

Q1
Use the following trigonometric identity to derive an expression for $\cos 8 \theta$ in terms of
$\cos 9 \theta, \cos 7 \theta$, and $\cos \theta$.
$\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y$

A1
Q2
Plot the graph of the following funtion:
$\cos 9 \theta=\cos (8 \theta+\theta)=\cos 8 \theta \cos \theta-\sin 8 \theta \sin \theta$
$\cos 7 \theta=\cos (8 \theta-\theta)=\cos 8 \theta \cos \theta+\sin 8 \theta \sin \theta$

$$
\begin{gathered}
\cos 9 \theta+\cos 7 \theta=2 \cos \theta \cos 8 \theta \\
\Rightarrow \cos 8 \theta=\frac{\cos 9 \theta+\cos 7 \theta}{2 \cos \theta}
\end{gathered}
$$

$$
s(t)=\left\{\begin{array}{lc}
2 t & 0 \leq t \leq \frac{1}{2} \\
\frac{1}{3} t(4-2 t) & \frac{1}{2} \leq t \leq 2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Q3
Considering the funtion given in question 2 , derive an equation for $x_{1}(t)=s(t-2)$ and plot the graph of the funtion.

A3

$$
x_{1}(t)=s(t-2)=\left\{\begin{array}{cl}
2(t-2) & 2 \leq t \leq 2 \frac{1}{2} \\
\frac{1}{3}(8-2 t) & 2 \frac{1}{2} \leq t \leq 4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Q4

Considering the funtion given in question 2, derive an equation for $x_{2}(t)=s(t+1)$ and plot the graph of the funtion.

Q5
Derive an equation for the following graph of the funtion.

A5

$$
x(t)=\left\{\begin{array}{cc}
(t+1) & -1 \leq t \leq 0 \\
\left(1-\frac{1}{2} t\right) & 0 \leq t \leq 2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Q6
In the following waveform, it is possible to measure both a positive and a negative value of t_{1} and then calculate the corresponding phase shifts.
Which phase shift is within the range $-\pi<\varphi \leq \pi$? Verify that the two phase shifts differ by 2π.

$$
\begin{aligned}
& \text { Positive } t_{1} \text { is } t_{1}=0.005 \mathrm{sec} \\
& \qquad \varphi=-\omega_{0} t_{1}=-2 \pi(40)(0.005)=-2 \pi(0.2)
\end{aligned}
$$

Negative t_{1} is $t_{1}=-0.02 \mathrm{sec}$ $\varphi=-\omega_{0} t_{1}=-2 \pi(40)(-0.02)=2 \pi(0.8)$
Difference $=2 \pi(0.8)-(-2 \pi(0.2))=2 \pi$

Q7

For the following signal, $x(t)=20 \cos (2 \pi(40) t-0.4 \pi)$, find G and t_{1} so that the signal $y(t)=G x\left(t-t_{1}\right)$ is equal to $5 \cos (2 \pi(40) t)$; i.e., obtain an expression for $y(t)=5 \cos (2 \pi(40) t)$ in terms of $x(t)$.

A7
Q8
Demonstrate that expanding the real part of $\exp ($ $j(\alpha+\beta))=\exp (j \alpha) \times \exp (j \beta)$ will lead to the following identity.

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

Also show that the following identity is obtained from the imaginary part.

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$$

$$
\begin{gathered}
y(t) \stackrel{?}{=} G x\left(t-t_{1}\right) \\
5 \cos (2 \pi(40) t) \stackrel{?}{=} G(20) \cos (\underbrace{2 \pi(40) t-80 \pi t_{1}-0.4 \pi}_{2 \pi(40)\left(t-t_{1}\right)-0.4 \pi} \\
\Rightarrow 5=20 G \\
\therefore G=\frac{5}{20}=\frac{1}{4} \quad \begin{array}{c}
\text { NEED TH15 PART } \\
\text { TO BE ZERO }
\end{array} \\
\Rightarrow \begin{array}{l}
-80 \pi t_{1}-0.4 \pi=0 \\
\\
\therefore t_{1}=\frac{0.4 \pi}{-80 \pi}=-\frac{1}{200} \sec =-0.005
\end{array}
\end{gathered}
$$

A8

$$
\begin{aligned}
e^{j(\alpha+\beta)} & =e^{j \alpha} e^{j \beta} \\
& =(\cos \alpha+j \sin \alpha)(\cos \beta+j \sin \beta) \\
& =\cos \alpha \cos \beta-\sin \alpha \sin \beta+j(\cos \alpha \sin \beta+\sin \alpha \cos \beta) \\
\rightarrow \text { EQUALS } & \cos (\alpha+\beta)+j \sin (\alpha+\beta)
\end{aligned}
$$

Q9
Show that the following representation can be derived for the real sine signal:

$$
A \sin \left(\omega_{0} t+\phi\right)=\frac{1}{2} X e^{-j \pi / 2} e^{j \omega_{0} t}+\frac{1}{2} X^{*} e^{j \pi / 2} e^{-j \omega_{0} t}
$$

where $X=A e^{i \phi}$. In this case, the interpretation is that the sine signal is also composed of two complex exponentials with the same positive and negative frequencies, but the complex coefficients multiplying the terms are different from those of coefficients multippying the terms are disferenl romires
the cosine signal. Specifically, the sine signal requires the cosine signa. Specifically, the sine signal requires
additional phase shifts of $\pm \pi / 2$ applied to the complex amplitude X and X^{*}, respectively.

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

EqUATE IMAGINARY PARTS:

$$
\text { amplitude } X \text { and } X^{*} \text {, respectively. }
$$

$\sin (\alpha+\beta)=\cos \alpha \sin \beta+\sin \alpha \cos \beta$

A9

$$
\begin{aligned}
& \frac{1}{2} A e^{j \varphi} e^{-j \pi / 2} e^{j \omega_{0} t}+\frac{1}{2} A e^{-j \varphi} e^{j \pi / 2} e^{-j \omega \omega_{0} t} \\
& =\frac{1}{2} A\left(e^{j\left(\omega_{0} t+\varphi-\pi / 2\right)}+e^{-j\left(\omega_{0} t+\varphi-\pi / 2\right)}\right) \\
& =A \cos \left(\omega_{0} t+\varphi-\pi / 2\right) \quad \text { USE } \frac{1}{2} e^{j \theta}+\frac{1}{2} e^{-j \theta}=\cos \theta \\
& \text { RECALL TRIG IDENTITY: } \\
& A \cos (\alpha-\pi / 2)=\sin \left(\omega_{0} t+\varphi\right)
\end{aligned}
$$

Q10

Use $A_{k} \cos \left(\omega_{0} t+\phi_{k}\right)=A_{k} \cos \phi_{k} \cos \left(\omega_{0} t\right)-A_{k} \sin \phi_{k} \sin \left(\omega_{0} t\right)$
to show that the sum
$1.7 \cos (20 \pi t-70 \pi / 180)+1.9 \cos (20 \pi t+200 \pi / 180)$
reduces to $A \cos (20 \pi t+\phi)$, where
$A=1.532$ and
$\phi=2.475 \mathrm{rads}$

Q11
Consider the two sinusoids,
$x_{1}(t)=5 \cos (2 \pi(100) t+\pi / 3)$
$x_{2}(t)=4 \cos (2 \pi(100) t-\pi / 4)$

Obtain the phasor representations of these two signals, add the phasors, plot the two phasors and their sum in the complex plane, and show that the sum of the two signals is
$x_{3}(t)=5.536 \cos (2 \pi(100) t+0.2747)$
In degrees the phase should be 15:74. Examine the plots in Fig. 216 to see whether you can identify the cosine waves

- $x 1 . t /, x 2 . t /$, and $x 3 . t / \mathrm{D} x 1 . t / \mathrm{C} x 2 . t /$.

Q12
Demonstrate that a complex exponential signal can
also be a solution to the tuning-fork differential
equation:
$d^{2} x / d t^{2}=-(k / m) x(t)$

By substituting $z(t)$ and $z^{*}(t)$ into both sides of the differential equation, show that the equation is satised for all t by both of the signals
$z(t)=X e^{j \omega_{0} t}$ and $z^{*}(t)=X^{*} e^{j \omega_{0} t}$

Determine the value of ω_{0} for which the differential equation is satised.

First Derivative:
$\frac{d}{d t} \bar{x}(t)=j \omega_{0} X e^{j \omega_{0} t} \quad \frac{d}{d t} \tilde{x}^{*}(t)=-j \omega_{0} \mathbb{X}^{*} e^{-j \omega_{0} t}$
2nd DERIVATIVE:

If $-\omega_{0}^{2}=-\frac{k}{m}$, then the differential equation
is satified $\quad \therefore \omega_{0}=\sqrt{\frac{k}{m}}$

