Electronic Circuits

Prof. Dr. Nizamettin AYDIN <u>naydin@yildiz.edu.tr</u> http://www.yildiz.edu.tr/~naydin

Operational amplifiers

- Introduction
- An ideal operational amplifier
- Basic operational amplifier circuits
- Other useful circuits
- Real operational amplifiers
- Selecting component values
- Effects of feedback on op-amp circuits

...Basic operational amplifier circuits...

- When looking at feedback we derived the circuit of an amplifier from 'first principles'
- Normally we use standard 'cookbook' circuits and select component values to suit our needs
- In analysing these we normally assume the use of ideal opamps
 - in demanding applications we may need to investigate the appropriateness of this assumption
 - the use of ideal components makes the analysis of these circuits very straightforward

...Real operational amplifiers...

- Voltage gain
 - typical gain of an operational amplifier might be 100 - 140 dB (voltage gain of 10⁵ - 10⁶)
 - 741 has a *typical* gain of 106 dB (2×10^5)
 - high gain devices might have a gain of 160 dB (108)
 - while not infinite, the gain of most op-amps is 'high-enough'
 - however, gain varies between devices and with temperature

...Real operational amplifiers...

- Input resistance
 - typical input resistance of a 741 is 2 $M\Omega$
 - very variable, for a 741 it can be as low as 300 $k\Omega$
 - the above value is typical for devices based on bipolar transistors
 - op-amps based on field-effect transistors generally have a much higher input resistance perhaps $10^{12} \Omega$
 - we will discuss bipolar and field-effect transistors later

...Real operational amplifiers...

- Output resistance
 - typical output resistance of a 741 is 75 Ω
 - again very variable
 - often of more importance, is the maximum output current
 - the 741 will supply 20 mA
 - high-power devices may supply 1 amper or more

...Real operational amplifiers...

• Supply voltage range

- a typical arrangement would use supply voltages of +15 V and -15 V, but a wide range of supply voltages is usually possible
- the 741 can use voltages in the range ± 5 to ± 18 V
- some devices allow voltages up to ± 30 V or more
- others, designed for low voltages, may use ± 1.5 V
- many op-amps permit single voltage supply operation, typically in the range 4 to 30 V

...Real operational amplifiers...

• Common-mode rejection ratio

- an ideal op-amp would not respond to common-mode signals.
- real amplifiers do respond to some extent
- the common-mode rejection ratio (CMRR) is the ratio of the response produced by a differential-mode signal to that produced by a common-mode signal
- typical values for CMRR might be in the range 80 to 120 dB
 - 741 has a CMRR of about 90 dB

Selecting component values

- Our analysis assumed the use of an ideal op-amp
- When using real components we need to ensure that our assumptions are valid
- In general this will be true if we:
 - limit the gain of our circuit to much less than the
 - open-loop gain of our op-amp
 - choose external resistors that are *small* compared with the input resistance of the op-amp
 - choose external resistors that are *large* compared with the output resistance of the op-amp.
- Generally we use resistors in the range 1 to 100 $k\Omega$

Effects of feedback on op-amp circuits...

- Effects of feedback on the Gain
 - negative feedback *reduces* gain from A to A/(1 + AB)
 - in return for this loss of gain we get consistency, provided that the open-loop gain is much greater than the closed-loop gain (that is, A >> 1/B)
 - using negative feedback, standard cookbook circuits can be used – greatly simplifying the design
 - these can be analysed without a detailed knowledge of the op-amp itself

Key points

- Operational amplifiers are among the most widely used building blocks in electronic circuits
- An *ideal* operational amplifier would have infinite voltage gain, infinite input resistance and zero output resistance
- Designers often make use of cookbook circuits
- Real op-amps have several non-ideal characteristics However, if we choose components appropriately this should not affect the operation of our circuits
- Feedback allows us to increase bandwidth by trading gain against bandwidth
- · Feedback also allows us to alter other circuit characteristics