Electronic Circuits

Prof. Nizamettin AYDIN <u>naydin@yildiz.edu.tr</u> http://www.yildiz.edu.tr/~naydin

Semiconductors and diodes

- Introduction
- · Electrical properties of solids
- Semiconductors
- pn Junctions
- diodes
- Semiconductor diodes
- Special-purpose diodes
- Diode circuits.

Electrical properties of solids

• Conductors

- e.g. copper or aluminium
- have a cloud of free electrons (at all temperatures above absolute zero). If an electric field is applied electrons will flow causing an electric current.
- Insulators
 - e.g. polythene
 - electrons are tightly bound to atoms, so, only a few can break free to conduct electricity.

Properties of solids (contd.)

Semiconductors

- e.g. silicon or germanium
- at very low temperatures these have the properties of insulators
- as the material warms up some electrons break free and can move about, and it takes on the properties of a conductor – albeit a poor one
- however, semiconductors have several properties that make them distinct from conductors and insulators.

Semiconductors

- Pure semiconductors
 - thermal vibration results in some bonds being broken, generating free electrons which move about
 - these leave behind **holes** which accept electrons from adjacent atoms and therefore, also move about
 - electrons are negative charge carriers
 - holes are positive charge carriers.
- · At room temperatures there are few charge carriers
 - pure semiconductors are poor conductors
 - this is intrinsic conduction.

Doping of semiconductors

• Doping

- the addition of small amounts of impurities drastically affects its properties
- some materials form an excess of *electrons* and produce an *n*-type semiconductor
- some materials form an excess of *holes* and produce a *p*type semiconductor
- both *n*-type and *p*-type materials have much greater conductivity than pure semiconductors

- When p-type and n-type materials are joined, this forms a pn junction
 - the majority charge carriers on each side diffuse across the junction where they combine with (and remove) the charge carriers of the opposite polarity.
 - hence, around the junction there are few free charge carriers and we have a **depletion layer** (also called a **space-charge layer**).

pn Junctions (contd.)

- Forward bias
 - if the *p*-type side is made *positive* with respect to the *n*-type side the height of the barrier is reduced
 - more majority charge carriers have sufficient energy to surmount it
 - the diffusion current therefore increases while the drift current remains the same
 - there is thus a net current flow across the junction which increases with the applied voltage.

pn Junctions (contd.)

Reverse bias

- if the *p*-type side is made *negative* with respect to the *n*-type side the height of the barrier is increased
- the number of majority charge carriers that have sufficient energy to surmount it rapidly decreases
- the diffusion current therefore vanishes while the drift current remains the same
- thus the only current is a small leakage current caused by the (approximately constant) drift current
- the leakage current is usually negligible (a few nA).

Reverse breakdown

Can be caused by two mechanisms:

Zener breakdown

- in devices with heavily doped *p* and *n*-type regions the transition from one to the other is very abrupt.
- this produces a very high field strength across the junction that can pull electrons from their covalent bonds.
- produces a large reverse current.
- breakdown voltage is largely constant.
- Zener breakdown normally occurs below 5 V.

Reverse breakdown (contd.)

Avalanche breakdown

- occurs in diodes with more lightly doped materials
- field strength across junction is insufficient to pull electrons from their atoms, but is sufficient to accelerate the electrons within the depletion layer
- they loose energy by colliding with atoms
- if they have sufficient energy they can liberate other electrons, leading to an avalanche effect
- usually occurs at voltages above 5 V.

Special-purpose diodes (contd.) • Schottky diodes – formed by the junction between a layer of metal

- (e.g. aluminium) and a semiconductor
- action relies only on majority charge carriers
- much faster in operation than a pn junction diode
- has a low forward voltage drop of about 0.25 V
- used in the design of high-speed logic gates.

Key points
Diodes allow current to flow in only one direction.
At low temperatures semiconductors act like insulators.
At higher temperatures they begin to conduct.
Doping of semiconductors leads to the production of p -type and n -type materials.
A junction between <i>p</i> -type and <i>n</i> -type semiconductors has the properties of a diode.
Silicon semiconductor diodes approximate the behaviour of ideal diodes but have a conduction voltage of about 0.7 V.
There are also a wide range of special purpose diodes.
Diodes are used in a range of applications.

•

•

60