $V_{i}<V_{Z}$

The Zener is off
The Zener acts as an open circuit

If R is too small, the Zener current exceeds the maximum current rating, $I_{Z M}$. The maximum current for the circuit is given by:

$$
I_{L \max }=\frac{V_{L}}{R_{L}}=\frac{V_{Z}}{R_{L \min }}
$$

The minimum value of resistance is:

$$
R_{L \text { min }}=\frac{R V_{Z}}{V_{i}-V_{Z}}
$$

Voltage-Multiplier Circuits

Voltage multiplier circuits use a combination of diodes and
capacitors to step up the output voltage of rectifier circuits

- Voltage Doubler
- Voltage Tripler
- Voltage Quadrupler
This half-wave voltage doubler's output can be calculated by:

Voltage Doubler

- Positive Half-Cycle
- D_{1} conducts
- $\quad \mathbf{D}_{2}$ is switched off
- Capacitor C_{1} charges to V_{m}
- Negative Half-Cycle
D_{1} is switched off
$\begin{array}{lll}\text { o } & \mathbf{D}_{1} \text { is switched } \\ 0 & \mathbf{D}_{2} \text { conducts }\end{array}$
$\begin{array}{ll}0 & \mathbf{D}_{2} \text { conduc } \\ \mathrm{o} & \text { Capacitor }\end{array}$
- Capacitor C_{2} charges to V_{m}
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{C} 2}=2 \mathrm{~V}_{\mathrm{m}}$

Practical Applications

- Rectifier Circuits

Conversions of AC to DC for DC operated circuits
Battery Charging Circuits

- Simple Diode Circuits

Protective Circuits against

- Overcurrent
- Polarity Reversal
- Zener Circuits

Overvoltage Protection
Setting Reference Voltages

